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ABSTRACT

Distributionally Robust Optimization (DRO) has been shown to provide a flexible framework for decision
making under uncertainty and statistical estimation. For example, recent works in DRO have shown that
popular statistical estimators can be interpreted as the solutions of suitable formulated data-driven DRO
problems. In turn, this connection is used to optimally select tuning parameters in terms of a principled
approach informed by robustness considerations. This paper contributes to this growing literature, connecting
DRO and statistics, by showing how boosting algorithms can be studied via DRO. We propose a boosting
type algorithm, named DRO-Boosting, as a procedure to solve our DRO formulation. Our DRO-Boosting
algorithm recovers Adaptive Boosting (AdaBoost) in particular, thus showing that AdaBoost is effectively
solving a DRO problem. We apply our algorithm to a financial dataset on credit card default payment
prediction. Our approach compares favorably to alternative boosting methods which are widely used in
practice.

1 INTRODUCTION

Distributional robustness in decision making under uncertainty is an important topic with a long and
successful history in the Operations Research literature (Ben-Tal and Nemirovski 2000; Ghaoui et al. 2003;
Bertsimas and Sim 2004; Erdoğan and Iyengar 2006). In recent years, this topic has been further fueled by
distributionally robust optimization (DRO) formulations applied to machine learning and statistical analysis.
These formulations have been shown to produce powerful insights in terms of interpretability, parameter
tuning, implementation of computational procedures and the ability to enforce performance guarantees.

For instance, the work of (Lam and Zhou 2017) studied connections between the statistical theory of
Empirical Likelihood and distributionally robust decision making formulations. These connections have
been helpful in order to obtain statistical guarantees in a large and important class of data-driven DRO
problems.
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The work of (Esfahani and Kuhn 2018) showed how DRO can be used to establish a connection to
regularized logistic regression, therefore explaining the role of regularization in the context of improving
out-of-sample performance and data-driven decision-making.

The works of (Blanchet et al. 2016; Blanchet and Kang 2017a) further show that square-root Lasso,
support vector machines, and other estimators such as group-Lasso can be recovered exactly from DRO
formulations. In turn, in (Blanchet et al. 2016), it is shown that exploiting the DRO formulation leads
to an optimality criterion for choosing the associated regularization parameter in regularized estimators
which is both by robustness and statistical principles. Importantly, such criterion is closely aligned with a
well-developed theory of high-dimensional statistics, but the criterion can be used even in the context of
non-linear decision making problems.

The work of (Duchi et al. 2016) shows that variance regularization estimation can be cast in terms of
a DRO formulation which renders the implementation of such estimator both practical and amenable to
rigorous statistical and computational guarantees.

The list of recent papers that exploit DRO for the design of statistical estimators, revisiting classical
ideas to improve parameter tuning, interpretation or implementation task is rapidly growing (Blanchet et al.
2016; Blanchet and Kang 2017a; Blanchet and Kang 2017b; Blanchet et al. 2017; Blanchet et al. 2017;
Esfahani and Kuhn 2018; Shafieezadeh-Abadeh et al. 2015; Gao and Kleywegt 2016; Duchi et al. 2016).

This paper contributes to these rapidly-expanding research activities by showing that DRO can naturally
be used in the context of boosting statistical procedures. In particular, we are able to show that Adaptive
Boosting (AdaBoost) can be viewed as a particular example of DRO-Boosting with a suitable loss function
and size of uncertainty, see Corollary 5.

These connections, as indicated earlier, are useful to enhance interpretability. Further, as we explain,
DRO provides a systematic and disciplined approach for designing boosting methods. Also, the DRO
formulation can be naturally used to fit tuning parameters (such as the strength used to weight one model
versus another in the face of statistical evidence) in a statistically principled way.

Finally, we provide easy-to-implement algorithms which can be used to apply our boosting methods,
which we refer to as DRO-Boosting procedures.

As an application of our proposed family of procedures, we consider a classification problem in the
context of a credit card default payment prediction problem. We find that our approach compares favorably
to alternative boosting methods which are widely used in practice.

The rest of this paper is organized as follows. In Section 2 we provide a general discussion about
boosting algorithms. This section also introduces various notations which are useful to formulate our
problem. Section 3 contains a precise description of the algorithm and the results validating the correctness
of the algorithms. We discuss in this section also a connection to AdaBoost. Section 4 contains statistical
analysis for the optimal selection of tuning parameters (such as the weight assigned to different models in
the presence of available evidence). In Section 5, we show the result of our algorithms in the context of
an application to credit card default payments. In Section 6, we summarize the proofs of technical results.

2 GENERAL BACKGROUND AND PROBLEM FORMULATION

We first start by describing a wide class of boosting algorithms. For concreteness, the reader may focus
on a standard supervised classification framework. The ultimate goal is to predict the label Y associated
with a predictive variable X . We then discuss our DRO problem formulation.

2.1 General Notions for Boosting

Suppose that at our disposal we have a set F of different classifiers. Typically, F will contain finitely
many elements, but the DRO-Boosting algorithm can be implemented, in principle, in the case of an
infinite dimensional F , assuming a suitable Hilbert-space structure, as we shall discuss once we present
our algorithms. We will keep this in mind, but to simplify the exposition, let us assume that F contains
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finitely many elements, say F = { f1, ..., fT}. However, we will point out the ways in which the infinite
dimensional case can be considered.

The different elements in F are called classifiers, also known as predicting functions or “learners”.
(Throughout our discussion we shall use learner to refer to a given predicting function or a classifier.) For
simplicity, let us assume that the class of learners F has been trained with independent data sets.

So, based on the learner fr ∈F , we may have a decision rule to decide on the predicted label given
the observation or predictor X = x. For example, such rule may by simply take the form ŷ = sgn( fr (x))
(where sgn(b) = I (b≥ 0)− I (b < 0)) or, instead, the classifier may estimate the probability that the label
is 1 based on a probabilistic model which takes as input fr (x), in the context of logistic regression, which
attaches probability proportional to exp( fr (x))/(1+exp( fr (x)) to the label being 1 and 1/(1+exp( fr (x))
to the label being −1.

The idea of boosting is to combine the power of the learners in F to create a stronger learner.
(Schapire 1990) showed that the idea of combining relatively weak predictors or classifiers into a strong
one having desirable probably approximately correct (PAC) guarantees (Valiant 1984) is feasible. Due
to these appealing theoretical guarantees, boosting algorithms have attracted substantial attention in the
community, first by considering static learning algorithms (Schapire 1990; Freund 1995), and, inspired by
Littlestone and Warmuth’s reweighting algorithm, by considering adaptive algorithms, such as AdaBoost,
which will be reviewed in the sequel. AdaBoost was proposed by (Freund and Schapire 1997) as an
ensemble learning approach to classification problems, which adaptive combine multiple weak learners.

In the context of classification problems, many boosting algorithms can be viewed as a weighted
majority vote of all the weak learners (where the weights are computed relative to the information carried
by each of the weak learners). However, boosting type algorithms are not only applicable to the classification
problems, they can also be used to combine the prediction of simple regressors to improve the prediction
power in regression of non-categorical data, see for example (Drucker 1997).

We will now focus our discussion on finding boosting learners of the form F ∈ Lin(F ), where Lin(F )
is the linear span generated by the class F . In particular, if F = { f1, ..., fT}, then Lin(F ) =

{
F : F =

∑
T
t=1 αt ft for αt ∈ (−∞,∞) , 1 ≤ t ≤ T

}
. More generally, we may assume that F contains elements in a

subspace of a Hilbert space and then Lin(F ) is the closure (under the Hilbert norm) of finitely many linear
combinations of the elements in F .

As a consequence of our results, we will show that a suitable DRO formulation applied to the family
Lin(F ) of boosting learners can be used to systematically produce adaptive algorithms which can be
connected to well-known procedures such as AdaBoost.

Now, let us assume that we are given a data set DN = {(Xi,Yi)}i=1,...,N . The variable Xi corresponds
to the predictor and the outcome Yi corresponds to the classification output or the label. As indicated
earlier, let us assume that Yi ∈ {−1,1} for concreteness. We use PN to denote the empirical measure
associated with the data set DN . In particular, PN = 1

N ∑
N
i=1 δ(Xi,Yi) (dx,dy) , where δ(Xi,Yi) (dx,dy) is a point

measure (or delta measure) centred at (Xi,Yi). We use EPN [·] to denote the expectation operator associated
to the measure PN . So, in particular, for example, for any continuous and bounded g(·), we have that
EPN [g(X ,Y )] = 1

N ∑
N
i=1 g(Xi,Yi) .

We introduce a loss function which can be used to measure the quality of our learner, namely, L(F (X) ,Y ).
Let us now discuss examples of loss functions of interest.

Given a learner F(·), and an observation (X ,Y ), the margin corresponding to the observation is defined
as Y ·F(X). A loss function L(F(X),Y ) is said to be a margin-type-cost-function if there exist a function
φ(·) such that L(F(X),Y ) = φ(Y ·F(X)). In the context of regression problems, a popular loss function is
the squared loss, namely, L(F(X),Y ) = (Y −F(X))2.

A natural approach to search for a boosting learner is to solve the optimization problem

min
F∈Lin(F )

EPN [L(F (X) ,Y )] . (1)
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The choice of the function φ to define the loss function is relevant to endow the boosting procedure with
robustness characteristics (see, for example, (Freund 2009; Rosset 2005)). While we focus on robustness
as well, our approach is different. We take the loss function as a given modeling input and, as we shall
explain, robustify the boosting training procedure by quantifying the impact of distributional perturbations
in the distribution PN . Our procedure could be applied in combination of the choice of a given function φ

which is chosen to mitigate outliers, for example, as it is the case typically in standard robustness studies
in statistics (Huber 2011). This combination may introduce a double layer of robustification and it may be
an interesting topic of future research, but we do not pursue it here.

Viewing the search of a best linear combination of functions from a family of weaker learners to
minimize the training loss, as in (1), can be understood in the vein of functional gradient descent (Friedman
2001). For example, the AdaBoost algorithm is an instance of the functional gradient descent algorithm
with margin cost function φ(Y ·F(X)) := exp(−Y ·F(X)).

The connection between functional gradient descent and AdaBoost will be discussed in Section 3.

2.2 DRO-Boosting Formulation

The DRO formulation associated to (1) takes the form

min
F∈Lin(F )

max
P∈Uδ (PN)

EP [L(F (X) ,Y )] . (2)

where Uδ (PN) is the distributional uncertainty set, centred around PN and the size of uncertainty is δ > 0.
The motivation for the introduction of the inner maximization relative to (1) is to mitigate potential

overfitting problems inherent to the training problems using directly empirical risk minimization (i.e.
formulation (1)). The data-driven DRO approach (2) tries to address overfitting by alleviating the focus
solely on the observed evidence. Rather than empirical risk minimization, our DRO procedure is finding
the optimal decision F that performs uniformly well around the empirical measure, where the uniform
performance is evaluated within the distributional uncertainty set.

The data-driven DRO framework has been shown to be a valid procedure to improve the generalization
performance for many machine learning algorithms. In the context of linear models, some of the popular
machine learning algorithms with good generalization performance, for instance, regularized logistic
regression, support vector machine (SVM), square-root LASSO, group LASSO, among others, can be
recovered exactly in terms of a DRO formulation such as (1) (Blanchet and Kang 2017b; Esfahani and
Kuhn 2018; Blanchet and Kang 2017a; Blanchet et al. 2017). In these applications, the set Uδ (PN) is
defined in terms of the Wasserstein distance (Blanchet and Murthy 2019; Esfahani and Kuhn 2018; Gao
and Kleywegt 2016; Zhao and Guan 2018).

Other application areas of data-driven DRO which have shown promise because of good empirical
performance and theoretical guarantees include reinforcement learning, graphic modeling, deep learning,
etc, have been shown to perform well empirically (Sinha et al. 2017; Fathony et al. 2018; Smirnova et al.
2019).

Finally, we also mention formulations of the distributional uncertainty set based on moment constraints,
for instance (Delage and Ye 2010; Goh and Sim 2010).

Our focus on this paper is on the use of the Kullback-Leibler (KL) divergence in order to describe
the set Uδ (PN). We choose to use the KL divergence because we want to establish the connection to
well-know boosting algorithms, and we wish to further add their interpretability in terms of robustness. But
we emphasize, as mentioned earlier, that a wide range of DRO formulations can be applied. Formulations
of problems such as (1) based on the KL and related divergence notions have been studied in the recent
years (Namkoong and Duchi 2016; Shapiro 2017; Bayraksan and Love 2015; Ghosh and Lam 2019; Lam
2016; Lam and Zhou 2017).

Let P(DN) denote the set of all probability distributions with support on DN . (Any element P∈P(DN)
is a random measure because DN is a random set, but this issue is not relevant to implement our DRO-
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Boosting algorithm, we just consider DN as given. For statistical guarantees, this issue is relevant, and it
will be dealt with in the sequel.)

For any distribution P ∈P(DN), we define the weight vector ωωωP = (ωP,1, . . . ,ωP,N) such that ωP, i =

P((X ,Y ) = (Xi,Yi)) for i= 1,N. In particular, for the empirical distribution PN we have ωωωPN =(1/N, . . . ,1/N).
Note that the setP(DN) is isomorphic to the standard simplexCN =

{
ωωω = (ω1, . . . ,ωN) | ωi ≥ 0, ∑

N
i=1 ωi = 1

}
.

For any distribution P ∈P(DN), the KL divergence between P and PN , denoted by D(P‖PN) (also
known as the Relative Entropy or the Empirical Likelihood Ratio (ELR)) is defined as

D(P‖PN) =−
1
N

N

∑
i=1

log(NωP,i).

It is a well-known consequence of Jensen’s inequality that D(P‖PN)≥ 0, and D(P‖PN) = 0 if and only if
ωωωP = ωωωPN . The distributional uncertainty set that we consider is defined via

Uδ (PN) = {P ∈P(DN)|D(P‖PN)≤ δ} .

By substituting the definition of the uncertainty set Uδ (PN) into (2), the DRO-Boosting model based
on KL uncertainty sets is well defined given the loss function, the class F , and the choice of δ , which
will be discussed momentarily.

3 MAIN RESULTS

In this section, we propose an algorithm based on functional gradient descent to solve the DRO-Boosting
(2). As we shall see, similar to the AdaBoost algorithm as in (Friedman 2001), fitting the DRO-Boosting
algorithm exhibits a procedure that alternates between reweighting the worst case probability distribution
and updating the predicting function F(·). Therefore, the connection between DRO-Boosting and AdaBoost
will be naturally established. Moreover, since choosing different types of distributional uncertainty sets,
Uδ (PN), potentially based on different notions of discrepancies between PN and alternative distributions
results in different reweighting regimes, it can be speculated that our proposed DRO-Boosting framework
is more flexible than AdaBoost.

For ease of notation and introduction of our functional gradient descent method, in the rest of this
paper, we define two functionals. For any index i = 1,N, the empirical loss functional Li : Lin(F )→R is
defined as Li(F) = L(F (Xi) ,Yi) . The robust loss functional Lrob : Lin(F )→ R is defined as Lrob(F) =
maxP∈U (PN)EP [L(F (X) ,Y )] .

Due to the fact that any finitely supported distribution, P, is characterized by its associated weights,
ωωωP, we can introduce the weight uncertainty set Ωδ (PN) defined as

Ωδ (PN) = {ωωωP|P ∈Uδ (PN)}=

{
ωωω ∈CN

∣∣∣∣∣− 1
N

N

∑
i=1

log(Nωi)≤ δ

}
,

as an isomorphic counterpart of the distributional uncertainty set Uδ (PN).
Thus, using the right hand side weight vector ωωωP and the weight uncertainty set Ωδ (PN), the functional

Lrob can be rewritten as

Lrob(F) = max
ωωω∈Ωδ (PN)

N

∑
i=1

ωi ·Li(F). (3)

We denote by Ω?
rob(F) the set of all maximizers to the above optimization problem, i.e.

Ω
?
rob(F) =

{
ωωω ∈Ωδ (PN)

∣∣∣∣∣Lrob(F) =
1
N

N

∑
i=1

ωi ·Li(F)

}
.
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Using these definitions, the DRO-Boosting formulation (2) admits an alternative expression, namely,

min
F∈Lin(F )

Lrob(F), (4)

consequently it suffices to find a best predicting function F that minimizes Lrob(F). In order to guarantee
that the optimization problem (4) has optimal solution, we impose the following assumption.
Assumption 1 (Convex Loss Functional) The empirical loss functional Li is assumed to be convex and
continuous. In addition, there exist α ∈ R, such that the level set {F ∈ Lin(F ) |Li(F)≤ α} is compact.

Next, to simplify the exposition, we impose an assumption which guarantees that the data is rich enough
relative to the class Lin(F ). We will discuss how can one proceed if this assumption is violated.
Assumption 2 (Separation) For any two different predicting functions F,G ∈ Lin(F ), there exist at least
one (Xi,Yi)∈DN such that F(Xi) 6=G(Xi). In other words, the observed data DN is rich enough to distinguish
or separate two different learners in Lin(F ).
Observation 1: There are natural situations in which the Separation Assumption may fail to hold. For
example, if fr ∈ F is a regression tree, namely, ft (x) = ∑

mt
j=1 IA j (x) , where the A j’s are disjoint sets

forming a partition on the domain of x, then when considering Lin(F ) we may violate the Separation
Assumption may not hold. Nevertheless, we can define an equivalence relationship “∼” defined via F ∼G
if and only if F(X) = G(X) for all X ∈ DN , and then work with equivalence classes instead. Moreover,
since the dimension of the quotient space is at most N, we may assume that Lin(F ) is a finite dimensional
space without loss of generality. To ease the exposition, we will state the assumption Lin(F ) is finite
dimensional next.
Assumption 3 (Finite Representation) We assume that a finite dimensional basis exists for Lin(F ) (or
has been extracted for (Lin(F )/ ∼)). So, we can write Lin(F ) = Lin{ f1, ..., fT} (or (Lin(F )/ ∼) =
Lin{ f1, ..., fT}) where { f1, f2, ..., fT} form linearly independent functions .

If the dimension of Lin(F ) is infinite, then T will grow with N and this will have consequences for
the rate of convergence of the algorithm and the statistical analysis of the uncertainty set selection. But
this is not important to implement and run the algorithms that we will present below.

We now are ready to summarize some properties of Lrob in Lemma 1 and thereafter develop a subgradient
descent algorithm to find the optimal robust decision rule by solving (2).
Lemma 1 If Assumption 1 is imposed, then the robust loss functional Lrob : Lin(F )→ R is convex. In
addition, the set of optimizer Ω?

rob(F) is guaranteed to be nonempty.
The predicting function controls the value of Lrob(F) solely via F(Xi). Thus, to derive the functional

gradient descent algorithm, one needs to construct a metric on F where the structure is determined only
by F(Xi) as well. To this end, we consider the inner product 〈·, ·〉DN , where

〈F,G〉DN =
1
N

N

∑
i=1

F(Xi) ·G(Xi), ∀F,G ∈ Lin(F ).

Due to the Assumption 2, 〈·, ·〉DN is a well defined inner product on space Lin(F ), and we denote by
‖ ·‖DN the induced norm of 〈·, ·〉DN on Lin(F ). As the dimension of space Lin(F ) can be assumed to be
finite due to Observation 1, the space Lin(F ) endowed with inner product 〈·, ·〉DN is a Hilbert space. Note
that the topology induced by 〈·, ·〉DN is isomorphic to the Euclidean topology in RN .

In order to formalize the functional subgradient algorithm, we first introduce the definition of functional
subgradient and functional sub-differential.
Definition 1 (Functional Sub-Gradient) For a convex functional L : Lin(F )→ R and F0 ∈ Lin(F ), a
linear functional G : Lin(F )→ R, (i.e. G ∈ Lin(F )∗) is called the functional subgradient of L at F0 if

L (F)−L (F0)≥ G (F−F0), ∀F ∈ Lin(F ).
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The functional sub-differential of L at F0, denoted by ∂L (F0), is defined as

∂L (F0) = {G | G is a functional subgradient of L at F0} .

If the functional sub-differential set ∂L (F0) is a singleton set, then the functional L is said to be
differentiable at F0, in which case the only element in ∂L (F0) is denoted by ∇L (F0), called the functional
gradient of L at F0. Intuitively, one may regard the functional gradient ∇L (F0) as the response of an
infinitesimal change in the predicting function F0.
Proposition 2 Suppose that Assumptions 1-3 are imposed, then the functional sub-differential ∂Lrob(F)
is given by

∂Lrob(F) = Co
⋃

ωωω∈Ω?
rob(F)

(ω1 ·∂L1(F)+ · · ·+ωN ·∂LN(F)) (5)

Here, for sets A and B, Co A denotes the convex hull of set A, and A+B := {a+b | a ∈ A,b ∈ B} denotes
the Minkowski sum of sets A and B.
Corollary 3 Suppose that Assumptions 1-2 are imposed, then if for some functional F we have Ω?

rob(F) =
{ωωω?(F)} and ∂Li(F) = {∇Li(F)} for each i, then Lrob is also differentiable at F and

∇Lrob(F) = ω
?
1 (F) ·∇L1(F)+ · · ·+ω

?
N(F) ·∇LN(F).

Using Proposition 2 and Corollary 3, we can make sense of the functional sub-differential ∂Lrob(F)
or even the functional gradient ∇Lrob(F). However, in order to ensure the trajectory of functional gradient
descent lies in the space Lin(F ), one wants to find a weak linear in F to approximate the functional gradient
G . This simply means finding a best approximation in ΠF (G ) such that ΠF (G ) = argminF∈F ‖F−G ‖DN .

Using these observation, the functional subgradient descent algorithm for solving the DRO-Boosting
problem (2) is given in Algorithm 1.

Note that in Algorithm 1, we have to compute a worst case probability weight ωωω? ∈Ω?
rob(F) for some

functional F . If L1(F) = · · ·= LN(F), we can simply pick ωωω? = ωωωPN = (1/N, . . . ,1/N). Otherwise, the
worst case probability can be computed using the Lemma 4.
Lemma 4 For F ∈ Lin(F ) and β ∈ (−∞,−maxi {Li(F)}), define

Ψ(β ;F) =
1
n

n

∑
i=1

log
(

−1
Li(F)+β

)
− log

(
1
n

n

∑
i=1

−1
Li(F)+β

)
+δ . (6)

Suppose that there exist i, j such that Li(F) 6=L j(F), then Ψ(β ;F) is strictly increasing in β . Furthermore,

if we set ω?
i = (Li(F)+β ?)−1

∑
n
k=1(Lk(F)+β ?)−1 , where β ? is the unique root of Ψ(β ;F) = 0, then ωωω? ∈Ω?

rob(F).

Corollary 5 shows that Algorithm 1 exactly recovers the AdaBoost algorithm proposed in (Freund and
Schapire 1997). The proof of Corollary 5 is elementary.
Corollary 5 (Connection to AdaBoost) Suppose that Li(F) =−exp(Yi ·F(Xi)) and

δ = log

(
1
n

n

∑
i=1

exp
(
−Yi ·F(Xi)

))
− 1

n

n

∑
i=1

Yi ·F(Xi),

then β ? = 0 and the worst case probability in Lemma 4 is given by ω?
i = (Li(F)+β ?)−1

∑
n
k=1(Lk(F)+β ?)−1 =

exp(−Yi·F(Xi))
∑

n
k=1 exp(−Yk·F(Xk))

.

Remark 1 (Convergence Analysis) Under the technical assumption that Lrob has Lipschitz continuous
gradient, the convergence of Algorithm 1 follows from Theorem 2 of (Mason et al. 1999). This assumption
is typically violated in our setting. However, by introducing a soft maximum approximation to Lrob, as
in Theorem 2 of (Blanchet et al. 2017), one may apply the results of (Mason et al. 1999) directly, at
the expense of a small (user-controlled) error. We tested empirically the convergence of the algorithm,
successfully. The smoothing analysis will appear elsewhere.
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Algorithm 1 DRO-Boosting
1: Initialize weight ωωω? = (1/N, . . . ,1/N) and F0 (x) = 0, maximum number of iterations Tmax.
2: for t := 0 to Tmax do
3: Update Ft : With fixed ωωω?, we compute a subgradient Gt ∈ ∂Lrob(Ft) using Proposition 2.
4: Find a best approximation to Gt in class F and get the update direction ΠF (Gt).
5: Apply line search for step size αt ; update the function as Ft+1 = Ft −αtΠF (Gt).
6: Update ωωω?: With fixed Ft+1, we can evaluate the loss function for the observations as

Li(Ft+1) = L(Ft+1(Xi),Yi) .

7: Apply Newton-Raphson Method to compute the unique root of β ? of Ψ(β ;Ft+1) and update the
worst case probability ωωω? according to Lemma 4.

8: We terminate the algorithm if there is no improvement could be make or we reach the maximal step
size.

9: Output FTmax .

Now, note that Algorithm 1 requires supplying the parameter δ . This parameter is typically chosen
using cross-validation. However, when Lin(F ) = Lin{ f1, ..., fT}, with T fixed, we can use the work of
(Duchi et al. 2016; Lam and Zhou 2017), which establishes a connection to Empirical Likelihood to obtain
δ . This will be discussed in Section 4.

4 OPTIMAL SELECTION OF THE DISTRIBUTIONAL UNCERTAINTY SIZE

We now explain how to choose δ using statistical principles and avoiding cross-validation. The strategy is
to invoke the theory of Empirical Likelihood, following the approach in (Lam and Zhou 2017; Blanchet and
Kang 2017b), as we shall explain. We assume that the data DN = {(Xi,Yi)

N
i=1} is i.i.d. from an underlying

distribution P∗, which is unknown. We use P∞
∗ to denote the product measure P∗×P∗× ... governing

the distribution of the whole sequence {(Xn,Yn) : n ≥ 1}. Moreover, in this section we will assume, in
Assumption 3, that Lin(F ) = Lin{ f1, ..., fT} where T is fixed and independent of N.

For each probability measure P, there is an associated optimal predicting function F as the minimizer
to the risk minimization problem FP = argminF∈Lin(F )EP [L(F (X) ,Y )] . We assume the convexity and
smoothness for the loss function as discussed previously in Section 3. Following the criterion discussed in
(Blanchet and Kang 2017b), we define Λδ (PN) = {FP : P ∈Uδ (PN)}. The set Λδ (PN) can be interpreted
as a confidence region for the functional parameter FP∗ and we are interested in minimizing the size of the
confidence region, δ , while guaranteeing a desired level of coverage for the confidence region Λδ (PN). In
other words, we want to choose δ as the solution to the problem

min{δ : P∞
∗
(
FP∗ ∈ Λδ (PN)

)
≥ 1−α}, (7)

where 1−α is a desired confidence level, say 95%, which implies choosing α = .05. This problem is
challenging to solve, but we will provide an asymptotic approximation to it as N→ ∞.

We make the following assumptions to proceed the discussion.
Assumption 4 (First Order Optimality Condition) The optimal choice FP is characterized via the corre-
sponding first-order optimality condition, which yields EP

[
∇FL

(
FP (X) ,Y

)]
= 0.

By the definition of the functional gradient in Definition 1, we know ∇FL
(
FP (X) ,Y

)
∈ RT .

The derivation of the asymptotic results relies on central limitation theorem, and we assume the existence
of the second moment for the functional gradient.

Assumption 5 (Square Integrability) We assume that EP∗

[∥∥∇FL
(
FP (X) ,Y

)∥∥2
2

]
< ∞.
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In order to compute δ according to (7) we will provide a more convenient representation for the set {FP∗ ∈
Λδ (PN)}. For any F , we can define a set of probability measures M (F) for which F is an optimal boosting
learner, that is, P∈M (F) ifEP [∇FL(F (X) ,Y )] = 0. Consequently, M (F)= {P | EP [∇FL(F (X) ,Y )] = 0} .
Define the smallest Kullback-Leibler discrepancy between PN and any element of M (F) via

RN (F) = min
P
{D(P‖PN) | EP [∇FL(F (X) ,Y )] = 0} . (8)

It is immediate to see that FP∗ ∈ Λδ (PN) if and only if there exists an element in P ∈M
(
FP∗
)

such that
D(P‖PN)≤ δ . Consequently, we have

FP∗ ∈ Λδ (PN)⇐⇒ RN
(
FP∗
)
≤ δ . (9)

The asymptotic analysis of the object RN
(
FP∗
)
, known as the Empirical Profile Likelihood (EPL) has

been studied extensively. From (9) we have that the solution to (7) is precisely the 1−α quantile of
RN
(
FP∗
)
. Therefore, to approximate δ , it suffices to estimate the asymptotic distribution of RN

(
FP∗
)
.

We apply the techniques in (Lam and Zhou 2017) to derive the asymptotic distribution of RN (F) as
n→ ∞, and pick the 1−α quantile of the asymptotic distribution as our uncertainty size.

The asymptotic results for (8) is similar as introduced in the literature for the empirical likelihood
theorem as in (Owen 1988; Qin and Lawless 1994; Owen 2001). There show that the asymptotic distribution
is chi-square and the degree of freedom depends on the estimating equation. We state the results in Theorem
6 below.
Theorem 6 (Generalized Empirical Likelihood Theorem) We assume that our loss function L is smooth,
the functional gradient is well defined, and Assumption 4 and Assumption 5 hold. Then we have the EPL
function defined in (8) has asymptotic chi-square distribution, i.e.

2NRN
(
FP∗
)
⇒ χ

2
T , (10)

where χT is the chi-square distribution with degree of freedom equal T and⇒ stands for weak convergence.
We can notice the rate of convergence is free of the data dimension and the dimension of the dimension

of the functional space. Theorem 6 is a generalization of the empirical likelihood theorem for general
estimating equation introduced in (Qin and Lawless 1994).

5 NUMERICAL EXPERIMENTS

In this section, we apply our DRO-Boosting algorithm to predict default in credit card payment. We take
the credit-card default payment data of Taiwan from UCI machine learning database (Lichman, M. 2013).
The data has 23 predictors and the response is binary stands for non-default and default. There are 30000
observations in the data set with 6636 defaults and 23364 non-defaults.

We take the binary classification tree as the weak learner as the basis function, and we consider
exponential loss function for model fitting. We compare our model with the AdaBoost algorithm, which
is the state-of-art boosting algorithm for practical consideration.

Every time, we randomly split the data into a training set, with 3000 observations, and a testing set,
with the rest 27000 data points. We train the model on the training set as we illustrated in Algorithm 1.
We consider the basis function as 5-layer classification tree, and we assume the dimension (or effective
degree of freedom) of the functional space is roughly 30. To pick the uncertainty set, we apply the method
introduced in Section 4, where we pick the level of uncertainty to be 90%. We consider a more complex
basis model, a 5-layer classification tree, as the weak learner, which is mainly due to we try to explore a
case where the AdaBoost model is more likely to overfit the data.

We report the accuracy, true positive rate, false negative rate, and the exponential loss in Table 1, where
we can observe superior performance for the DRO-Boosting model on the testing set.
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Table 1: Numerical results for applying DRO-Boosting to credit card default payment prediction.

Reporting Domain Training Set Testing Set
Algorithm AdaBoost DRO-Boosting AdaBoost DRO-Boosting
Accuracy
P
(
Ytrue = Ypred

) 0.948±0.001 0.840±0.006 0.788±0.004 0.819±0.003

False Negative Rate
P
(
Ppred = 1

∣∣Ptrue = 1
) 0.807±0.039 0.406±0.032 0.352±0.021 0.354±0.023

True Positive Rate
P
(
Ppred =−1

∣∣Ptrue =−1
) 0.988±0.005 0.963±0.006 0.913±0.009 0.946±0.006

Average Exponential Loss 0.497±0.041 0.738±0.013 0.860±0.009 0.801±0.007

We can observe from our numerical experiment that the DRO formalization helps improve the perfor-
mance on the testing set. The worst-case expected loss function tires to mimic the testing error and avoid
overemphasis on the training set. Thus we observe higher training error using DRO, while the advantage
is reflected in the testing error.

6 PROOFS OF THE TECHNICAL RESULTS

The proofs are presented in the order as they appear in the paper.

Proof of Lemma 1. For the first argument, each Li is a convex functional due to Assumption 1, so is
their convex combination ∑

N
i=1 ωi ·Li(F). After taking maximization over ωωω ∈ Ωδ (PN), the functional

Lrob(F) is still convex. For the second argument, the objective function on the right hand side of (3) is
continuous in ωωω and the feasible region Ωδ (PN) is compact, so the optimizer set Ω?

rob(F) is guaranteed to
be nonempty.

Proof of Proposition 2. According to (Hiriart-Urruty and Lemaréchal 2012) Chapter D, Theorem 4.1.1,
we have ∂ (ω1 ·L1(F)+ · · ·+ωN ·LN(F)) = ω1 ·∂L1(F)+ · · ·+ωN ·∂LN(F) for all ωωω ∈CN . In addition,
note that each Li(F) is convex and upper semi-continuous according to Assumption 1, so ω1 ·L1(F)+ · · ·+
ωN ·LN(F), as a convex combination of Li(F), is also convex and upper semi-continuous. Furthermore,
the set Ω?

rob(F) is a compact set. Consequently, using (Hiriart-Urruty and Lemaréchal 2012), Chapter D,
Theorem 4.4.2, the desired result (5) is proved.

Proof of Corollary 3. The result follows from Theorem 2 and (Hiriart-Urruty and Lemaréchal 2012),
Chapter D, Corollary 2.1.4.

Proof of Lemma 4. The strict monotonicity of the fucntion Ψ(β ;F) can be shown by taking derivative
and applying Cauchy Schwartz inequality. Using the fact that β ? is the root of Ψ(β ;F), it follows that
ωωω? ∈ Ωδ (Pn). The optimality of ωωω? is proved by verifying the Karush–Kuhn–Tucker conditions of the
convex optimization problem maxωωω∈Ωδ (PN) ∑

N
i=1 ωi ·Li(F).

Proof of Theorem 6. The EPL function (8) is a convex optimization with constraint. We can write the
optimization problem in the Lagrange form as maxωωω∈CN

{ 1
N ∑

N
i=1 Nωi +λ T

N ∇FL(F (Xi) ,Yi)
}
, where λN is

the Lagrange multiplier. The optimization problem could be solved by its first order optimality condition,
and it gives ωi =

1
N

1
1+λ T

N ·∇F L(F(Xi),Yi)
and 1

N ∑
N
i=1

∇F L(F(Xi),Yi)
1+λ T

N ∇F L(F(Xi),Yi)
= 0. We denote Mi = ∇FL(F (Xi) ,Yi),

Wi = λ T
N Mi, and SN = 1

N ∑
N
i=1 Mi ·MT

i . Then we apply Lemma 11.1 and Lemma 11.2 in (Owen 2001),

λN = S−1
N ·MN +ζN with MN =

∑
N
i=1 Mi

N
and ζN = op

(
N−1/2

)
, (11)

log(1+Wi) =Wi−
1
2

W 2
i +ηi with

N

∑
i

ηi = op(1). (12)
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Therefore, for the ELP function, we have

2NRN
(
FP∗
)
=−2

N

∑
i=1

logNωi = 2
N

∑
i=1

log(1+Wi) = 2
N

∑
i=1

Wi−
N

∑
i=1

W 2
i +2

N

∑
i=1

ηi

=NMN
T S−N 1MN−NζNS−N 1ζN +2

N

∑
i=1

ηi = NMN
T S−N 1MN +op(1)⇒ χ

2
T

The first two equations are by definition, the equation four, five and six are applying (11) and (12), while
the final equation is the central limitation theorem for the estimating equation.
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