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ABSTRACT

In recent years, Monte Carlo estimators have been proposed that can estimate the ratio of two expectations
without bias. We investigate the theoretical properties of a Taylor-expansion based estimator of the reciprocal
mean of a non-negative random variable. We establish explicit expressions for the computational efficiency
of this estimator and obtain optimal choices for its parameters. We also derive corresponding practical
confidence intervals and show that they are asymptotically equivalent to the maximum likelihood (biased)
ratio estimator as the simulation budget increases.

1 INTRODUCTION

Over the past few years, unbiased Monte Carlo estimation methods have received significant attention, due to
both theoretical interest and practical applications; see, for example, (Rhee and Glynn 2015; Blanchet et al.
2015; Blanchet and Glynn 2015; Jacob and Thiery 2015; McLeish 2011). Efficient unbiased estimation of
non-linear functions of expectations of random variables is challenging and has several applications; see,
for example, (Blanchet et al. 2015; Jacob and Thiery 2015). An important “canonical” case is the unbiased
estimation of 1/EZ for a non-negative random variable Z. Applications include regenerative simulation,
estimating parameters involving densities with unknown normalizing constants, and Bayesian inference.

Motivated by these applications, we study properties of an unbiased estimator of β = 1/EZ proposed by
Blanchet et al. (2015) (which is in turn based on the ideas proposed by Rhee and Glynn (2015) in the context of
stochastic differential equations). The estimator is obtained as follows. Write β = 1

EZ = w ∑
∞
n=0(1−wEZ)n

for w < 2β ; here the condition w < 2β guarantees the convergence of the geometric series ∑
∞
n=0(1−wEZ)n.

Further, let {Zi, i≥ 0} be a sequence of iid copies of Z, and let N be a non-negative integer-valued random
variable with qn := P(N = n)> 0, for all n≥ 0. Then

1
EZ

= w
∞

∑
n=0

qn
(1−wEZ)n

qn
= w

∞

∑
n=0

qn
E∏

n
i=1(1−wZi)

qn
= wE

[
1

qN

N

∏
i=1

(1−wZi)

]
.

Define,

β̂ (w) :=
w
qN

N

∏
i=1

(1−wZi). (1)

Clearly, Eβ̂ (w) = β and thus β̂ (w) is an unbiased estimator of β . Note that if Z ≤ b almost surely for a
constant b, then with the choice w < 1/b, β̂ (w) becomes non-negative. In this paper, the goal is to study
optimal choices for w and {qn,n≥ 0} that make β̂ (w) efficient. In particular, a brief description of our
contributions is as follows:
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• When {qn,n ≥ 0} is the variance-minimizing distribution for a fixed w, we show that as w↘ 0,
the expected cost to construct β̂ (w) increases to ∞, while both the variance and the expected time
variance product of β̂ (w) decease.

• As a consequence, we argue that for any w, instead of approximating β with a sample mean of iid
copies of β̂ (w), it is optimal to approximate it by just one outcome of β̂ (w∗), where w∗ is such
that w∗ < w and the expected cost of constructing β̂ (w∗) is the same as that of the sample mean.

• We study the asymptotic distribution of β̂ (w) as w↘ 0 (i.e., as the expected computational cost
for the estimator goes to ∞). We establish a central limit theorem type convergence result that is
useful for finding asymptotically valid confidence intervals.

• We compare the asymptotic performance of the unbiased estimator β̂ (w) with that of the maximum
likelihood (biased) ratio estimator, where β is estimated using the reciprocal of a sample mean of
iid copies of Z.

• The above results are studied under the assumption that N has the variance-minimizing distribution.
Generating samples from this distribution is impossible as it involves unknown parameters. Since
β̂ (w) is unbiased even for a different distribution of N, we develop a method to implement the
estimator by proposing a distribution for N (using samples of Z) that closely resembles to the
variance-minimizing distribution .

Background: Several applications of Monte Carlo simulation involve the estimation of β = 1/EZ for a
non-negative random variable Z. In some applications it is a desirable property to have an unbiased estimator
of β when the magnitudes of the available biased estimators are unknown a priori. Examples include the
estimation of a steady-state parameter α = ER/Eτ for a regenerative stochastic process, where τ denotes
the length of a regenerative cycle and R denotes the cumulative reward obtained over the regenerative cycle;
see, e.g, (Glynn 2006; Asmussen and Glynn 2007; Moka and Juneja 2015). It is evident that we have an
unbiased estimator of α if we have an unbiased estimator of 1/Eτ . A similar case is where parameters
can be expressed as α = E [h(X) f (X)]/E f (X) for some real-valued function h and probability density f ,
where f is known up to the normalizing constant E f (X). Such densities occur, for example, in Gibbs
point processes (Møller and Waagepetersen 2003); and a standard method to estimate such parameters is
by using Markov Chain Monte Carlo (MCMC) methods, see Asmussen and Glynn (2007), Rubinstein and
Kroese (2017). However, in many situations it is difficult to bound the bias of the MCMC estimator, as the
mixing time of the Markov chain is unknown. An alternative approach is to use a ratio estimator, where
α is approximated by ratio of the sample means of the numerator and the denominator. However, this
still returns a biased estimator and the bias decreases at a rate that is inversely proportional to the sample
size; see Remark 2 and also (Asmussen and Glynn 2007). Therefore, it is desirable to have an unbiased
estimator for 1/E f (X) (and equally for 1/Eτ) that has the same order of complexity as that of the ratio
estimator.

Most importantly, in some applications, having an unbiased estimator of β is essential. For example,
in the study of doubly intractable models in Bayesian inference, it is assumed that the observations follow
a distribution with a density of the form f (y|θ) = g(y,θ)∫

g(y,θ)dy , where g(y,θ) can be evaluated point-wise up to
the normalizing constant

∫
g(y,θ)dy; see, for example, Lyne et al. (2015), Walker (2011), Jacob and Thiery

(2015). Standard Metropolis–Hastings algorithms to obtain posterior estimates are not applicable due to
the intractability of the normalizing constant. However, an exact inference method called pseudo-marginal
Metropolis–Hastings proposed by Andrieu and Roberts (2009) can be implemented if a non-negative
unbiased estimator of 1/

∫
g(y,θ)dy is available; also see Beaumont (2003), Jacob and Thiery (2015),

Walker (2011). In particular, Jacob and Thiery (2015) highlight the importance of the estimators of the
form (1).

A standard method called Russian roulette truncation can be used for unbiased estimation of β . This
method is first proposed in the physics literature (Carter and Cashwell 1975; Lux and Koblinger 1991) and
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further studied by McLeish (2011), Glynn and Rhee (2014), Lyne et al. (2015), Wei and Murray (2016).
The key drawback of these estimators is that they can take negative values with positive probability even
when Z is bounded.

In Section 2, we study the properties of the estimator as a function of w, under the assumption that N
has the variance minimizing estimator. An implementable method is proposed in Section 3. A conclusion
of the paper is given in Section 4. All the results are proved in Appendix A.

2 PROPERTIES OF THE ESTIMATOR

Without loss of generality, assume that Z is non-degenerate. As the estimator β̂ (w) in (1) is unbiased,
a sample mean of independent copies of β̂ (w) is an unbiased estimator of β as well. It is well known
that the sample mean has square-root convergence rate if Var β̂ (w)< ∞; see, e.g., (Asmussen and Glynn
2007). Thus, a simple strategy is to seek values of w and {qn,n≥ 0} that minimize Var β̂ (w). Using the
Cauchy–Schwarz inequality, (Blanchet et al. 2015) show that for any w < 2EZ/EZ2, Var β̂ (w) is finite
and is minimal if N has a geometric distribution on the non-negative integers with success probability

pw = 1−
√

E(1−wZ)2 = 1−
√

1−2wEZ +w2EZ2;

that is, if

qn = (1− pw)
n pw, n≥ 0, (2)

where the assumption w < 2EZ/EZ2 guarantees that pw > 0. Unfortunately, pw depends on EZ and EZ2,
which are unknown. However, β̂ (w) is unbiased even when N has a different distribution. Therefore, in
the implementation of β̂ (w), we can replace pw with an estimate of pw; see Section 3. In this section,
we study the properties of β̂ (w) under the assumption that N has the distribution (2), because it offers an
understanding of what is the best that can be expected from the estimator.

Note that the variance of β̂ (w) is given by,

Var β̂ (w) = w2
∞

∑
n=0

(
E(1−wZ)2

)n

qn
−β

2 =
w2

p2
w
−β

2, (3)

for all 0 < w < 2EZ/EZ2. Further, observe that EN = 1/pw−1. Now we can ask what is the value of
w ∈ (0,2EZ/EZ2) that minimizes (3). This question is not addressed in the existing literature. In addition
to the variance, it is often important to include the running time to construct the estimator to determine
its efficiency; see (Glynn and Whitt 1992). In that case, we need to select w for which the expected time
variance product, ET Var β̂ (w), is minimal, where T is the time required to construct β̂ (w). From (1)
(since Z1,Z2, . . . are iid), it is reasonable to assume that T is proportional to the number of Zi’s used for
constructing β̂ (w). Since N = N(w) samples of Z are used in the construction of β̂ (w), we assume that
the expected time variance product is ENVar β̂ (w).
Theorem 1 Suppose that N has the geometric distribution given in (2). Then the following hold true.

(i) The success probability pw is a strictly concave function of w ∈ (0,2EZ/EZ2) with a maximum
value of 1−

√
1− (EZ)2/EZ2 attained at w = EZ/EZ2, and

lim
w↘0

pw = lim
w↗2EZ/EZ2

pw = 0.

(ii) The variance Var β̂ (w) is a strictly increasing convex function of w ∈ (0,2EZ/EZ2), with

lim
w↘0

Var β̂ (w) = 0 and lim
w↗2EZ/EZ2

Var β̂ (w) = ∞.
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(iii) The expected time variance product EN(w)Var β̂ (w) is a strictly increasing function of w ∈
(0,2EZ/EZ2), with

lim
w↘0

EN(w)Var β̂ (w) =
VarZ
(EZ)4 , and lim

w↗2EZ/EZ2
EN(w)Var β̂ (w) = ∞.

Remark 1 To understand the implications of Theorem 1, suppose we select a w ∈
(
0,2EZ/EZ2

)
, giving

an expected computational cost of EN(w) to obtain β̂ (w). Further, let β k(w) be the sample mean of k iid
copies of β̂ (w). Then the expected time variance product for β k(w) is

kEN(w)Varβ k(w) = EN(w)Var β̂ (w).

Now suppose that w∗<w is selected so that the average cost to generate one outcome of β̂ (w∗) is equal to the
average cost to construct β k(w); that is, kEN(w). Then, from Theorem 1 (iii), for the same computational
effort, β̂ (w∗) has a smaller variance than β k(w) for any feasible w selected as above, and is therefore a
better estimator.

(a) (b)

Figure 1: An example to illustrate the dependency of the performance of the unbiased estimator on

parameter w. Panels (a) and (b) show, respectively, the relative variance Var β̂ (w)
β 2 and the expected time

relative variance product EN(w)Var β̂ (w)
β 2 , as functions of w.

To illustrate the results of Theorem 1, consider an example where Z = I(A) for an event A with
probability P(A) = EZ = 0.001. Since EZ2 = 0.001, the relative variance VarZ

(EZ)2 = 999. By substituting

the values of EZ and EZ2, we can calculate pw, EN and Var β̂ (w) for any w < 2EZ/EZ2 = 2. Figure 1

illustrate the effect of w on the efficacy of the estimator β̂ (w). As expected, both Var β̂ (w)
β 2 and EN(w)Var β̂ (w)

β 2

are decreasing as w↘ 0 with the limits 0 and VarZ
(EZ)2 = 999, respectively.

Remark 1 motivates us to study the asymptotic distributional properties of β̂ (w) as w↘ 0, when N
has the geometric distribution given in (2). Theorem 2 is crucial for establishing confidence intervals that
are asymptotically valid as w↘ 0.
Theorem 2 Suppose that N has the distribution given by (2) and Z is bounded. Then, as w↘ 0,

(i) β̂ (w) d−→ β , and (ii)

(
β̂ (w)−β

)
√

wEZ
d−→

(√
VarZ
(EZ)4E(1)

)
N(0,1),
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where d−→ denotes convergence in distribution, and E(1) and N(0,1) are independent random variables
from respectively the standard (mean 1) exponential and standard normal distributions.

We show later in Section A.1 that pw
wEZ → 1 as w↘ 0 (see (8)). Since EN = 1/pw−1 and limw→0 pw = 0,

wEZ EN→ 1 as w↘ 0. That means, an alternative expression for Theorem 2 (ii) is
√
EN
(

β̂ (w)−β

)
d−→ σ

√
E(1)N(0,1), as w↘ 0,

where σ =
√

VarZ
(EZ)4 . The above expression has more resemblance to the standard central limit theorem, since

EN is the computational cost of the estimator. It is not difficult to show that
√
E(1)N(0,1) is a random

variable with density f (x) = 1√
2

exp(−
√

2|x|), which is the density of a mean zero Laplace (or double

exponential) distribution with scale 1/
√

2. These observations are useful for constructing asymptotically
valid confidence intervals as follows. For any given α ∈ (0,1), by solving

∫ t
0 f (x)dx = (1−α)/2 for t, we

get t =− log(α)/
√

2. Then using Theorem 2, we can say that the interval(
β̂ (w)+

log(α)√
2

σ
√

wEZ, β̂ (w)− log(α)√
2

σ
√

wEZ
)

is an asymptotic 1−α confidence interval for β .
Remark 2 (Comparison with the ratio estimator) A standard (biased) estimator of β is 1/Z̄n, where Z̄n
is the sample mean of n iid copies of Z. Using Taylor’s theorem for the function 1/x about EZ, we can
easily show that the bias of 1/Z̄n is approximately 1

n
VarZ
(EZ)3 for large n, while, on the other hand, β̂ (w) has

zero bias. Furthermore, using the same Taylor’s theorem, we can show that the asymptotic time variance
product of 1/Z̄n is VarZ/(EZ)4 as n→ ∞. From Theorem 1 (iii), the unbiased estimator β̂ (w) has the
same asymptotic expected time variance product. However, unbiasedness of β̂ (w) comes at cost. As an
application of the delta method, we can show that the ratio estimator satisfies the central limit theorem:
√

n(1/Z̄n−β )
d−→
√

VarZ
(EZ)4 N(0,1). That is, the ratio estimator is asymptotically normal. On the other hand,

the asymptotic distribution of the unbiased estimator β̂ (w) is Laplace, which has more slowly decaying
tails than a normal distribution. In conclusion, the ratio estimator can have narrower confidence intervals
than the unbiased estimator.
Remark 3 (Importance sampling) Just like in the case of the ratio estimator, from Theorems 1 and 2, the
relative variance of Z is the key factor influencing the asymptotic properties of the unbiased estimator. The
smaller the value is of the relative variance of Z, the better is the reliability of the unbiased estimator. One of
the most effective technique of variance reduction is importance sampling. We can improve the performance
of the estimator if we can implement an importance sampling technique for the random variable Z.
Remark 4 (The time variance product minimizing distribution for N(w)) We have assumed that for a given
w the random variable N(w) has the variance minimizing distribution given by (2). However, when the
criteria for the optimality of β̂ (w) is the minimization of the expected time variance product, we need to
seek a distribution {qn,n≥ 0} that minimizes EN(w)Var β̂ (w). It is shown in (Blanchet et al. 2015) that
the distribution that minimizes the expected time variance is given by

q̃n =
w(1− pw)

n√
β 2 +dw n

,n≥ 0, (4)

where dw is the unique (positive) number satisfying ∑
∞
n=0

w(1−pw)
n√

β 2+dw n
= 1. When compared to the distribution

(2), drawing samples from (4) has an extra difficulty of finding dw by solving an equation that contains
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an infinite sum. Even if we overcome this difficulty, the reduction in the expected time variance product
is typically insignificant, because for small values of w,

EÑ(w)Var β̃ (w) = EN(w)Var β̂ (w)(1+O(w)), (5)

when N(w) has the variance minimizing distribution (2); see Section A.3 for a proof of (5).

3 AN IMPLEMENTATION

Recall that the success probability pw of N is a function of unknown quantities EZ and EZ2. However,
fortunately, β̂ (w) in (1) is still an unbiased estimator of β for any distribution {qn,n≥ 0} of N. In particular,
instead of taking qn as in (2), we can take qn = Pk(1−Pk)

n, where Pk is defined below. Under the proposed
implementation, when the given budget is sufficiently large, half of the budget is used for estimating Pk and
then w is chosen such that the remaining half the budget is used for generating a sample of the unbiased
estimator.

To simplify the discussion, assume that there is a known constant 0 < ε ≤ β ; for example, if Z ≤ b for
a constant b, we can take ε = 1/b. Let Z̃1, Z̃2, . . . , Z̃k be a sequence of iid copies of Z, independent of the
sequence Z1,Z2, . . . , which is used in the construction of the unbiased estimator β̂ in (1). Define the first
two sample moments: M1(k) = 1

k ∑
k
i=1 Z̃i and M2(k) = 1

k ∑
k
i=1 Z̃2

i . If M1(k)> 0, define,

Pk = 1−

√
1
k

k

∑
i=1

(1−wk Z̃i)2 with wk = min
(

1
k M1(k)

,
M1(k)
M2(k)

,ε

)
.

Otherwise, take Pk = 1/k and wk = ε/k. The condition wk < 2 M1(k)
M2(k)

guarantees that Pk > 0. Further,

whether M1(k) = 0 or not, wk < β and hence it guarantees that the estmator β̂ (wk) (defined by (1)) with
qn = Pk(1−Pk)

n is an unbiased estimator of β . Note that given M1(k) and M2(k), the expected cost to
construct to β̂ (wk) is k+1/Pk (including the cost to construct Pk), since E

[
N(wk)

∣∣M1(k),M2(k)
]
= 1/Pk−1.

Theorem 3 states that for large values of k, this total expected cost is approximately 2k, and conditioned
on M1(k) and M2(k), the expected time variance product goes to a random variable with mean 4 VarZ

(EZ)4 . See
Section A.4 for a proof Theorem 3.

Theorem 3 Under the above construction, Eβ̂ (wk) = β , and as k→ ∞, k Pk→ 1, a.s., and(
k+

1
Pk

)
Var

(
β̂ (wk)

∣∣M1(k),M2(k)
)
−→ 2

VarZ
(EZ)4

[
1+χ

2
1
]
, a.s.,

where χ2
1 is the square of a standard normal random variable.

To understand Theorem 3, consider the example given in Remark 1. We estimated the expected total
cost k+E[1/Pk] and Var β̂ (wk) using 10000 samples of Pk and β̂ (wk), respectivley, with k = 10000. Our
simulation results show that the estimated expected time relative variance product is 3969.75, which is
approximately equal to 4 VarZ

(EZ)2 = 4×999 = 3996, as expected.

4 CONCLUSION

We investigated the theoretical properties of a parametrized family {β̂ (w),w > 0} of unbiased estimators
of 1/EZ for a non-negative random variable Z. We studied the variance and the expected time variance
product as functions of w and established several asymptotic results. We showed that with an optimal
choice of w, the asymptotic performance of the unbiased estimator β̂ (w) is comparable to the maximum
likelihood (biased) ratio estimator. We further proposed an implementable unbiased estimation based on our
results. Similar to Theorem 2, our ongoing research establishes a central limit theorem type convergence
result for β̂ (wk) defined in Section 3, by taking the budget parameter k→ ∞.
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A APPENDIX

To simplify the notation in this section, we use z1 :=EZ and z2 :=EZ2. We also write p′w for the derivative
dpw
dw and p′′w for the second derivative. E(λ ) and G(p) denote respectively the mean 1/λ exponential

distribution and the geometric distribution on non-negative integers and the success probability p.

A.1 Proof of Theorem 1

From the definition, p′w = (z1−wz2)/(1− pw). It follows that p′′w =− 1
(1−pw)3

[
z2− z2

1
]
< 0, where the strict

inequality holds because z2 > z2
1, which follows from the assumption that Z is non-degenerative. Therefore,

pw is strictly concave over (0,2z1/z2) and it achieves its maximum value 1−
√

1− z2
1/z2 at w = z1/z2.

From the definition of pw, it is evident that limw↘0 pw = limw↗2z1/z2 pw = 0.
Recall from (3) that the variance of the estimator is equal to w2/p2

w− z2
1. Its derivative can be written

as

dVar β̂ (w)
dw

= 2w
wz1− pw

p3
w(1− pw)

(6)

and the second derivative as

d2Var β̂ (w)
dw2 =

2(wz1− pw)

p3
w(1− pw)3

(
3(wz1− pw)+2pw

(
pw−w2 z2

))
. (7)

Using Jensen’s inequality, E(1−wZ)2 > (1−wz1)
2, where the strict inequality holds again because Z

is non-degenerative. On the other hand, by Bernoulli’s inequality,
√

E(1−wZ)2 =
√

1+(−2wz1 +w2 z2)
is maximized by 1−wz1 +w2 z2/2. Thus,

z1−wz2/2≤ pw

w
< z1. (8)

Using (8), we have wz1− pw > 0 and pw−w2 z2 ≥ 2wz1− pw > wz1, and hence for all w ∈ (0,2z1/z2),
dVar β̂ (w)

dw > 0 and d2Var β̂ (w)
dw2 > 0, which establishes the convexity of Var β̂ (w) over (0,2z1/z2).

We now prove that the expected time variance product is a strictly increasing over (0,2z1/z2). Let

g1(w) := EN(w), g2(w) := Var β̂ (w)
β 2 and g(w) := g1(w)g2(w) =

(
1
pw
−1
)(

w2 z2
1

p2
w
−1
)
. Then,

dg1

dw
(w) =

wz2− z1

p2
w(1− pw)

, and
dg2

dw
(w) = 2wz2

1

[
wz1− pw

p3
w(1− pw)

]
,

and hence, we write

dg
dw

(w) =
2wz2

1(1− pw)(wz1− pw)+(w2 z2
1− p2

w)(wz2− z1)

p4
w(1− pw)

=
wz1− pw

p4
w(1− pw)

[
w pw(z2− z2

1)+ z1(wz1− pw)+wz1(wz2− z1 pw)
]
> 0,
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where the inequality holds because z2 > z2
1, wz1 > pw and wz2 > wz2

1 > z1 pw. Therefore, EN(w)Var β̂ (w)
is strictly increasing over (0,2z1/z2).

The claims that limw↗2z1/z2 Var β̂ (w) = ∞ and limw↗2z1/z2 EN(w)Var β̂ (w) = ∞ hold trivially because
limw↗2z1/z2 pw = 0. To complete the proof of the theorem, we can write, by Taylor’s theorem, for any

x ∈ (0,1):
√

x = 1+ (x−1)
2 − (x−1)2

8 + (x−1)3

16x̃5/2 , for some x̃ ∈ (x,1). Consequently,

√
E(1−wZ)2 = 1+

E(1−wZ)2−1
2

−
(
E(1−wZ)2−1

)2

8
+R(w),

where R(w) = (E(1−wZ)2−1)
3

16x̃5/3 for some x̃ ∈
(
E(1−wZ)2,1

)
. Since x̃→ 1 as w→ 0 and E(1−wZ)2−1 =

w2z2−2wz1, we have R(w) = O(w3). Further simplification yields that pw = wz1− w2

2

(
z2− z2

1
)
+O(w3),

and thus, p2
w

w2 z2
1
= 1− w

z1

(
z2− z2

1
)
+O(w2). Since 1− pw = 1+O(w),

1− pw

pw
=

1
wz1

(1+O(w)) , and
w2z2

1
p2

w
−1 = w

(z2− z2
1)

z1
(1+O(w)) . (9)

We conclude that both Var β̂ (w) and EN(w)Var β̂ (w) go to their respective minima as w↘ 0.

A.2 Proof of Theorem 2

Statement (i) follows directly from Theorem 1 and Chebyshev’s inequality:

P
(
|β̂ (w)−β |> ε

)
≤ Var β̂ (w)/ε

2→ 0, as w↘ 0,

for every ε > 0. To prove (ii), consider a decreasing sequence w1 > w2 > · · · such that w1 ≤ z1/z2 and
limk→∞ wk = 0. We construct an almost surely increasing sequence N1 ≤ N2 ≤ ·· · such that Nk ∼ G(pwk)
and

lim
k→∞

[wkNk] = X∞/z1, a.s., (10)

for a random variable X∞ ∼ E(1). To do so we invoke Theorem 3.1 of (Moka and Juneja 2015). Let
λk = − log(1− pwk) and Ek ∼ E(λk). Then, (Moka and Juneja 2015) says that for each k, there exist a

random variable Yk with cumulative distribution function Gk(x) = 1−
(

1− λk+1
λk

)
exp(−λk+1x), x ≥ 0,

such that Yk is independent of Ek, and Ek+1 has the same distribution as Ek +Yk. Therefore, without loss
of generality we assume that there is sequence of independent random variables Yk ∼ Gk(x) such that
Ek+1 = Ek +Yk = E1 +∑

k
i=1Yi for all k ≥ 1.

Consider the natural filtration {Fk = σ(E1, . . . ,Ek),k ≥ 0}. Since Ek+1 = Ek +Yk,

λk+1Ek+1−1 = λk+1[Ek +Yk−1/λk−EYk]

=
λk+1

λk
λk[Ek−1/λk]+λk+1[Yk−EYk]

≤ λkEk−1+λk+1[Yk−EYk],

where the last inequality holds because λk+1 ≤ λk. We have E [λk+1Ek+1|Fk]≤ λkEk since Yk is independent
of Fk. Thus, {Xk := λkEk,k ≥ 1} is a supermartingale (with respect to {Fk}). In fact the sequence
{Xk,k ≥ 1} is bounded in L 2, because supk≥1EX2

k = 2, making it uniformly integrable submartingale.
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Thus, X∞ = limk→∞ Xk exists a.s. (see Theorem 2 in Section 4 of Chapter VII of (Shiryaev 1996)). Since
P(Xk ≤ x) = P

(
Ek ≤ x

λk

)
= 1− exp(−x) . This implies that X∞ ∼ E(1).

Let Nk = bEkc. Then for all k we have Nk ∼ G(pwk) and Nk ≤ Nk+1. From (8), limk→∞(1− pwk)
1/wk =

exp(−z1) and hence limk→∞
wk
λk

= 1/z1. From the convergence of the sequence X1,X2, . . . , we have wk
λk

Xk−
wk ≤ wkNk ≤ wk

λk
Xk. Therefore, (10) holds.

Now define

β̂k :=
wk

(1− pwk)
Nk pwk

Nk

∏
i=1

(1−wkZi). (11)

From the definitions, β̂k is identical to β̂ (wk) in distribution. We now conclude the proof Theorem 2 by
establishing lower and upper bounds on β̂k separately. Let b be an upper bound on Z. From the construction
of β̂k given by (11), for all k such that wk < 1/b, we have using (8) that

β̂k ≥
1

z1(1− pwk)
Nk

exp

(
Nk

∑
i=1

log(1−wkZi)

)
≥ 1

z1
exp

(
Nkwk(z1−wkz2/2)+

Nk

∑
i=1

log(1−wkZi)

)
.

Using Taylor’s theorem, log(1− x)≥−x− x2

2(1−x)2 for any x≥ 0, and thus,

β̂k ≥
1
z1

exp

(
Nkwkz1−N

w2
kz2

2
−wk

Nk

∑
i=1

Zi−
Nk

∑
i=1

w2
kZ2

i

2(1−wkZi)2

)

=
1
z1

exp

(
−Nkwk

1
Nk

Nk

∑
i=1

(Zi− z1)−
Nkw2

k
2

(
z2 +

b2

(1−wkb)2

))
. (12)

On the other hand, from (11) and (8),

β̂k ≤
wk

(1− pwk)
Nk pwk

exp

(
−

Nk

∑
i=1

wkZi

)
≤ wk

(1−wkz1)Nk pwk

exp

(
−

Nk

∑
i=1

wkZi

)

=
wk

pwk

exp

(
−

Nk

∑
i=1

wkZi−Nk log(1−wkz1)

)

=
wk

pwk

exp

(
−wkNk

1
Nk

Nk

∑
i=1

(Zi− z1)+Nkw2
k

z2
1

2(1−wkz1)2

)
. (13)

Using the strong law of large numbers and Theorem 1 of (Richter 1965), limk→∞
1

Nk
∑

Nk
i=1(Zi−z1) = 0 almost

surely. Further, using (8) and (10), we have that limk→∞ β̂k = β almost surely. From Taylor’s theorem with
a Cauchy remainder term, we have almost surely

log(β̂k)− log(β ) =
(β̂k−β )

β
− (β̂k− X̂)(β̂k−β )

X̂2
=

(β̂k−β )

β
[1+o(1)]

for a random variable X̂ that takes values between β̂k and β . Therefore, to complete the proof of (ii), it is
enough to show that

1
√

wk
log β̂k

d−→
(√

VarZ X∞

)
N(0,1).
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From (12),

1
√

wk
log[z1β̂k]≥−

√
wkNk

1√
Nk

Nk

∑
i=1

(Zi− z1)−
Nkw3/2

k
2

(
z2 +

b2

(1−wkb)2

)
. (14)

From (10) and because wk ↘ 0, the second term on the right hand side of the expression goes to zero.

Again using (10), we conclude that the right hand side of (14) goes to
(√

VarZ
z1

X∞

)
N(0,1) in distribution.

From (13),

1
√

wk
log[z1β̂k]≤

1
√

wk
log
[

z1wk

pwk

]
−
√

wkNk
1√
Nk

Nk

∑
i=1

(Zi− z1)+Nkw3/2
k

z2
1

2(1−wkz1)2 .

We complete the proof because from (8), as k→ ∞,

0≤ 1
√

wk
log
[

z1wk

pwk

]
≤ 1
√

wk
log

 1(
1− wkz2

2z1

)
=−

√
wk log

[(
1− wkz2

2z1

)1/wk
]
→ 0, a.s.

A.3 Proof of Equation (5)

First, observe from the definitions that EÑ(w)Var β̃ (w) ≤ EN(w)Var β̂ (w). Further using the fact that
β = 1/z1 and (8),

EÑ(w)≥
∞

∑
n=1

n
pw(1− pw)

n√
1+dwm2

1n
= EN(w)

∞

∑
n=1

1√
1+dwz2

1n

npw(1− pw)
n

EN(w)
≥ EN(w)

1√
1+dwz2

1EN(w)2/EN(w)
,

where the last inequality holds from Jensen’s inequality, because 1/
√

1+ax is a convex function of x for
any constant a > 0 and

(
npw(1−pw)

n

EN(w) ,n≥ 0
)

is a probability distribution. Furthermore, using EN(w)2 =

EN(w) (2−pw)
pw
≤ 2EN(w)/pw, we write EÑ(w)≥ EN(w) 1√

1+2dwz2
1/pw

. Since the distribution (4) is not the

variance minimizing distribution, we have

EÑ(w)Var β̃ (w)≥ EÑ(w)Var β̂ (w)

≥ EN(w)Var β̂ (w)

 1√
1+2dwz2

1/pw

 .

We establish (5) by showing that 1√
1+2dwz2

1/pw
= 1+O(w). From the definition of dw,

wz1

pw

∞

∑
n=0

pw(1− pw)
n√

1+dwz2
1 n

= 1,

and thus, using pw ≤ wz1, we write that 1−wz1 ≤ (1− pw)∑
∞
n=1

pw(1−pw)
n−1√

1+dw z2
1 n
≤ (1− pw)

1√
1+dw z2

1
. Conse-

quently, 1+ dw z2
1 ≤

(
1−pw
1−wz1

)2
. Hence, using (8), 1+ dw z2

1 = 1+O(w2), that is, dw = O(w2) and thus,

dw/pw = O(w) because pw = O(w). This concludes that 1√
1+2dwz2

1/pw
= 1+O(w) and hence establishes (5).
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A.4 Proof of Theorem 3

From the assumption, we have wk ≤ M1(k)
M2(k)

. Therefore, similar to (8), we can obtain that

0 < wk M1(k)−w2
k M2(k)/2≤ Pk ≤ wk M1(k). (15)

From the definitions of wk,M1(k) and M2(k), it is easy to see that limk→∞ kwk M1(k) = 1, a.s.. Using the

upper bound in (15), we show that δk := 1− 1+w2
k z2−2wkz1
1−Pk

is lower bounded by wk
1−Pk

(2z1−M1(k)−wk z2).

Since limk→∞ M1(k) = z1, a.s. and limk→∞ kwk = 1/z1, a.s., for every realization of Z̃1, Z̃2, . . . , there exists

a K such that δk > 0 for all k ≥ K, and hence Var
(

β̂ (wk)
∣∣M1(k),M2(k)

)
is finite and equal to w2

k
Pkδk
−β 2.

It is now enough to show that

k
(

w2
k z2

1
Pkδk

−1
)
−→ VarZ

z2
1

[
1+χ

2
1
]
, a.s., as k→ ∞.

Write
(

w2
k z2

1
Pkδk

−1
)
=

(
w2

k z2
1

p2
wk

−1
)
+w2

k z2
1

(
1

Pkδk
− 1

p2
wk

)
, where pwk = 1−

√
1+w2

k z2−2wk z1. Using (9)

and limk→∞ k wk = 1/z1, we have limk→∞ k
(

w2
k z2

1
p2

wk
−1
)
= VarZ

z2
1
, a.s. By simplifying the terms in Pkδk− p2

wk
, we

have 1
Pkδk
− 1

p2
wk

= 1
Pkδk(1−Pk)

(
Pk−pwk

pwk

)2
. Since Pk− pwk = wk (M1(k)−z1)(1+O(wk)), we can write

Pk−pwk
pwk

=

wk
pwk

(M1(k)− z1)(1+O(w)). Therefore, using limk→∞

w2
k z2

1
Pkδk(1−Pk)

= 1, a.s. and the fact that asymptotically
√

k(M1(k)− z1) has a zero-mean normal distribution with variance VarZ, we complete the proof with the
observation that wk/pwk → 1/z1 as k→ ∞.
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