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ABSTRACT 

During an outpatient chemotherapy infusion visit, patients typically have blood work done, see their 
oncologist in the clinic, wait for the pharmacy to prepare their drugs, and receive their infusion. The time 
variability at each of these steps can introduce delays, which not only negatively impact the patient but 
propagate through the system to negatively impact other patients and staff as well. One major opportunity 
to reduce patient waiting time is by pre-mixing (i.e., making drugs before the patient arrives for their 
infusion appointment) at the pharmacy. This, however, requires careful consideration of the trade-off 
between time savings versus the potential cost of wasting a drug if the patients are deemed ineligible for 
treatment on the day of their appointment. We present a discrete-event simulation model to predict the 
effectiveness of various make-ahead drug policies utilizing data from our collaborators at the University of 
Michigan Rogel Cancer Center (UMRCC). 

1 INTRODUCTION 

Healthcare operations, care delivery, and treatment decision making are just a few examples where data-
driven modeling has greatly impacted performance and grown in popularity as data access has improved 
(Thara et al. 2016). Discrete-event simulation stands as one of the most tractable methods practiced to 
improve overall healthcare system performance (Katsaliaki and Mustafee 2011; Barjis 2011; Rohleder et 
al. 2011; Seminelli et al. 2016). This increasing trend of performance improvement models exists for cancer 
treatment centers as well (Woodall et al. 2013; Liang et al. 2015). With an aging population that continues 
to grow, the estimated number of new cases of cancer has grown from 1.5 million in 2010 to 1.7 million in 
2018 (ACS 2018). While most patients undergo a combination of chemotherapy infusion (i.e., intravenous 
administered medication), radiation therapy, and surgery, over half of cancer patient in the US will require 
some form of chemotherapy. Additionally, cancer treatments continue to advance and increase in 
complexity. This results in an increase in the frequency of patient infusion visits for a given treatment 
regimen as well as an increase in cancer survivors who require follow-up visits (Levit and Patlak 2009). 
Consequently, this increased demand of patients at outpatient chemotherapy infusion centers leads to 
increased patient waiting time, patient dissatisfaction, and overworked staff. Additionally, patient and nurse 
safety becomes a concern as demand increases. The risk of the hazardous chemotherapy agents spilling on 
patients or nurses increases when the nurses are overworked (Schrijvers 2003; He et al. 2017; Harrison et 
al. 2016). Therefore, any process improvement on the system has the potential for multifaceted benefits. 

Cancer patients who require chemotherapy infusion undergo exhausting and lengthy infusion sessions 
over the course of their treatment. These session lengths can increase even more during peak demand hours. 
Through observations of work flow and interviews with pharmacists at UMRCC, we determined peak drug 
demand hours on certain days of the week. During these peak hours, the pharmacy can get backed up to the 
point of taking up to two hours to get a drug out to a patient. Therefore, one major opportunity to reduce 
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patient delays is by optimizing drug preparation at the pharmacy. Drugs can be prepared (i.e., compounded) 
ahead of time to prevent patients from waiting as their chemotherapy drug(s) is/are compounded as done in 
Masselink et al. (2012). However, patients scheduled for outpatient chemotherapy infusion may be deferred 
for treatment (i.e., last minute cancellation due to not meeting medical parameters or personal reasons such 
as a family member not being available to support the patient) after arriving for their appointment (Fuentes 
and Frödin 2015). Consequently, the infusion center may incur a waste cost if a drug is made ahead and the 
patient defers treatment. Infusion centers must implement policies, determining which drugs to make before 
patients arrive given a fixed window of time, to balance this potential waste cost with the time savings for 
their patients and staff. In support of this effort, we developed a discrete-event simulation, using UMRCC 
data, that has widespread applicability to evaluate the effectiveness of pre-mixing chemotherapy drugs as 
well as the drug planning process in general. This simulation allows us to take multiple sets of drugs 
determined for pre-mix, along with the patient schedule for the day, and simulate the performance (i.e., 
time in system and staff utilization) of these sets (i.e., compare the pre-mix policies).  

Through our computational experiments, we test proposed methods to create pre-mix policies.  For 
example, if a drug is below a certain cost threshold and one or more patients are scheduled to receive it 
below a certain probability of deferral, then we can pre-mix the drug. We incorporate patient deferral 
probabilities from the prediction model in (Richardson et al. 2017). The simulation allows us to test various 
make-ahead policies for mixing drugs throughout the day. Improvements made at the pharmacy may reduce 
patient delays and nurse overtime in the infusion area.  

The rest of the paper is structured as follows: Section 2 defines the problem we are solving, Section 3 
describes the simulation modeling construction and all assumptions, Section 4 presents our computational 
experiments, and Section 5 provides discussion and conclusion.  

2 PROBLEM DESCRIPTION 

2.1 Description of Chemotherapy Infusion Process 

Chemotherapy infusion patients’ visits consist of getting blood work done, seeing their oncologist, waiting 
for the pharmacy to prepare their chemotherapy drug, and receiving their infusion. However, recurring 
patients do not always have a clinic visit as seen in Figure 1. We note that our focus will be on patients who 
do not have a clinic visit on the day of their appointment, however future work will consider two patient 
arrival streams, those with and those without a clinic appointment on the same day as their infusion. Patients 

Lab 
Processing

Phlebotomy
Patient
Arrives

Clinic

Pharmacy

Infusion
Patient

Discharged

Patient Flow
Information Flow
Material Flow

Figure 1: This figure presents the patient flow for outpatients and their information. This was created based 
off of observations and interviews conducted with the medical staff at UMRCC. 
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with a same-day clinic appointment provide our model additional information to better predict treatment 
deferrals  as well as reduce the sources for lateness to the infusion center (e.g., bad weather, travel time, 
etc.) 
 At UMRCC, the patients’ orders are only sent to the pharmacy once the patients have finished their 
clinic visit or are checked-in to the infusion area. The pharmacy has a goal to keep the order turnaround-
time (TAT) under 1 hour for each patient. However, through observation and historical data, we see that 
the TAT can be as much as 2 hours.  Our focus is to improve the drug turnaround time in the pharmacy and 
in turn reduce the overall time in the system, illustrated in Figure 1, for patients. We propose various policies 
ranging in risk tolerance. More conservative policies mimic the current state of pre-mix which are solely 
cost based. Conversely, less conservative policies consider pre-mixing higher-cost drugs if the probability 
of wasting them is low enough. Although all policies save time, the purpose of the simulation is to determine 
how much time and whose time (patient or pharmacist/tech).  

2.2 Pharmacy Process Flow Description  

The drug mixing process at the pharmacy consists of a series of order verifications, the actual compounding 
of the drug, and safety checks to ensure safe delivery to patients. The process we model begins when a drug 
order has been received by the pharmacy (i.e., the patient has arrived at infusion and is ready to be treated). 
Figure 2 illustrates the various steps taken and various checks needed to complete a chemotherapy drug 
order. If a drug is pre-mixed, all steps are performed in advance except for the final safety check. The drug 
mixing process is carried out by various pharmacist and technical staff. Pharmacists conduct both the order 
verification and safety check of all drugs. They are assigned to one of these two tasks for the first half of 
the day then switch. Pharmacy technical staff serve one of two roles: compounding drugs under the hood 
or printing all labels and collecting supplies. 

For simulation purposes, we simplified this process flow into five main steps.  
 
1. Check if the drug was made ahead (pre-mixed), if yes skip to Step 5 otherwise continue to Step 2. 
2. Complete two drug verifications; must be done by two different pharmacists  
3. Print labels and collect supplies for the drug order  
4. Compound the drug and perform the first safety check. If order is mixed incorrectly, the same tech 

must remake the order (i.e., repeat Step 4) 
5. Perform the safety check and deliver the completed order.  

Figure 2: Pharmacy process flow for chemotherapy infusion drug orders. 

2692



Richardson and Cohn 
 

 
 Arrivals are determined based on the patients’ appointment time plus some random deviation where a 
negative deviation means the patient was early and positive means they were late. Each time a new order 
arrives, the orders are sorted first by arrival time then by appointment time (i.e., if two orders arrive at the 
same time before the pharmacy opens, the order with the earlier appointment time will be processed first). 
Orders are then released to follow the process in Figure 2. Once a drug is verified twice (Step 2) and all 
supplies have been gathered (Step 3), it then can proceed to the mixing hood. After the drug is mixed, the 
remote safety check is performed by the pharmacist. Before compounding the drugs, the mixing tech must 
take a photo of all materials and another photo after the drug has been fully compounded. The safety check 
pharmacist must review these images before the mixing process can be marked as complete. However, 
during this check, the mixing tech cannot conduct any other work. Since the historical data is only captured 
when a drug entered and exited the mixing hood, we included this initial safety check in the mixing time 
for our drugs. We note this safety check is performed in addition to the final safety check/drug delivery in 
step 5 of our simulation.  

3 SIMULATION MODEL  

Our simulation was built using the SimPy module in Python version 3.6. The model is initiated with a set 
of orders scheduled for the day, with some being flagged as pre-mixed, each of which has a scheduled 
arrival time for the corresponding patient. The actual arrival time of orders, the length of each service, and 
the potential for the compounding service to fail are all stochastic. Due to the interest of our collaborators, 
variable staffing was outside the scope of this project. Our metrics are the time in system for each order 
(i.e., perceived patient wait time) and the utilization of all resources (i.e., pharmacist and techs at the 
pharmacy). 

3.1 Model Input Parameters 

Our simulation input parameters are determined using a combination of observations, historical data, and 
expert pharmacist opinion. Using the SciPy module in Python, we fit all distributions used for arrival time 
and service time estimation as seen in Table 1. 

 
 

  
 While the arrivals are appointment driven, most patients’ actual arrival time will deviate from their 
scheduled appointment time due to the stochastic nature of any previous appointments as well as general 
tardiness or earliness. An additional delay can occur since a pharmacy order is only initiated once a patient 
has arrived and checked-in for their infusion appointment. We approach modeling the arrival process by 
first determining the distribution of the deviation from scheduled appointment time to actual arrival time 
(check-in time).  Figure 3 presents a histogram of the arrival deviation data along with the JohnsonSU 
distribution used for arrival estimations in the simulation similar to (Rohleder et al. 2011).  

Table 1: All input distribution and parameters used in our simulation model. 

Process Distribution Description 
Patient Arrivals JohnsonSU (-0.428,1.41,-2.767,45.511) Negative values=early arrival 

Positive=late arrival 
First Verification Triangular (1,2,15) Expert Opinion in min 
Second Verification Triangular (1,2,5) Expert Opinion in min 
Print Labels/Kit Triangular (1,3,5) Expert Opinion in min 
Drug Mix Time Beta (1.461, 1376723443.471, 1.019, 

7036129537.303) 
Historical Data 

Safety Check Pearson3(2.509, 3.583, 3.240) Historical Data 
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 The model also incorporates patients deferrals/no-shows. From the pharmacy perspective, this will only 
affect the metrics if a patient’s drug is pre-mixed and they have a same day deferral/no-show. To determine 
this probability, we trained a Bayesian Additive Regression Tree (BART) model with demographic (e.g., 
race, gender, age, sex, and marital status), scheduling history (i.e., number of previous cancellations, 
previous appointments, and past treatment protocols), and medical treatment patient data to make the 
treatment deferral/no-show predictions for each patient. This model was chosen based on a comparative 
procedure, discussed in Richardson et al. (2017), which tested multiple binary decision models to determine 
the model with the best out-of-sample prediction based on AUC, Briar Score, and F-1 Score. With a decision 
threshold of probability .75, we correctly predicted 93% of completed appointments and 21% of 
deferrals/no-shows with an overall accuracy of 84%. We note that while a false negative is not ideal, there 
is no waste cost associated with it (i.e., the drug would be mixed as planned.) However, a false positive 
could result in a drug being wasted if pre-mixed. 
 We emphasize that the UMRCC system was used as an example case study. The presented 
computational experiments utilized historical data from 2016 and expert opinion from the UMRCC 
pharmacy to estimate model inputs and validity. We note our modeling approach can be replicated for other 
facilities with minor modifications to the pharmacy process flow as well as the appropriate data sources.  
 After observing the simulated no pre-mix case discussed in Section 4, it was determined a reasonable 
estimate if the pharmacy did not pre-mix based on the observed data. We highlight that we focus on 
comparing various make-ahead policies as a proof of concept. 

3.2 Modeling Conditions 

The infusion center pharmacy opens at 6:00 am to complete all pre-mix drug orders. We assume that all 
pre-mixed orders will not expire before they are administered if the patient appointment is at noon or before 
(most drugs have an 8-12 hour lifetime). At 7:30am they finish pre-mixing and begin making orders as 
patients arrive (earliest appointment time is 7:30am). We assume if a drug is pre-mix that it will be 
completed in this window of time. This is when our simulation starts and runs until all patients are served 
each day. The simulation only considers a single arrival stream of patients based on their appointment time 
in infusion. There are some cases when a same day appointment can occur but the majority of appoints will 
be scheduled ahead of time. The simulation then models a single drug order for each patient with a drug 

Figure 3: JohnsonSU Arrival Deviation Distribution Fit. Historical Data taken from UMRCC MiChart (Epic 
Product) Medical Records from 2016. 
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compounding probability of failure of 5%. Through observations and interviews with pharmacists, we 
found this to be a reasonable assumption. There is also a chance for pre-mixed orders to be wasted if a 
patient defers or doesn’t show. We assume constant patient volumes for each iteration of the simulation 
buy vary them by day of week to best represent the cancer centers current schedule. 

4 COMPUTATIONAL EXPERIMENTS 

We present three tractable and easily implementable pre-mix policies. Then we compare their performance 
with the baseline scenario (i.e., no pre-mix policy). Table 2a and 2b highlight our performance metrics 
(total time in system and staff utilization) compared across scenarios. Since staffing is out of the scope of 
this paper, we keep a constant schedule across all scenarios based on the current staffing schedule at 
UMRCC. We simulate a week (i.e., Monday through Friday) with a constant amount of pre-mixed drugs 
each day since the pharmacy has the same limited time to pre-mix drugs each day. This week was simulated 
20 times to insure we stayed within an error of 5 minutes.  

4.1 Scenario 1 

In the first scenario, we only consider pre-mixing drugs for the first 20 (this number is adjustable and 
dependent on the time allotted for pre-mix) patients who have a probability of deferral/no-show of 0.1 or 
lower. This threshold is used as an example; it is ultimately determined by the decision maker, depending 
on their risk tolerance. The probability of deferral/no-show for patients scheduled to receive the drug orders 
were determined using a BART model with the input data mentioned in Section 3.1.  

4.2 Scenario 2 

For our second scenario, we disregard the probability of deferral/no-show and focus solely on patient 
appointment times when deciding to pre-mix. Since the pharmacy schedule is heaviest before noon, we 
focus on pre-mixing only for patients with scheduled appointments from 8am-12pm . This also ensures that 
all pre-mixed drugs won’t expire before the patients’ appointments. Next, we determine the proportion of 
appointments in each hour block from the first appointment until noon. This proportion is used to determine 
the number of pre-mixed drugs in a respective hour block (e.g., suppose from 8-9am there are 20 patients 
out of a total of 100 that morning, then given we can only pre-mix 20 drugs, the first 5 drugs in that time 
window will be pre-mixed).  

4.3 Scenario 3 

In our last scenario, we combine ideas from both Scenarios 1 and 2. Using the proportions for each hour 
block determined in Scenario 2, we then only assign the allocated number of pre-mixed drugs to patients 
that fall below the probability of deferral/no-show threshold from Scenario 1. This policy should 
incorporate the benefits of pre-mixing throughout the first half of the day while being more risk adverse in 
regards to wasting drugs. This also may spread out the appointments that have pre-mix drugs (assuming the 
first five patient in our previous example do not all fall under the probability of deferral/no-show threshold). 

4.4 Results/Discussion 

Referring to Table 2a, it is clear that pre-mixing chemotherapy drugs has a significant impact on the average 
time in the system for a drug order as Scenarios 1, 2, and 3 all outperform the No Pre-mix case. On Day 3 
we see that Scenario 1 out performs Scenario 2. This is an example where being more risk-seeking by not 
considering the probability of deferral/no-show had less reward (i.e., drugs may have been pre-mixed for 
patients who actually deferred treatment resulting in no benefit for pre-mixing) for the patients. However, 
all other days we see Scenario 2 dominates 1. This results from Scenario 1 only mixing the first 20 drugs 
that fit the criteria. This reduces the potential propagated time savings compared to spreading the pre-mixed 
drugs throughout the schedule. While not always significant, we see that the average time in system for 
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Scenario 3 and the average number of wasted drugs is lower than Scenarios 1 and 2. We hypothesized this 
to be the case since Scenario 3 is a more efficient  “rule of thumb” policy by utilizing the more conservative 
approach of Scenario 1 but also by lightning the pharmacy load throughout the morning instead of just in 
the first couple of hours similar to Scenario 2.  

  Table 2a: Contains the comparison of time in system for the various scenarios in minutes. 

  
 Looking at Day 2 (highest drug order demand day of the week) in Table 2b, we also notice a significant 
effect on staff utilization. For example, both Verification Pharmacists and Printing Technicians have a very 
high utilization in the No Pre-mix case. By simply pre-mixing 20 drugs before the patient rush, we are able 
to decrease their utilization by almost 10% and 5% respectively. This supports the idea that pre-mixing 
chemotherapy drugs will benefit both the patients and the staff to better ensure safe delivery of such high 
hazardous drugs. Since we assume the same distribution for mixing all chemotherapy drugs and that arrivals 
are appointment driven, the utilization across all pre-mix policies is relatively the same. We note that our 
utilization calculation for the Safety Check Pharmacist are an extreme under-estimate. As discussed in 
Section 3, we were only able to capture the start time for compounding a drug to the completed time. As 
seen in Figure 2, this also incorporated the Remote Safety check which is performed by the Safety 
Pharmacist. It is here where almost all of the 5% of failed drug orders are determined and cycled back for 
re-compounding. Refer to the Appendix for utilization results on all other days. 

Table 2b: Utilization comparison between policies on Day 2 of our simulation as percentages. 

 

5 CONCLUSION 

Using discrete event simulation, we evaluated various pre-mix policies to determine which most benefited 
both the individual patients and the entire outpatient infusion system. We used estimated probabilities of 
deferral/no-show from our BART model to develop these policies for chemotherapy drugs at an outpatient 

Drug Order Time in System  and Wasted Drug Results 
    Metrics   Scenarios 
Day of Week      No Pre-mix   1   2   3 

1  Average  52.79  30.70  26.64  26.17 
  C.I.  (49.51, 56.07)  (29.53, 31.87)  (26.23, 27.05)  (25.65, 26.68) 

2  Average  85.63  46.60  41.73  38.19 

  C.I.  (80.79, 90.46)  (44.43, 48.8)  (39.21, 44.25)  (36.19, 40.19) 
3  Average  58.04  35.44  37.69  27.47 

  C.I.  (54.74, 61.34)  (33.65, 37.22)  (34.87, 40.51)  (26.59, 28.35) 
4  Average  38.10  24.78  22.82  22.43 

  C.I.  (36.3, 39.89)  (24.18, 25.37)  (22.35, 23.33)  (22.06, 22.81) 
5  Average  47.86  28.32  25.73  25.70 

  C.I.  (44.95, 50.78)  (27.53, 29.09)  (25.27, 26.19)  (24.71, 26.7) 
Avg. # of drugs 
wasted per day    0  2.81  3.13  2.32 

Day 2 Utilization 
Resource   Scenarios 

   No Pre-mix   1   2   3 
    Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+ 

Verification Pharm  0.89 0.80 0.99  0.82 0.77 0.87  0.81 0.77 0.85  0.81 0.77 0.86 
Print Tech  0.71 0.56 0.85  0.65 0.62 0.67  0.65 0.61 0.69  0.65 0.62 0.68 
Mix Tech  0.30 0.28 0.32  0.28 0.27 0.29  0.26 0.25 0.27  0.27 0.26 0.28 
Safety Pharm  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01 
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chemotherapy infusion center pharmacy. These experiments were not meant to determine the best approach 
for UMRCC but to demonstrate the idea of pre-mix as a technique that can be utilized by other institutions. 
 The discussed model serves multiple purposes both for our current and future work. While we can test 
current “rule of thumb” polices as done in this paper, we also can evaluate optimization models that 
determine, within a fix window of time, what set of drugs are optimal to pre-mix to minimize the expected 
time in system as well as expected waste cost. Our immediate next steps will incorporate the drug cost into 
the simulation model as well as introduce additional patient arrival streams from those with a clinic visit. 
Future extensions will also allow for more dynamic policies to be tested that provide unattainable 
improvements from a static model. 
 This work provides an invaluable tool to both engineers and medical professional working to reduce 
patient waiting time in an outpatient chemotherapy infusion center by helping insure the safety of the 
patients and improves their overall satisfaction.  
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APPENDIX - SIMULATION LOGIC 

This simulation consists of ten queues: 
 
• The order arrival queue (Aq) which contains one entry per patient pharmacy order and is sorted by 

actual arrival time of the order into the pharmacy queue 
• The order verification queue (Vq) is initially empty but later contains all orders waiting for 

verification. These orders are sorted by scheduled appointment time 
• The Available-Pharmacists-to-Verify Queue (VPq) contains one entry for each pharmacist available 

for the verification task, sorted by time that they become available (i.e., when their shift starts or 
when they have completed a task) 

• The print labels queue (Lq) follows a First in First Out (FIFO) policy. This queue contains an entry 
for each order after it finishes two verifications 

• The Available-Tech-to-Print Queue (PTq) contains one entry for the single print tech working 
during that shift 

• The mixing drug queue (Mq) follows a FIFO policy. This queue contains an entry for each order 
after finishing printing the labels  

• The Available-Tech-to-Mix-Drug Queue (MTq) contains one entry for each mixing tech available 
for this task, sorted by the time they become available 

• The safety check and sorting queue (Sq) also follows a FIFO policy. This queue contains an entry 
for each order after drug mixing is complete 

• The Available-Pharmacist-to-Safety-Check- Queue (PSq) contains one entry for contains one entry 
for each safety check pharmacist tech available for this task, sorted by the time they become 
available 

• The Event queue is used to sequentially order and trace all events in the simulation 
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These queues are initialized as follows: 
 
• For each drug order, we generate the actual arrival time from a perturbation of the scheduled arrival 

time (i.e., some patients arrive before and some after the scheduled appointment time). Each order 
is then placed into Aq, 

• All order with an actual arrival time before the start-of-operations are placed into Vq by order of 
their appointment time 

• VPq, PTq, MTq, and PSq are then generated based on the staff schedule for all pharmacy techs and 
pharmacist.  

• If a drug is pre-mixed, skip to step 6 below 
 
Loop until through the entire arrival queue: 
 

1. Any drug order with an actual arrival time at or before the simulation clock time will then move 
into the verification queue.  

• This queue is then sorted by scheduled appointment time  
2. Verification pharmacist then take the order from the top of the queue to complete service. After the 

first verification is complete, the order is then placed back in the verification queue with a higher 
priority than the orders who have not received a first verification yet.  

3. Next the order must go through a second verification done by a different pharmacist than their first 
verification. After the second verification, the drug order is then sent to the print labels/drug kit 
queue. 

4. Print techs than take orders in their queue at a first come first serve basis. After service is complete, 
the order along with all supplies are placed in the drug mixing queue. 

5. Mixing tech again grab the orders by FIFO and start working on the drug. There is a chance the 
tech makes a mistake which is caught by one of the safety checks. If this is the case, the tech must 
re mix the entire drug. After mixing service is successfully completed. The drug is placed into the 
sort/safety check queue 

6. Another group of pharmacist will pull from the sort/safety check queue by FIFO. Once this service 
is complete the drug is ready for the patient.  

 
Utilization Tables 

Table a: Utilization comparison between policies on Day 1 of our simulation as percentages. 

Utilization Day 1 
Resource   Scenarios 

   No Pre-mix   1   2   3 
    Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+ 

Verification Pharm  0.65 0.61 0.69  0.54 0.51 0.58  0.54 0.52 0.57  0.54 0.52 0.55 
Print Tech  0.52 0.49 0.54  0.43 0.41 0.45  0.43 0.41 0.45  0.43 0.40 0.46 
Mix Tech  0.21 0.20 0.21  0.17 0.16 0.18  0.17 0.16 0.17  0.16 0.16 0.17 
Safety Pharm  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01 
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Table b: Utilization comparison between policies on Day 3 of our simulation as percentages. 

Utilization Day 3 
Resource   Scenarios 

   No Pre-mix   1   2   3 
    Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+ 

Verification Pharm  0.87 0.83 0.90  0.76 0.72 0.80  0.75 0.70 0.80  0.75 0.72 0.79 
Print Tech  0.69 0.66 0.72  0.60 0.57 0.63  0.60 0.57 0.63  0.60 0.58 0.63 
Mix Tech  0.28 0.27 0.29  0.25 0.23 0.26  0.23 0.23 0.24  0.24 0.23 0.25 
Safety Pharm  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01 

 

Table c: Utilization comparison between policies on Day 4 of our simulation as percentages. 

Utilization Day 4 
Resource   Scenarios 

   No Pre-mix   1   2   3 
    Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+ 

Verification Pharm  0.56 0.51 0.61  0.46 0.42 0.51  0.46 0.42 0.51  0.46 0.41 0.51 
Print Tech  0.41 0.34 0.47  0.34 0.28 0.39  0.33 0.28 0.39  0.33 0.28 0.38 
Mix Tech  0.19 0.18 0.20  0.16 0.15 0.16  0.15 0.14 0.16  0.15 0.14 0.15 
Safety Pharm  0.01 0.00 0.01  0.01 0.00 0.01  0.01 0.00 0.01  0.01 0.00 0.01 

 
 

Table d: Utilization comparison between policies on Day 5 of our simulation as percentages. 

Utilization Day 5 
Resource   Scenarios 

   No Pre-mix   1   2   3 
    Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+   Avg. CI- CI+ 

Verification Pharm  0.69 0.64 0.73  0.58 0.55 0.62  0.58 0.55 0.62  0.58 0.54 0.62 
Print Tech  0.55 0.52 0.58  0.47 0.44 0.50  0.46 0.44 0.49  0.47 0.45 0.49 
Mix Tech  0.22 0.22 0.23  0.20 0.19 0.21  0.19 0.18 0.20  0.19 0.19 0.20 
Safety Pharm  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01  0.01 0.01 0.01 
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