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Mines Saint-Étienne, Univ Clermont Auvergne
CNRS, UMR 6158 LIMOS

CMP, Depart. of Manufacturing Sciences and Logistics
880 route de Mimet

Gardanne, 13541, FRANCE

Philippe Vialletelle

STMicroelectronics
850 rue Jean Monnet

Crolles, 38926, FRANCE

ABSTRACT

In semiconductor manufacturing, before executing any operation on a product, a machine must be qualified,
i.e., certified, to ensure quality and yield requirements. The qualifications of machines in a work-center
are essential to the overall performance of the manufacturing facility. However, performing a qualification
can be expensive and usually takes time, although the more qualified the machines, the more flexible the
production system. Qualification management aims at determining the right qualifications at the lowest cost.
We first discuss the limitations of a single-period optimization model, in particular due to capacity losses
and delays inherent to qualification procedures. Then, we motivate and briefly introduce a multi-period
optimization model. Finally, we compare both optimization models in a computational study on industrial
instances from a High Mix/Low Volume (HMLV) production facility with a high production variability.

1 INTRODUCTION

Semiconductor industry is a complex process industry that manufactures integrated circuits on silicon
wafers. Silicon wafers are generally grouped by lots of 25 wafers. To complete the process flow from raw
material, a lot must undergo hundreds of different physical and chemical processes performed by expensive
machines in work-centers. Semiconductor production facilities are characterized by a very high degree of
re-entrant product flows. However, before applying physical or chemical processes, machines must undergo
recipe-to-machine qualification operations. A fruitful qualification operation certifies that a machine can
execute a recipe (i.e., a fabrication process) and that this machine respects yield and quality requirements.

However, machine qualifications are dynamic. In other words, machine disqualifications can occur
over time. In this case, machine qualifications are lost and the machine can no longer execute some recipes.
Before being capable of re-applying the recipe on lots, machines must be qualified. Disqualification reasons
are numerous. Machines can be disqualified because yield shrinks, a consumable is entirely consumed (i.e.,
a bottle of gas). Machines can also be disqualified after a failure, or due to WIP management policies,
e.g., when two recipes are incompatible and cannot be qualified at the same time on the machine. There
also exist qualification time windows (Kopp et al. (2016)), which define the amount of time after which
machines must be disqualified if they did not process a given recipe. This is done for yield or quality
reasons as the quality of a recipe is time-varying and influenced by other recipes. Efficient qualification
procedures can be associated to better industrial performances (Johnzén et al. 2011; Rowshannahad et al.
2015; Kopp et al. 2018) in terms of throughput, cycle time, workload balancing and variability.

Literature often discusses qualification management in production planning or scheduling problems,
in particular for the lithography work-center, which is often bottleneck in wafer fabs. Kopp et al. (2016)
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consider a production planning problem. They consider that qualifications can be lost due to qualification
time windows. Kopp et al. (2018) propose a mixed integer linear program (MILP) and a simulation approach
to evaluate different qualification strategies. Kopp and Mönch (2018) introduce a three-level hierarchical
approach to better manage qualifications of machines. Ignizio (2009) and Ignizio (2010) use a MILP and
simulation to study the impact of qualifications on mean cycle time and cycle time variability. Kabak
et al. (2013) use discrete even simulation to assess the impact of recipe restrictions and disqualifications
on the mean cycle time. Aubry et al. (2008) study the impact of qualifications in a production scheduling
problem. Similarly, Johnzén et al. (2008) analyze the effect of additional qualifications on cycle times
using simulation models.

Fu et al. (2015) consider that the demand is stochastic and seek to minimize expected total production
costs, i.e., production, inventory, backlogging and qualification costs. Johnzén et al. (2011) define
flexibility measures to assess the qualification configuration of a work-center, and the impact of qualification
decisions. Rowshannahad and Dauzère-Pérès (2013) include batching constraints in flexibility measures.
Rowshannahad et al. (2014) propose another measurement to assess workload variability between machines
in a work-center. Rowshannahad et al. (2015) define a mixed integer non linear programming (MINLP)
model to find the best qualifications that optimize the time flexibility measure at finite capacity. Pianne
et al. (2016) introduce ideal and potential flexibility measures.

In general, literature rarely considers in optimization models the fact that qualifications can be subject to
lead times or can require maintenance operations. Chang and Dong (2017) consider a single-period approach
where total priority moves must be maximized. The demand is stochastic. Moreover, a qualification induces
stochastic capacity losses due to maintenance operations.

In this paper, we put ourselves in the shoes of a work-center manager in charge of meeting daily
production targets. He/she knows that recipes are disqualified on some machines. He/she knows that
qualifying recipes will probably improve capacity production so that daily production targets can be met.
However, we cannot simply qualify all recipes on all machines because qualifications are expensive, can
induce capacity losses, can be subject to lead times and available human resources are limited. Given
a production plan, i.e., the quantity and period of arrival associated to each recipe, machine production
capacities, and disqualifications, the problem consists in finding what are the best k qualifications to perform
in order to improve work-center performances. In this paper, performances are defined in terms of moves
out, i.e., the number of wafers processed by the end of the planning horizon. To solve this problem,
we propose two new optimization models based on the capacitated time flexibility measure proposed in
Rowshannahad et al. (2015). Special attention is to given to the operational dimension of this qualification
management problem.

This paper is organized as follows. In Section 2, optimization models are presented. In Section 3,
numerical results are shown on industrial data from a 300mm wafer fab located in Crolles, France. Finally,
in Section 4, we conclude and give perspectives on this work.

2 MATHEMATICAL FORMULATIONS

We propose to model the studied problem with a bi-level optimization model. The lower-level optimization
problem builds realistic queues of recipes in front of machines by using empirical observations of dispatching
engines. Once queues of recipes are defined, moves out can be computed by the upper-level optimization
problem. Considering dispatching rules in qualification management is relevant because they may affect
the benefit of qualification decisions (Johnzén et al. (2008)).

2.1 Single-period Optimization Model

Indices and sets:

• m: Index for machines, ∈ {1, ..,M},
• r: Index for recipes, ∈ {1, ..,R}.
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Parameters:

• k: Number of qualification decisions to be made at the beginning of the planning horizon,
• Qr,m: Is equal to 1 if machine m is qualified for recipe r, is equal to 2 if machine m is qualifiable

for recipe r, is equal to 0 if machine m cannot be qualified for recipe r,
• T Pr,m: Throughput rate (in seconds) of recipe r on machine m,
• Closs

r,m : Capacity loss generated (in seconds) by qualifying recipe r on machine m,
• Cm: Initial availability time (in seconds) of machine m over the planning horizon,
• Dr: Demand in number of wafers for recipe r over the planning horizon,
• γ: Workload balancing parameter strictly greater than one.

Decision variables:

• OQr,m ∈ {0,1}: Is equal to 1 if a qualification procedure is proposed for recipe r on machine m at
the beginning of the planning horizon, and 0 otherwise,

• Um: Capacity utilization of machine m,
• Ce f f

m : Effective availability time (in seconds) of machine m over the planning horizon,
• WIPr,m: Quantity of recipe r processed by machine m.

A bi-level qualification management optimization model is proposed to model the problem.

Upper-level optimization problem:

max MovesOut = f (U,WIP) (1)

s. t. ∑
r,m

OQr,m = k (2)

Ce f f
m = max(Cm−∑

r
Closs

r,m OQr,m,0) ∀m (3)

Um,WIPr,m ∈ argminLBP(OQ,Ceff) (4)

OQr,m ∈ {0,1} ∀r,∀m (5)

Lower-level optimization problem:

LBP(OQ,Ceff) = min ∑
m

U γ
m (6)

s. t. ∑
m

WIPr,m = Dr ∀r (7)

Um ≥∑
r

WIPr,m

T Pr,mCe f f
m

∀m (8)

WIPr,m ≤ Dr ∀r,∀m|Qr,m = 1 (9)

WIPr,m ≤ DrOQr,m ∀r,∀m|Qr,m = 2 (10)

WIPr,m ≤ 0 ∀r,∀m|Qr,m = 0 (11)

WIPr,m ≥ 0 ∀r,∀m (12)

Upper-level optimization problem: Equation (1) defines the objective function that consists in maximizing
the number of moves out that is computed from the workload balancing on the machines in the work-center
(see Section 2.3). Constraint (2) sets to k the number of qualifications that must be performed at the
beginning of the planning horizon. The parameter k is defined by decision makers, often with respect to
limitations on time and human resources, and can be used to identify the k most blocking issues in terms
of moves over the planning horizon. These blocking issues should then be managed in priority. Constraint
(3) defines the effective availability time of machine m if there are capacity losses due to qualification
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procedures. Changeover times are considered by subtracting an average capacity loss to each machine
production capacity. Constraint (4) links the upper-level and lower-level problems. Constraint (5) are the
binary constraints for the qualification decisions.

Lower-level optimization problem: The lower-level optimization problem is used to simulate real time
dispatching rules. In practice, dispatching engines try to balance the workload on the machines, i.e., to
maximize the utilization of machines, as much as possible to maximize the moves out. Equation (6) defines
the objective of the lower-level problem, i.e., the capacitated time flexibility measures (Rowshannahad
et al. (2015)) that consists in balancing the workload on the machines. Constraint (7) defines the flow
conservation on the planning horizon. Constraint (8) defines the capacity utilization rate of each machine
in the work-center. Constraint (9)-(10) ensures that workload can only be assigned to machine m if recipe
r is qualified on machine m. Constraint (11) ensures that if recipe r is not qualified and cannot be qualified
on machine m, then the workload corresponding to recipe r is never assigned to machine m. Constraint
(12) is the non-negativity constraint for variable WIPr,m.

Note that if there exists a line stop for a recipe, i.e., if all qualified machines are down or if there is
no qualified machine, it is not included in the model for feasibility reasons. In practice, as these recipes
are often critical in operational management of qualifications, they are included in resolution approaches.

2.2 Multi-period Optimization Model

In complex industrial environments, like semiconductor manufacturing, where production variability is
high, a single-period (static) approach can be insufficient to capture dynamic WIP quantities and capacities,
product mix changes and disqualification over time. Moreover, as qualification procedures can require
maintenance operations or can be subject to lead times for yield/quality verification, the single-period
model seems to lose relevance. This is because the single-period implicitly averages the demand and the
capacity over the planning horizon. In the multi-period optimization (dynamic) approach, we compute the
capacity vector the same way we compute the capacity vector on a single-period planning horizon (see
Constraint (3)). However, if the entire capacity loss due to the qualification cannot only be attributed to
the first period, then the remaining capacity loss is attributed to the next period, until there is no capacity
loss left. For instance, this can happen if the maintenance operations lasts 12 hours whereas a period lasts
8 hours. For lead times denoted L, we proceed in a similar way. As we perform qualifications at the
beginning of the planning horizon, we change the qualification matrix at period t if 1+L = t. From period
t and for the rest of the planning horizon, the machine is newly qualified for the recipe. Finally, for the
multi-period optimization model, the workload is balanced on the machines in the work-center for each
period of the planning horizon. All wafers that cannot be processed at period t are backlogged at period
t + 1. The difference between the single-period and multi-period approaches is that, in the multi-period
approach, each queue is reevaluated in each period to better consider priorities and backlogging.

2.3 Calculation Mode of Moves Out

Once queues of recipes in front of machines are defined through workload balancing in the lower-level
optimization problem, two options are proposed to compute the number of moves out while considering
dispatching rules: A first approach “average product mix”, and a second approach based on recipe priorities.

Average product mix by machine: An average product mix means that all machines process equivalently
any recipe in terms of completion percentage. For instance, consider that a machine is used at 120% of
its capacity and assigned two recipes, the recipe A with a demand of 25 wafers, and the recipe B with
a demand of 100 wafers. In an average product mix situation, the machine processes 100

120 = 83.33% of
each recipe. If each machine processes an average product mix throughout the planning horizon, then it
is possible to derive a closed-form solution for the throughput of a work-center:

MovesOut = f (U,WIP) = ∑
m

1
max{1,Um}∑

r
WIPr,m (13)
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Equation (13) shows that if the capacity utilization rate of a machine is below 100%, then the machine
produces everything that is assigned to it. Otherwise, if its capacity utilization rate exceeds 100%, the
machine produces 1

max{1,Um} % of each recipe. From an aggregated point of view, an average product mix
can be seen as a First-In First-out (FIFO) dispatching rule.

Recipe priorities: Equation (13) may be limited in industrial environments because recipes, therefore
lots, are supposed equivalent and do not consider priorities. In practice, lots also have priorities, if they
contain new products, must be delivered to important clients, or are behind their schedule. Recipes
are therefore run according to their priority. Using recipe priorities may be a better way to simulate real
dispatching rules and therefore the effect of a qualification decision. Algorithm (1) is an empirical algorithm,
based on the observations of dispatching rules, that includes priorities in the computation of the number
of moves out. Algorithm (1) requires O(MR) operations per period.

Algorithm 1 Estimation of moves out with recipe priorities

1: procedure MOVES OUT = f (U,WIP)
2: Moves out = 0
3: for each machine m in the work-center with workload do
4: Get allocated recipes on machine m with their quantity
5: Sort allocated recipes by their priority in descending order (priority based dispatching policy)
6: If two recipes have the same priority, process first the one with the most demand (setup avoidance

policy)
7: If two recipes have the same demand, process the fastest one (move maximization policy)
8: Count the number of wafers by taking recipes in sorted order until there is no capacity left on

the machine
9: Add this count to Moves out

10: end for
11: return Moves out
12: end procedure

Note that both methods to compute the number of moves out are equivalent, i.e., give the exact same
value if all machines in the work-center are loaded below 100% of their capacity (i.e., Um,t ≤ 1.0).

3 NUMERICAL EXPERIMENTS

In this Section, we want to study if considering more than one period, i.e., considering dynamic WIP
quantities and capacities, affects the choice of qualifications. And if it does, to what extent. In the numerical
experiments, we assume that no qualification is lost when a qualification is added.

3.1 Instance Generation

We propose to compare both optimization models on industrial data extracted from a 300mm High Mix/Low
Volume (HMLV) wafer fab located in Crolles, France. The wafer fab is characterized by shifting bottleneck
work-centers, short product life cycles, frequent product mix changes, a high production variability with
frequent disqualifications, very high utilization rates of machines and strong tool dedication constraints.

Data were extracted on 15 different weeks in 2018 and 2019. Table 1 shows the size of each industrial
instance in terms of number of recipes R, and in terms of number of machines M. 60 industrial instances
are used to compare both optimization models on four different work-centers. Demand and capacity were
extracted from historical data by using the realized demand and capacity. The qualifications are the ones
at the beginning of the planning horizon. The “Implant” work-center is characterized by a high number
of different recipes. A same recipe can have very different throughput rates from a machine to another.
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The “Lithography” work-center is characterized by machines that process lots in cascade. A large number
of lots can be processed at the same time (e.g., up to five or six lots). In the “Diffusion” work-center,
certain machines process batches of lot (e.g., at most two to four lots processed at the same time). Other
machines process lots wafer by wafer. In the “Diel” work-center, machines process lots wafer by wafer.
In general, most machines have a sort of parallel mechanism that allows several lots to be processed at the
same time. When extracting industrial data, we could not compute recipe priorities because this parameter
is not saved in databases. Therefore, we generate recipe priorities by drawing random numbers between
10 and 1000 from an uniform distribution.

Table 1: Industrial instances used for the computational study (15 instances by work-center).

Work-center # R M Work-center # R M Work-center # R M Work-center # R M

Diel

1 341 77

Implant

1 419 19

Lithography

1 368 23

Diffusion

1 387 132
2 325 74 2 465 18 2 315 23 2 366 129
3 328 76 3 494 18 3 338 23 3 367 129
4 294 76 4 508 18 4 341 23 4 363 129
5 344 76 5 461 18 5 353 23 5 377 129
6 274 76 6 432 18 6 350 23 6 358 130
7 322 76 7 484 18 7 336 23 7 377 130
8 397 77 8 486 19 8 362 30 8 406 137
9 353 77 9 455 19 9 373 30 9 400 137
10 367 77 10 441 19 10 354 30 10 401 137
11 414 77 11 490 19 11 368 30 11 432 137
12 350 77 12 473 19 12 364 30 12 364 137
13 328 77 13 494 19 13 356 30 13 408 137
14 310 77 14 385 19 14 314 30 14 319 137
15 318 74 15 489 18 15 346 23 15 398 129

3.2 Design of Experiments

Table 2 presents the design of experiments. We did not run experiments where qualification procedures
simultaneously require maintenance operations and are subject to lead times. This is left for future research.
We limit ourselves to k = 1 so that we can study and compare the optimal solution of both models. The
problem is studied on a 24-hour planning horizon. To solve the lower-level workload balancing problem,
we use a multi-cut cutting plane algorithm (Bazaraa (2013)) with γ = 6. The algorithm stops when a relative
gap of 10−5 is reached. All experiments are run using Java 8 and CLP Java (Lougee-Heimer (2003) and
Nils Löhndorf (2016)) as the linear solver for solving the multi-cut cutting plane algorithm. To search
for the best qualification, the input qualification matrix Qr,m,0 is modified, then the lower-level workload
balancing is solved, and then the upper-level problem is solved.

Table 2: Design of experiments.

Parameters Values

Lead time (in 8-hour shifts) 0, 1, 2
Capacity loss Cm

loss (in hours) 0, 4, 8, 12
T (in 8-hour shifts) 3
Number of qualifications k 1
Simulated dispatching Average product mix, Priority
Work-center Diel, Implant, Lithography, Diffusion
Optimization model Single-period, Multi-period
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3.3 Numerical Results

As the single-period model does not model lead times, to have a fair comparison between both optimization
models, we solve the single-period model, get the qualification plan and compute the number of moves
out with the multi-period optimization model. This way both approaches have the same base and can
be compared. In the rest of this section, the single-period optimization approach is denoted SP, and the
multi-period optimization approach is denoted MP. In addition, “base case” refers to the case where a
qualification does not require maintenance operation or is not subject to a lead time. We do not present
the detail instance by instance due to space constraints.

3.3.1 Capturing Dynamic WIP Quantities and Capacities

Table 3 compares the mean gap(%) = 100 ∗ MP−SP
MP , in terms of moves out between the single-period

(SP) and multi-period (MP) approaches. Table 3 enables us to assess if the single-period optimization
approach is able to capture the dynamic WIP and capacity. Numerical results show that the single-period
optimization model can lead to less relevant qualification decisions. The largest mean and maximum gaps
are observed for the Implant work-center when recipe priorities are considered. Even without any lead time
or capacity loss, the mean gap is of 1.50%. For the Implant work-center, this indicates that the single-period
optimization model does not always capture dynamic WIP quantities. It proposes to qualify a recipe with
higher demand on average whereas higher gains can be achieved by focusing on recipes with high peaks
of demand on certain shifts. For the Diel work-center, the mean gap is of 0.42%. For other work-centers,
mean gaps are closer. Nevertheless, maximum gaps are always greater than 0.6%.

When there are capacity losses and recipe priorities are considered, mean and maximum gaps are
significant. The highest mean gap, 2.36%, is observed for the Implant work-center. The highest maximum
gap, 5.02%, is also observed for the implant work-center. The maximum gap for the Lithography is about
4.36% when an 8-hour maintenance operation is required. The maximum gap for the Diel work-center is
equal to 1.62%. The maximum gap for the Diffusion is equal to 1.39%. Overall, mean gaps are always
greater than 0.46%. Mean and maximum gaps are smaller when qualifications are subject to lead time than
when they require maintenance operations. This can be surprising because the single-period optimization
model does not consider lead times. However, this can be explained by the fact that lead times do not
interrupt production contrary to maintenance operations.

Table 3: Mean and maximum gaps (%) = 100∗ MP−SP
MP , in terms of moves out between the single-period

(SP) and the multi-period (MP) optimization models.

Lead time (in shifts) Capacity loss (in hours)

Base case 1 2 4 8 12

Moves Work-center Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

Diel 0.42 1.58 0.23 0.76 0.16 0.67 0.66 1.95 0.82 1.78 0.63 1.62
Priority Implant 1.50 4.65 0.77 1.97 0.79 2.38 2.32 4.96 2.29 5.58 2.36 5.02

Lithography 0.16 0.60 0.24 2.32 0.31 1.70 0.46 2.15 0.72 4.36 0.51 4.30
Diffusion 0.23 0.68 0.08 0.41 0.11 0.27 0.53 1.67 0.46 1.35 0.48 1.39

Diel 0.00 0.01 0.05 0.37 0.09 0.40 0.01 0.09 0.01 0.19 0.01 0.15
Average Implant 0.05 0.65 0.15 1.22 0.20 1.43 0.10 0.82 0.10 0.29 0.05 0.42
product mix Lithography 0.01 0.15 0.01 0.15 0.06 0.56 0.00 0.00 0.00 0.00 0.01 0.08

Diffusion 0.00 0.04 0.02 0.22 0.01 0.10 0.00 0.04 0.00 0.18 0.00 0.06

In addition, we can observe that gaps are also smaller when an average product mix is considered.
This can be due to the fact that the backlogged product mix is less variable contrary to when recipe
priorities are considered. Table 4 reinforces this idea. When considering an average product mix, both
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optimization models propose much more frequently the same qualification than when recipe priorities are
considered. For instance, for an 8-hour capacity loss, both optimization models propose eight times the
same qualification plan when the average product mix is considered, and only twice when recipe priorities
are considered. Recipe priorities are then a source of production variability for qualification management
but must be considered.

Table 3 also shows that mean gaps are often far from maximum gaps. For example, for the lithography
work-center, when there is a 4-hour capacity loss, the mean gap is equal to 0.46% whereas the mean gap is
equal to 2.15%. This is something that we can observe for all work-centers, in particular when maintenance
operations are required. Moreover, as on a non-negligible amount of instances, both optimization models
propose the same qualification (see Table 4), this indicates that there exists, even among the same work-
center, a large disparity between instances. There are instances where the gap between both optimization
models is equal to zero or very small whereas other instances where the gap is very large.

Table 4: Number of identical qualification plans (out of 15) recommended by both optimization models.

Lead time Capacity loss
(in shifts) (in hours)

Moves Work-center Base case 1 2 4 8 12

Diel 7 4 2 3 2 0
Priority Implant 4 3 1 1 2 0

Lithography 5 11 7 7 10 12
Diffusion 8 8 3 5 2 1

Diel 10 8 6 10 7 8
Average Implant 12 10 8 11 8 8
product mix Lithography 14 13 9 11 11 11

Diffusion 11 10 8 11 8 9

Finally, Table 5 shows the mean gain (%) in number of moves out after performing a qualification.
As mean gaps between both optimization models can be large (Table 3), in general, the multi-period
optimization model more frequently proposes qualifications that capture dynamic WIP quantities. When
recipe priorities are considered, the mean gain can be quite different between both optimization models. For
instance, in the Implant work-center, when there is a 4-hour capacity loss, the single-period optimization
model proposes a qualification plan that leads to a diminution of moves out by -1.60%. Instead, the multi-
period optimization model proposes a qualification that leads to an augmentation of moves out by 0.74%!
This situation is observed for most work-centers when there is capacity loss. There is only in the Diffusion
work-center where the single-period optimization model with a 12-hour maintenance operation does not
induce a negative mean gain. However, the mean gain is equal to 0.07%, which is very small, compared
to the mean gain of the multi period optimization model that is equal to 0.56%. We also observe that for a
12-hour maintenance operation, the mean gain of the multi-period optimization model is negative for the
Implant work-center. However, the mean gain in almost ten times worse with the single-period optimization
model (-0.29% versus -2.65%). Overall, the multi-period optimization model proposes qualification plans
that achieve better mean gain than the single-period optimization model. This means that the single-period
optimization model can propose wrong qualification decisions. When qualifications are only subject to
lead times, mean gains are closer. However, they remain significant for the Implant work-center with a
difference greater than 0.7%. When an average product mix is considered, mean gains are very close.
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Table 5: Comparison of the mean gain(%) in number of moves out after performing a qualification between
the single-period (SP) and multi-period (MP) optimization models. Bold values are negative mean gain.

Lead time (in shifts) Capacity loss (in hours)

Base case 1 2 4 8 12

Moves Work-center MP SP MP SP MP SP MP SP MP SP MP SP

Diel 1.53 1.11 0.78 0.54 0.45 0.29 1.08 0.42 0.49 -0.34 0.39 -0.24
Priority Implant 2.04 0.51 1.30 0.52 1.14 0.33 0.74 -1.60 0.21 -2.09 -0.29 -2.65

Lithography 0.88 0.72 1.02 0.78 0.89 0.57 0.55 0.09 0.50 -0.22 0.42 -0.09
Diffusion 0.79 0.56 0.46 0.38 0.31 0.21 0.68 0.15 0.66 0.20 0.56 0.07

Diel 1.16 1.16 0.93 0.88 0.61 0.52 0.97 0.96 0.76 0.74 0.52 0.50
Average Implant 1.57 1.52 1.38 1.23 1.01 0.81 1.32 1.22 0.94 0.91 0.55 0.50
product mix Lithography 0.63 0.62 0.63 0.62 0.52 0.46 0.61 0.61 0.53 0.53 0.47 0.47

Diffusion 0.58 0.58 0.55 0.54 0.37 0.36 0.52 0.51 0.42 0.39 0.31 0.31

3.3.2 Influence of/on Dispatching Rules

Table 3 shows that although the capacity loss/lead time increases, the mean gap does not necessarily
increases. Table 6 shows that for some instances, performing a qualification with a lead time greater than
zero better optimizes the number of moves out than performing a qualification with no lead time. These
results seems counter-intuitive. Actually, this effect is due to the way the number of moves are computed,
and more generally, how the production system works with dispatching rules. When lots arrive in an
work-center, a dispatching engine assigns lots on machines. The dispatching engine is shortsighted. It does
not consider lots that arrive one or two shifts later. In addition, it does not necessarily challenge previous
dispatching decisions made when a new lot arrives. This means that, if a recipe is qualified on a machine,
the dispatching engine will take advantage of the new qualification and assign lots to the machine. Thus,
if this qualification decision is taken right now for a recipe with longer process times than those already
qualified on the same machine, the number of moves per shift slightly decreases due to the fact the average
throughput rate on that machine decreases. The magnitude of this effect varies with WIP variability over
time and if priorities are considered. This effect is also observed in Johnzén et al. (2008) where numerical
experiments are run to assess the impact of new qualification on cycle time. After qualifying machines,
the mean cycle time did not necessarily decrease. A similar explanation is also detailed in Johnzén et al.
(2008). Therefore, qualifications influence dispatching rules decisions, and dispatching rules also influence
qualification decisions.

3.3.3 Practical Insights

Numerical results highlight the fact that proposing the best qualifications is a complex procedure, and that
performing the qualifications at the right time is critical to improve the number of moves out. Qualification
decisions are influenced by WIP and capacity variability over time but also by decision maker preferences
or dispatching rules and priorities. In addition, numerical experiments show that performing a qualification
may lead to uncompensated capacity losses (e.g., due to required maintenance operations). Thus, after
performing a qualification, the number of moves out can be lower than in the case where no qualification is
performed. Instead of only considering the number of moves out, other indicators might be interesting to
assess the quality of a solution by for example prioritizing lots with large priorities. For instance, although
the overall number of moves out decreases, if the mean cycle time of priority lots also decreases, then a
qualification can be acceptable. Since maximizing the number of moves out is not always the best option,
qualification management could also therefore be modeled and solved as a multi-objective problem.

2344



Perraudat, Dauzère-Pérès, and Vialletelle

Table 6: Number of instances by work-center where performing a qualification with lead time gives a larger
number of moves out than performing qualification with no lead time.

Lead time (in shifts)

1 2

Moves Work-center MP SP MP SP

Diel 2 6 1 6
Priority Implant 5 7 5 6

Lithography 5 6 5 4
Diffusion 0 4 0 3

Diel 4 2 3 3
Average Implant 0 1 1 2
product mix Lithography 1 1 0 0

Diffusion 5 4 1 2

Numerical results highlight the fact that the single-period and multi-period optimization models can
propose different qualification plans with respect to the demand profile of the recipes. Depending on the
demand profiles, a model is more appropriate than the other. In general, in work-centers where lots come
by wave, the multi-period optimization model should be more suited because it better captures demand
peaks. This model is then useful to identify and fix short-term bottlenecks with cross qualifications. It is
also more robust again highly variable demand and capacity profiles.

Numerical results also show that dispatching rules significantly impact the quality of a qualification
plan. Therefore, how the lots are scheduled should be considered in qualification management, in particular
in operational qualification management.

As we study a high-mix low-volume production facility subject to high production variability, the
demand and capacity can be very uncertain. Therefore, it can be preferable to perform a qualification that
requires no lead time or maintenance operation and looks sub-optimal, rather than perform an “optimal”
qualification with a larger lead time or longer maintenance operation. If all qualification decisions are
subject to lead times or maintenance operations, shortest ones should be preferred. In addition, uncertainty
can be managed by using a rolling horizon approach (Clark and Clark 2000; Curcio et al. 2018). A
qualification plan is determined at the beginning of the first shift of the planning horizon. At the beginning
of the next shift, new information is revealed, the optimization model is solved and a new qualification
plan is determined.

4 CONCLUSIONS AND PERSPECTIVES

In this paper, a single-period optimization model and a multi-period optimization model are studied to
maximize the number of moves out with qualification plans. Dispatching rules are included and simulated
in optimization models. The dynamic qualification optimization model is used to better consider lead times
and maintenance operations. Numerical experiments on industrial data show the relevance of the dynamic
qualification optimization model. In particular, numerical experiments show that the choice of the model
can have a significant impact on the qualification plan, and therefore on the mean gain in terms of moves out.
The mean gain is particularly affected when recipe priorities are considered and a maintenance operation is
required to qualify a recipe on machine. However, the single-period optimization model remains relevant
for some instances.

There are directions that are worth being investigated in the future. In this paper, we limit ourselves to
k = 1. Efficient resolution approaches can be designed to propose qualification plans for large values of k
for both optimization models. New methods to simulate the number of moves out can be proposed to be
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closer to the behavior of the dispatching engine, e.g., by including batching constraints (Rowshannahad
and Dauzère-Pérès (2013)). Numerical experiments show that the single-period optimization model often
proposes the same qualification plans as the multi-period optimization model on industrial data. It would
be interesting to automatically identify when using the single-period optimization model is likely to suggest
the same qualification plan. Doing this would save a lot of time when searching for qualifications.
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