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ABSTRACT

Car rental companies have to operate the fleet of vehicles considering a cost effective fleet sizing and
rebalancing of the vehicles. Additionally, they have to ensure a good vehicle availability at the rental
stations. We present a simulation model combined with optimization and queueing network analysis for
mobility-on-demand networks with one-way car sharing. The system is modeled as a closed queueing
network. On the one hand, this allows an estimation of the vehicle availability; on the other hand, constraints
for the optimization model can be derived from the mathematical equations of the queuing network model.
To optimize the total revenue, the optimization model considers price incentives for customer trips and
cost of empty trips resulting in a mixed-integer linear programming problem. The simulation uses the
optimization component for an optimized operation of the mobility-on-demand networks and computes the
optimal fleet size, the cost of empty runs, and the vehicle availability.

1 INTRODUCTION

All over the world big cities are faced with increasing problems in the transport sector. Car drivers are
increasingly stuck in traffic and they are confronted with driving restrictions because of a high level of
fine particulate matter pollution. In order to take vehicles off the road, alternative transport concepts such
as car sharing or ride sharing become more and more attractive. According to (Shaheen et al. 2014)
car sharing can help to take 9 to 13 vehicles per shared vehicle off the road and to cut the number of
vehicle miles traveled by 27 %. Car sharing means that third-party organizations maintain, manage, and
insure a vehicle fleet which can be shared among a group of members. Only recently, the German original
equipment manufacturer BMW and Daimler agreed to combine their car sharing services DriveNow and
Car2Go (Daimler AG 2018). Both services operate in 31 major international cities a total of over 20,000
vehicles. Due to the combination of both services, a better vehicle availability can be ensured.

In the future, car sharing becomes even more interesting when it will be combined with autonomous
driving (Shaheen et al. 2014). According to (Lang et al. 2016), so-called robo-taxi fleets could enable
cities to meet improving traffic efficiency, reducing congestion, and lowering air pollution caused by auto
engine emissions. Moreover, they can also provide elderly and children with better access to transportation
(Lang et al. 2016). Nevertheless, alternative transport concepts, such as robo-taxis, can only prevail if they
are economical feasible for the providers and cost-attractive as well as easily accessible for the customers.
For an easy access to transportation, a good vehicle availability is inevitable.

In this paper we present a simulation model combined with optimization and queuing network analysis
for mobility-on-demand networks with one-way car sharing. The formal model of the mobility-on-demand
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network is first mapped to a closed queueing network model. Then we consider price incentives for
rebalancing the system by the help of customers to reduce the number of empty trips. For the optimization,
a mixed integer linear problem is constructed. The queueing model and the optimization model is then
combined with the simulation for improving the fleet size.

The remainder of the paper is organized as follows. In Section 2 we discuss related work. The
considered mobility-on-demand network is presented in Section 3. A description of the associated closed
queuing network model is given in Section 4. Section 5 presents the mathematical formulation and solution
of the optimization model. A general description of our simulation model is given in Section 6. Section
7 shows simulation results and a comparison with results provided by the optimization model. Finally,
Section 8 concludes the paper and gives an outlook on future work.

2 RELATED WORK

The analysis of mobility-on-demand networks with queueing network approaches is commonly used for
the rebalancing and optimization of empty trips. The work published by (Briest and Raupach 2011) models
the network as a closed queueing network with single-server queueing systems. The cost for rebalancing
the system is proportional to the distance a vehicle has to travel without a customer. The model does not
consider price incentives for customer trips and therefore the optimization problem can be formulated as
a linear program.

The queueing network approach published by (Zhang and Pavone 2015) uses single-server nodes at
points where the vehicles are waiting for customers and infinite-server nodes for the connection of these
points. The mobility-on-demand network relies on a team of drivers to rebalance the vehicles and is modeled
as two coupled qeueing networks, which can be solved approximately by two decoupled linear programs,
whereas an exact solution is based on a nonlinear optimization technique. This approach is extended to
self-driving vehicles and road networks with restricted capacities in (Iglesias et al. 2018). Both approaches
don’t use incentives for the rebalancing of the vehicles in the network.

Queueing network approaches are also used for the fleet-sizing of car sharing systems. An iterative
solution and an easier to solve approximate solution is presented in (George and Xia 2011). The system
is modeled as closed queueing network with single-server and infinite-server queueing systems. The fleet
sizing for an electric car sharing system is published by (Fanti et al. 2014). Because of the charging of
vehicles, the system is now modeled as a closed queueing network with additional multiple-server queueing
systems.

Fleet sizing and rebalancing is investigated by (Köchel et al. 2003). At first they model the system
with a queueing network. Then they combine a simulation with an heuristic optimizer based on genetic
algorithms. With the queueing network and a steady-state analysis, the outcome of the combined simulation
and optimization can be checked for bottlenecks.

3 MOBILITY-ON-DEMAND NETWORK

The considered mobility-on-demand network with one-way car sharing connects a number of cities with
each other as shown in Figure 1. It provides a number of vehicles in each city that customers can use to
drive to another city. For the formal description of the system (Figure 2), the following values are required
in addition to the number of vehicles. The customers rent a vehicle with the mobility rates µµµ = (µ1, . . . ,µn)
at each city. The probability of driving from city i to city j is given by P = [pi, j] and the corresponding
travel time is notated as T = [ti, j]. For the example with 3 cities, the formal description in matrix notation
is therefore given by (1), (2), and (3).

µµµ = (µ1,µ2,µ3) (1)
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P =

 0 p12 p13
p21 0 p23
p31 p32 0

 (2)

T =

 0 t12 t13
t21 0 t23
t31 t32 0

 (3)

Figure 1: A mobility-on-demand network with five cities and ten connections.

C1

C3

C2

Figure 2: Formal model of a mobility-on-demand network with three cities.

Since the trips from city to city are one-way trips, empty trips must be carried out so that sufficient
vehicles are available in every city. Of course, the number of these trips should be reduced as much as
possible. Furthermore, the fleet size should be low due to the cost of acquisition and maintenance, but at
the same time not too many customers should be rejected because no vehicles are currently available. To
achieve these goals, techniques from queueing network analysis, optimization, and simulation are used in
the following.

4 QUEUEING NETWORK MODEL

The described mobility-on-demand network can be modeled as a closed queueing network (Bolch et al.
2006) where the number of jobs in the network is fixed. The vehicles correspond to the jobs in the queueing
network. Vehicles in a city wait in the corresponding queue of the queueing network for arriving customers.
It is assumed that the inter-arrival times between the arrivals of customers are exponentially distributed
with rates µµµ and that they correspond to the service-times of a queueing system. Therefore, a city with
cars and customer is modeled as M/M/1-FCFS-queue according to Kendall’s notation (Bolch et al. 2006).
The first letter M denotes the exponentially distributed inter-arrival times of the cars at a city, whereas the
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second letter M indicates the exponentially distributed service-times of the cars. The cars are served in the
order in which they arrive (First Come First Served (FCFS)) and only one car is served at a time by the
arrival of a customer. The number of cars at this queueing system is not limited.

The connections between the cities are modeled as M/G/∞ (Infinite Server) queueing systems. The
second letter G indicates that every vehicle on the connection can be served simultaneously with general
distributed service-times. This corresponds to the arrival of a car at the destination city after the respective
travel time T. The destination city is selected according to the branching probability P.

The steady-state performance measures of the queueing network model can now be computed with
the Mean Value Analysis (MVA) or any other appropriate algorithm (Bolch et al. 2006). The MVA of the
queueing network model calculates for a given number of cars (jobs) the mean number k of vehicles and
the mean availability ρρρ of vehicles per city for t→ ∞. With the mean availability ρρρ the requested mean
percentage of rejected customers per city and over all cities can be determined as:

cccre j = (111−ρρρ)100% cre j = µµµ
>cccre j/µµµ

>e .

Figure 3 shows an example of a mobility-on-demand network with three cities modeled as a closed
queueing network. The nodes Node01, Node02, and Node03 model the cars in each city waiting for
customers. The other six nodes (e.g., node Node12) represent the cars traveling to their destinations.

Figure 3: Queueing network model of the mobility-on-demand network with three cities (Node01, Node02,
and Node03).

With 100 vehicles in the system and the service rates µµµ , the branching probabilities P, and the service
times T as follows

µµµ = (10,10,10) P =

 0 0.1 0.9
0.8 0 0.2
0.7 0.3 0

 T =

0 1 1
1 0 1
1 1 0

 , (4)

the MVA computes the mean distribution of vehicles per city as k= (48.0,0.6,27.7) and the mean availability
of vehicles as ρρρ = (0.99,0.39,0.97). The overall number of vehicles minus the sum of the vehicles in the
cities is the mean number of vehicles traveling from city to city. It can be observed that the number of
rejected customers cccre j in Node02 is particularly high at 61 %.
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In the following, instead of using service rates and branching probabilities, we use rates for the
formulation of the model. For each connection the rate is calculated as ri j = µi · pi j. This leads to the rate
matrix R = diag(µµµ) ·P, where diag(µµµ) is a matrix which diagonal elements contain the vector µµµ; all other
elements of the matrix are zero (every ith row of P is multiplied with µi). The rate matrix R contains the
same information as (µµµ,P), as can be seen in the following example.

µµµ = (10,10,10) P =

 0 0.1 0.9
0.8 0 0.2
0.7 0.3 0

 R =

0 1 9
8 0 2
7 3 0


After defining the vector e = (1, . . . ,1) and the matrix diag−1(µµµ) containing the reciprocal values of

µµµ as diagonal entries, the reconversion of R to (µµµ,P) can be computed. For the calculation of µµµ the
multiplication of R with e gives the row sums of R. For the calculation of P every ith row of R is divided
by µi.

µµµ = R · e P = diag−1(µµµ) ·R (5)

With the new formulation of the model, empty trips R+ from selected sources to targets can be added
to achieve a more balanced mean availability of vehicles per city. This results in a rate matrix R∗ whose
new service rates µµµ∗ and branching probabilities P∗ can be calculated from (5).

R∗ = R+R+
µµµ
∗ = R∗ · e P∗ = diag−1(µµµ∗) ·R∗

The idea is now to select the empty trips such that a rate equilibrium in each city is established. This means
that for each city the incoming rate equals the outgoing rate. Under the assumption that the queues of a city
are never empty (i.e., the probability for this event is negligibly low), we get the rate equilibrium for city i as:

∑
j=1,...,n; j 6=i

r∗ji = ∑
j=1,...,n; j 6=i

r∗i j

or in matrix notation with the meaning that the column sums are equal to the row sums:

e> ·R∗ = R∗ · e . (6)

5 OPTIMIZATION MODEL

Finding the empty trips with minimum costs under the condition of the rate balance (6) can be solved
with linear programming. For the cost calculation, the distances D = [di j] between source city i and target
city j are needed in addition to the previously described formal model resulting in the new formal model
(µµµ,P,T,D).

The optimization has to find an optimal rate matrix with empty trips R+. The new rate matrix of the
model is then given by R∗ = R+R+. The linear program has to consider the constraints R+ ≥ 0 and
e> ·R∗ = R∗ · e. The target function for cost minimization of empty trips is

min
[ n

∑
i=1

n

∑
j=1

r+i j ·di j

]
.
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The solution of this linear optimization problem (called Optimization I) provides a new mobility grid
(µµµ∗,P∗,T,D) with rate equilibrium through minimum empty trips.

For the example with three cities from (4) and T = D the optimization yields the new rate matrix

R∗ =

0 6 9
8 0 2
7 4 0


and with (5) the new mobility grid (µµµ∗,P∗,T,D) including empty trips.

µµµ
∗ = (15,10,11) P∗ =

 0 0.4 0.6
0.8 0 0.2

0.6364 0.3636 0


With the optimized values for empty trips, the MVA computes a significant improvement regarding

the balance of the mean distribution k = (22,22,22) and the mean availability ρρρ = (0.97,0.97,0.97) of
vehicles.

Instead of relying only on empty trips, it can also be attempted to use the customer behavior for
balancing the network by changing prices of trips on certain routes. A more expensive route causes a
decrease in customers, while a cheaper route increases the demand compared to the same route at the
normal price.

To describe the system, some additional constants are introduced. The yield per km for a normal trip
is y, for a discounted trip yred , and for a more expensive trip yinc. A discounted trip increases the customer
arrival rate by the factor sinc and a more expensive trip decreases the customer arrival rate by the factor
sred . The cost per km empty trip is denoted as c.

As before, the rate of an empty trip between i and j is r+i j and r∗i j is the total rate between i and j.
Furthermore, some additional indicator variables which can only take the value 0 or the value 1 are needed
for the formulation of the optimization problem. These indicator variables are γi j ∈ {0,1} for trips with
ordinary price, δi j ∈ {0,1} for trips with increased price, and ηi j ∈ {0,1} for trips with decreased price.
The matrix notation of the constants and variables are given in Table 1.

Table 1: Matrix notation of the prices, rates, and indicators .

Price Rate Indicator
Ordinary trip yD R ΓΓΓ

Discounted trip yredD sincR ∆∆∆

More expensive trip yincD sdecR H
Empty trip cD R+

Because of the indicator variables, the optimization model (called Optimization II) is now a Mixed
Integer Linear Problem (MILP). A total rate is the sum of the rate for an empty trip and a normal, a
discounted, or an expensive trip. The sum of the indicator variables for a route is equal to 1 and assures
that a trip is only of the type indicated. All variables are non-negative and the rate equilibrium (6) must
be maintained. The additional constraints are

r∗i j = ri j [γi j + sincδi j + sredηi j]+ r+i j

γi j +δi j +ηi j = 1 for i 6= j and γii +δii +ηii = 0 .
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The target function for the formal mobility network model (µµµ,P,T,D) and the derived rate matrix R is
given as

max

[
n

∑
i=1

n

∑
j=1

ri jdi j

[
yγi j + yredsincδi j + yincsredηi j

]
−

n

∑
i=1

n

∑
j=1

r+i j di jc

]
.

The solution of this MILP problem yields a new mobility grid (µµµ∗,P∗,T,D) with rate equilibrium
based on incentives and empty trips, and with maximum profit. For the example of a mobility-on-demand
network with seven cities and the parameters of Tables 2 to 5, the optimized values for the rates (normal,
discounted, expensive, and empty trips) are given in Tables 6 and 7. The analysis is done with a total
number of 7916 vehicles and the price incentives

y = 1.0, yred = 0.8, sinc = 1.1, yinc = 1.2, sred = 0.9, c = 2.0 .

Table 2: Customer arrival rates µµµ for a mobility grid with seven cities in customers/min.

City1 City2 City3 City4 City5 City6 City7
µµµ 245 40 48 121 72 97 42

Table 3: Transition probabilities P for a mobility grid with seven cities.

City1 City2 City3 City4 City5 City6 City7
City1 0 0.12 0.22 0.12 0.16 0.17 0.22
City2 0.12 0 0.20 0.11 0.17 0.24 0.17
City3 0.17 0.17 0 0.15 0.26 0.10 0.15
City4 0.13 0.12 0.22 0 0.18 0.16 0.18
City5 0.10 0.13 0.28 0.12 0 0.20 0.17
City6 0.16 0.25 0.12 0.14 0.22 0 0.11
City7 0.21 0.15 0.17 0.14 0.20 0.12 0

Table 4: Travel times T for a mobility grid with seven cities in min.

City1 City2 City3 City4 City5 City6 City7
City1 0 339 375 182 349 338 373
City2 339 0 179 237 84 378 284
City3 375 179 0 306 131 257 159
City4 182 237 306 0 265 452 399
City5 349 84 131 265 0 348 242
City6 338 378 257 452 348 0 155
City7 373 284 159 399 242 155 0

The verification of the results with the MVA shows that on the average approximately 100 % of the
requests in all cities can be served (Table 8). Table 9 shows a comparison of the profit per month between
Optimization I (LP) and Optimization II (MILP) of the mobility grid with seven cities. The costs for the
empty trips could be reduced significantly, with at the same time increased profit.
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Table 5: Distances between cities D for a mobility grid with seven cities in km.

City1 City2 City3 City4 City5 City6 City7
City1 0 532 551 288 572 585 632
City2 532 0 251 362 69 637 426
City3 551 251 0 497 192 393 206
City4 288 362 497 0 424 775 657
City5 572 69 192 424 0 575 369
City6 585 637 393 775 575 0 233
City7 632 426 206 655 369 233 0

Table 6: Total service rates R∗.
City1 City2 City3 City4 City5 City6 City7 R∗e

City1 0 27 47 26 35 37 48 221
City2 8 0 7 49 6 8 6 85
City3 77 7 0 8 11 4 6 114
City4 16 14 24 0 20 18 20 111
City5 38 9 18 10 0 13 11 98
City6 17 22 11 12 19 0 10 91
City7 65 6 7 7 7 10 0 101
e>R∗ 221 85 114 111 98 91 101 820

Table 7: Rates R+ of empty trips.

City1 City2 City3 City4 City5 City6 City7
City1 0 0 0 0 0 0 0
City2 3 0 0 44 0 0 0
City3 68 0 0 0 0 0 0
City4 0 0 0 0 0 0 0
City5 30 0 0 0 0 0 0
City6 0 0 0 0 0 0 0
City7 55 0 0 0 0 5 0

6 SIMULATION MODEL

The presented queueing network model and the optimization model can be combined with a discrete-event
simulation (DES) model for a further improvement of the mobility-on-demand network’s operation. Instead
of using the MVA for the steady-state analysis, the DES can take the dynamic behavior of the queueing
network model of Section 4 into account.

At first, the simulation model uses the Optimization II of Section 5 to determine the optimal rates
for empty, normal, discounted, and expensive trips. With these rates inserted into the queueing network
model and repeated application of the MVA for a different number of vehicles in the mobility-on-demand
network, the simulation determines a range of initial number of vehicle values around a predetermined
acceptable value of rejected customers.

With the rates for empty trips R+ from the optimization and the formula presented below, the simulation
is able to flexibly respond to the number of available cars in a city and adjusts the empty trips. The aim
is to reduce the number of rejected customers with the smallest possible fleet size, since this can reduce
the costs of acquisition and maintenance.
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Table 8: Mean value analysis with price incentives.

City1 City2 City3 City4 City5 City6 City7
k 524 524 524 524 524 524 524
ρρρ 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 9: Profit for seven cities in million e/month.

Optimization I Optimization II
Ordinary trips 234 4

Discounted trips - 25
More expensive trips - 217

Empty trips -184 -155
In total 50 91

To achieve this goal, the simulation calculates adjusted rates r̂+i j according to (7). The average number
of waiting vehicles per city ki is computed from the queueing network model using the MVA and the
adjustment is based on the deviation of the actual number of waiting vehicles in a city ki from the average
number of waiting vehicles per city ki. The rates are adjusted at every time-step of the simulation.

r̂+i j = r+i j (1−
ki− ki

2ki
(100ρ i−99)+

k j− k j

2k j
(100ρ j−99)) (7)

Figure 4 shows the improvement by approximately 3800 % of the simulation with continuously adjusted
rates compared to the Optimization II regarding the mean percentage of lost customers cre j for the example
with seven cities and a fleet size of 7700 vehicles. This improvement, calculated as (copt

re j /csim
re j −1)100%, is

achieved because the optimization for the steady-state model has no knowledge about the time dependent
behavior and therefore can not adjust the rates. The calculated overall profit of the simulation compared
to the optimization is only slightly reduced by 0.37 %.

Figure 4: Lost customers improvement and yield improvement of the simulation compared to the Optimization
II for the example with seven cities and a fleet size of 7700 vehicles.
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7 RESULTS

The DES model of Section 6 is now used to improve the results of the mobility-on-demand network example
with seven cities of Section 5. At first, the simulation calculates the mean number of vehicles in a city and
the mean availability of vehicles in a city for a range of total vehicles in the network. Because it uses the
optimized queueing network, the values are independent from the considered city. If the acceptable level
of rejected customers cre j is less than 0.2 %, then at least about 7700 cars are needed (Table 10).

Table 10: Mean value analysis of the optimized queueing network with different number of vehicles.

vehicles 4900 5600 6300 7000 7700
ki 98 195 294 394 493
ρ i 0.9912 0.9956 0.9971 0.9978 0.9983

cre j 0.88 0.44 0.29 0.22 0.17

With the mean number of vehicles in a city ki from the MVA, the DES model can adjust the rates for
empty trips of the optimized queueing network according to (7). Instead of a fleet size of 7700 vehicles,
the rate adaptive simulation model can achieve a mean level of rejected customers cre j of less than 0.2 %
with a fleet size of only 5600 vehicles (Table 11).

Table 11: DES of the optimized queueing network with different number of vehicles and continuously
adjusted rates.

vehicles 4900 5600 6300 7000 7700
cre j 0.47 0.06 0.01 0.01 0.00

Figure 5 shows the improvement by approximately 800 % of the simulation with continuously adjusted
rates compared to the Optimization II regarding the mean number of lost customers cre j for the scenario
with a fleet size of only 5600 vehicles. This improvement is not achieved at the expense of profit, which
increases by a factor of 0.42 %.

Figure 5: Lost customers improvement and yield improvement of the simulation compared to the Optimization
II for the scenario with a fleet size of 5600 vehicles.

8 CONCLUSION

In this paper, we have combined a queueing network model, a MILP model, and a simulation model to
address the optimal rebalancing problem and fleet-sizing problem of mobility-on-demand networks. In
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order to optimize the number of empty trips, price incentives for customers were also taken into account
in order to minimize the number of such costly trips.

A closed queueing network with single-server nodes and infinite-server nodes is used as model for the
mobility-on-demand network. This model allows the computation of the vehicle availability used by the
simulation model for a dynamic adjustment of the rates of empty trips. This dynamic adjustment reduces the
number of rejected customers and therefore, the fleet-size for operating the mobility-on-demand networks
can be reduced.

To optimize the total revenue, the optimization model considers price incentives for customer trips
and cost of empty trips resulting in a mixed-integer linear programming problem. The simulation uses the
optimization component for an optimized operation of the mobility-on-demand networks and computes the
optimal fleet size, the cost of empty runs, and the vehicle availability. The effectiveness of this combined
approach is then shown by means of examples.

For the adjustment of the empty trips, the presented approach uses a formula that depends on the actual
number of vehicles available in a city. Instead, more sophisticated methods could be applied, such as neural
networks. With such a network, the correction factor could adapt more flexibly to the respective situation.
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