
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

ADVANCED STATISTICAL METHODS: INFERENCE, VARIABLE SELECTION, AND
EXPERIMENTAL DESIGN

Ilya O. Ryzhov

Robert H. Smith School of Business
University of Maryland

7699 Mowatt Lane
College Park, MD 20742, USA

Qiong Zhang

School of Mathematical and Statistical Sciences
Clemson University
O-110 Martin Hall

Clemson, SC 29634, USA

Ye Chen

Statistical Sciences & Operations Research
Virginia Commonwealth University

1015 Floyd Avenue
Richmond, VA 23284, USA

ABSTRACT

We provide a tutorial overview of recent advances in three methodological streams of statistical literature:
design of experiments, variable selection, and approximate inference. For some of these areas (such as
design of experiments), their connections to simulation research have long been known and appreciated;
in other cases (such as variable selection), however, these connections are only now beginning to be built.
Our presentation focuses primarily on the statistical literature, aiming to show state-of-the-art thinking with
regard to these problems, but we also point out possible opportunities to use these methods in new ways
for both theory and applications within simulation.

1 INTRODUCTION

Statistics has long exerted a formative influence on simulation research – many foundational methodological
areas in simulation, such as stochastic approximation (Robbins and Monro 1951), ranking and selection
(Dudewicz and Dalal 1975), and design of experiments (Titterington 1975), were originally pioneered by
statisticians. Statistics is fundamental to simulation output analysis (Glynn and Iglehart 1990), gradient
estimation (Glynn 1987), metamodeling (Kleijnen 2009), uncertainty quantification (Song et al. 2014), and
many other techniques of interest to the WSC community.

The authors of this tutorial all work on topics within the mainstream of simulation research. All three
of us have found that, in problems that involve elements of statistics, optimization, and applied probability,
the statistical aspect often turns out to be the most challenging and important. We have also found the recent
statistical literature to be very useful for dealing with these challenges. With the increased prominence of
big data analytics and machine learning in virtually every subfield of operations research, the importance
of pure statistics for simulation research is only likely to grow.

This tutorial surveys recent advances in three major areas of statistics, namely 1) design of experiments,
2) variable selection, and 3) approximate inference. To an extent, this choice of topics is driven by our
individual areas of expertise. However, we believe that all three areas are highly relevant to simulation
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research: thus, design of experiments is closely related to ranking and selection and simulation-based
optimization (Hong and Nelson 2009); variable selection is potentially applicable to the emerging area of
simulation analytics (Jiang et al. 2020); and approximate inference is broadly applicable to optimization
under uncertainty when fast computation is required.

Because we focus on recent work, our presentation necessarily focuses more on statistical literature
rather than simulation literature. While some of these statistical methods may be immediately applicable
to existing, well-known problems in simulation, it is not necessarily our objective to show this here. In
fact, in some cases, it may well be that some of these methods have not yet found their applications in the
WSC community. We hope that these are exactly the cases where this tutorial will be the most useful, by
helping to facilitate new streams of simulation research where these statistical ideas will be relevant.

In each of the main sections of the tutorial, we will aim to make connections between the material
being presented and specific applications in simulation. However, we ask the reader to keep in mind that
some of these may be only potential applications.

2 DESIGN OF EXPERIMENTS

In many branches of science and engineering, computer experiments on virtual systems are a critical tool
for the study and analysis of complex physical processes. In this way, costly prototypes in the early design
phase are replaced by simulations, providing considerable productivity gains. When conducting these
experiments, the objectives often include 1) finding the input configuration that produces the most desirable
outcome, and 2) estimating a performance measure over the input space. Usually, no explicit expression
is available for the outcome as a function of the input, and running experiments can be computationally
expensive, so it is necessary to efficiently allocate design points over the input space and use computationally
inexpensive statistical models to emulate computer experiments.

Early developments in experimental design mostly focus on physical experiments. Wu (2015) points out
that the principles of designs of computer experiments are different from designs of physical experiments,
and the three principles of blocking, replication, and randomization are inessential or irrelevant to the
design of computer experiments. For deterministic computer models based on partial differential equations,
it is often necessary to cover the experimental region with the design points, known as the “space-filling
property.” Below, we review three popular directions for constructing space-filling designs from the recent
literature on deterministic computer models.

Classical experimental design techniques such as factorial design and response surface methodology
are well-known in the simulation community (Kelton and Barton 2003; Barton 2013). More recently, it has
become popular to allocate design points sequentially; however, as parallel processors become available to
practitioners, the allocation of a relatively large batch of design points may become competitive in terms
of utilizing this advanced computing resource (Nelson 2016; Zhang et al. 2020). Thus, the main ideas
in designing “one-shot” experiments may also be useful in stochastic simulation. In addition, stochastic
simulation requires initial replications to assess the simulation estimation error as mentioned in Ankenman
et al. (2010); thus, the space-filling property is still useful to set up the base design before determining the
number of replications (Ankenman et al. 2010; Law 2017). There may also be other similarities between
stochastic simulation and certain types of deterministic experiments. For example, Chen et al. (2013) study
a stochastic simulation model with both quantitative and qualitative factors.

2.1 Optimal Space-Filling Designs

Under a fixed experimental budget n, the minimum of the distances between two points should be as large
as possible to achieve better space-filling properties. Johnson et al. (1990) proposed the maximin distance
design as the solution to the optimization problem

max
x1,...,xn∈X

min
i6= j∈1,...,n

d(xi,x j), (1)
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where xi = (xi1, . . . ,xip) is the i-th input point from the p-dimensional input space X , and d(·, ·) is the
Euclidean distance between two input points. The minimum pointwise distance of a design is called the
separation distance; this is the quantity maximized by the maximin design.

Problem (1) is usually challenging to solve. Morris and Mitchell (1995) develop an alternative design
criterion

minx1,...,xn∈X

{
n−1

∑
i=1

n

∑
j=i+1

1
dk(xi,x j)

}1/k

, (2)

for some k > 0. If k is large enough, the resulting design achieves the maximin distance in (1). However,
the designs obtained from the maximin criterion are only space-filling in the entire space X . To ensure
good space-filling properties for all subspaces of X , Joseph et al. (2015) propose the maximum projection
design to minimize

Φ(x1, . . . ,xn) =

(
n−1

∑
i=1

n

∑
j=i+1

1
∏

p
l=1(xil− x jl)2

)1/p

, (3)

which is obtained by taking the expectation of the objective in (2) with respect to the weight parameters
in each dimension under a non-informative prior.

The above optimal space-filling designs are model-free, i.e., they do not rely on any statistical modeling
assumptions on the output surface. Optimal space-filling designs can also be constructed based on models
to improve the accuracy of the emulator for certain types of computer experiments. A widely used model
for the outcome y(x) of an experiment is the Gaussian process (GP)

y(x) = µ + z(x),

where µ is a deterministic mean, and z(x) is a mean-zero GP with variance σ2 and correlation function
R(x,x′). The correlation function value R(x,x′) decreases with the distance between x and x′. Under the
GP setting, space-filling designs can be constructed to minimize the expected or the maximum prediction
error over the input space X (Sacks et al. 1989). Also, Shewry and Wynn (1987) develop the maximum
entropy design obtained by maximizing the determinant of the correlation matrix in GP.

There are some connections between model-free and model-based designs. For example, when maxi-
mizing the determinant of the correlation matrix in a GP, the resulting maximum entropy designs (Shewry
and Wynn 1987) tend to have smaller off-diagonal entries, i.e., the distance between different design points
will be larger, thus meeting the maximin distance design criterion in (1). As another example, Joseph
et al. (2015) point out that the model-free maximum projection design criterion in (3) can also be derived
by minimizing the sum of the expected off-diagonal entries in the correlation function of GP under a
non-informative prior.

2.2 Latin Hypercube-Based Space-Filling Designs

Latin hypercube sampling is another important technique to achieve space-filling. An Latin hypercube
design (LHD) of n runs x1, · · · ,xn with p inputs in [0,1] can be constructed by

xi = (xi1, . . . ,xip) with xi j =
π j(i)−Ui j

n
, for 1≤ i≤ n,1≤ j ≤ p (4)

where π1, . . . ,πp are independent permutations of 1, . . . ,n, and each Ui j is an independent U [0,1) random
variable independent of the values π j. As can be seen from (4), LHDs are convenient to generate and can
accommodate any number of factors. An LHD has maximum uniformity when projected onto any single
dimension, known as the univariate stratification property. Figure 1 displays two LHDs with four runs and
two factors. In this figure, by dividing the input space [0,1] from either dimension into four equally spaced
intervals, there is exactly one point located at each interval. In terms of estimating the mean performance
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Figure 1: LHDs with four runs and two factors. Left: a regular LHD generated by (4); Right: an orthogonal
array-based LHD with strength two from (Tang 1993).

of computer experiments, an LHD can achieve smaller variance than i.i.d. samples (McKay et al. 1979;
Stein 1987).

However, an LHD can not guarantee stratification over higher-dimensional spaces as shown in the left
panel of Figure 1. Recent work has focused on improving the space-filling property of a regular LHD
generated from (4) using ideas from optimization; see, e.g., Tang (1993), Owen (1994), Joseph and Hung
(2008). In particular, Morris and Mitchell (1995) search from random LHDs to optimize the optimal
space-filling criterion in (2). The drawback of this type of design is that it is challenging to evaluate the
optimality gap generated from heuristic optimization approaches. Also, from the algebraic perspective,
Tang (1993) uses orthogonal arrays to construct Latin hypercubes. Originating from an orthogonal array
(OA) of size n, p dimensions, s levels and strength t, the resulting OA-based Latin hypercube designs
also stratify each t-dimensional margin, which strengthens the one-dimensional stratification property of a
regular LHD (as shown in the right panel of Figure 1). The limitation is that OAs can not be constructed
for any arbitrary combination of size and dimension. Therefore, the OA-based LHDs have this restriction
to be applied to examples with any run size and number of input factors.

2.3 Designs With Special Structure

Optimal designs often require special structure motivated by practical considerations in the implementation
of computer experiments. Such structure can occur in multi-fidelity computer experiments, sequential
batched experimentation, and computer experiments with both qualitative and quantitative inputs.

Nested Latin hypercube designs (Qian 2009) are proposed for experiments conducted through multi-
fidelity computer models with different levels of accuracy. A nested Latin hypercube design can contain
multiple layers. As shown in Figure 2, the first layer is an LHD containing four runs, the second layer adds
four runs to construct an LHD with eight runs, and the third layer adds eight additional runs to construct an
LHD with 16 runs. In practice, the smaller LHD can be used to conduct experiments on the high-fidelity
computer model, which is typically more time-consuming, and the larger LHD is used for the cheaper
low-fidelity model. Combining the experimental outcomes, variance reduction can be achieved on the
estimation of mean performance. Nested designs can also be applied to sequential batched experimentation,
which adds more runs of experiments step by step. Designs with a nested structure can also be constructed
based on low discrepancy sequences, such as Sobol’ sequences (Haaland and Qian 2010).

Sliced LHDs (Qian 2012) are proposed for computer experiments with both qualitative and quantitative
factors. A sliced LHD contains multiple slices with equal runs, with each slice forming a small LHD,
and the whole design forming a large LHD. The number of slices is equal to the total number of level
combinations of the qualitative factors, and each slice can be allocated to the design of quantitative factors
associated with each qualitative level. This design can also be used for parallelized computer experiments,
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Figure 2: Two dimensional projections of design points from a nested LHD with 16 runs, three factors,
and three layers. Left: the first layer is an LHD with four runs; Middle: the second layer is an LHD with
eight runs; Right: the third layer is an LHD with 16 runs.

and cross-evaluation of emulators for computer models (Zhang and Qian 2013). Recent work has focused
on improving the space-filling property of designs with special structure (He 2019; Joseph et al. 2020;
Zhou et al. 2020).

2.4 Optimal Designs For A/B Testing

A/B testing refers to the design and analysis of an experiment to compare to treatments applied to different
experimental units. Large-scale A/B testing is widely implemented at technology companies such as
Facebook, LinkedIn, and Netflix, to compare different algorithms, web designs, and other online products
and services. In its simplest form, the experimental design problem is to determine the proportions of test
units allocated to two options A and B to reduce the uncertainty of the comparison (Shahriari et al. 2015),
which is related to the optimal design literature.

Optimal designs can be developed based on the simple ordinary least-squares (OLS) regression model

y = β
>x+ ε, (5)

where y is an observed value (“response”), x ∈ Rp is a vector of data (or “features”) describing the
observation, β ∈Rp is a vector of (unknown) regression coefficients describing the effects of x on y, and
ε is an independent zero-mean noise. Given n observations of the form (xn,yn), we estimate β by solving

θ
OLS
n = arg min

θ∈Rp

n

∑
i=1

(
yi−θ

>xi

)2
. (6)

One can then formulate the objective of optimal design as a function of the covariance matrix of the
estimated coefficients θ OLS

n . For example, the D-optimal design objective is defined as the determinant of
the covariance matrix, and the Da-optimal criterion is the determinant of the covariance matrix of a linear
combination of θ OLS

n (Sinha 1970).
Optimizing these criteria becomes quite challenging in the presence of additional covariates. If p is

small, A and B options can simply be allocated by the stratification of each covariate, but this approach
does not scale. Instead, one can use a model that treats the covariates as additive factors, as in

y = βx+ z>γ + ε, (7)

where y is the outcome, x ∈ {−1,1} represents the allocation of A/B options, β is the treatment effect, z
is a vector of covariates (including an intercept term) with coefficients γ , and ε is the error term. Under
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this model setting, the accuracy of our comparison of A and B critically depends on the accuracy of our
estimation of β .

One recent approach is a special case of Da-optimal design that minimizes the variance of our estimate
of β . Recently, Bhat et al. (2019) have developed offline and online mathematical programming approaches
to solve this problem. The literature on causal inference approaches the problem by balancing covariates,
that is, dividing the test units into two or multiple groups with similar distributions of covariates between
different groups. In particular, Morgan and Rubin (2012) have proposed a rerandomization approach to
reduce the Mahalanobis distance between the covariates of the two groups. This objective is equivalent
to Da optimal design under a linear model with additive treatment and covariate effect, so the covariate
balancing problem can be considered in a unified framework (Kallus 2018). Zhang et al. (2020) consider
optimal designs to improve the personalized decision of A and B options with application in precision
medication. In the simulation literature, similar problems have been considered by, e.g., Han et al. (2016)
and Shen et al. (2017), with the main distinction being that the objective optimized in these papers is
economic rather than statistical; for example, one might design experiments to maximize the expected
value of y, rather than minimizing a statistical criterion as in the experimental design literature.

There are also important special cases of this problem where the covariates represent network data, such
as connections between users on Facebook or Twitter. Some specialized techniques have been developed
for such settings. Randomized treatment allocations are proposed by Xu et al. (2015) and Basse and Airoldi
(2018) in order to reduce the effects of network correlation or to reduce the error of the estimated treatment
effect. Pokhilko et al. (2019) use a conditional autoregressive model to incorporate network structure, and
develop a D-optimal design approach to A/B testing as an extension of the offline optimal design in Bhat
et al. (2019) to the setting of social networks.

3 VARIABLE SELECTION

Let us now turn our attention to problems where the data are given, rather than designed. For illustrative
purposes, we again consider the ordinary least-squares regression model (5). If this model correctly describes
the relationship between x and y, we will have θ OLS

n → β (consistency of the OLS regression estimator)
as n→ ∞ under some mild conditions (Lai and Wei 1982) on the sequence {xn}∞

n=1.
There are, however, reasons not to use (6) even when the model (5) is believed to be accurate. Suppose

that the number p of features is large, potentially even greater than the number n of observations. In such
a case, (6) no longer has a unique solution, so it is not possible to recover the effects of individual features.
At the same time, it may be that most of these effects are zero, i.e., the size of the set A =

{
j ≤ p : β j 6= 0

}
is very small relative to p (and smaller than n). In other words, we have a very large volume of data, but
most of the data are not useful – they are simply obscuring a small number of important features.

Even if n > p, however, the same issue can arise. For example, pricing decisions at hotels are influenced
by similar decisions at other hotels (Li et al. 2018): thus, if there are m hotels, there are m2−m potential
effects (large p). These effects can be estimated from user search histories at a travel aggregation website
(large n). One can download enough data to ensure n > p, but any given hotel is most likely not influenced
by all m−1 competitors; it is more likely that the main influences come from a few hotels with similar
star rating or location.

Keeping uninformative features in the model will make it more difficult to obtain reliable estimates
from (6). First, these features will add noise, reducing the accuracy of our estimates of the important
effects. Second, with more features, it becomes more likely that many of them will be strongly correlated,
i.e., that we are essentially keeping track of multiple copies of the same effect, leading to degraded model
performance. Finally, with large p, there is a risk of spurious correlation, meaning that, by random chance,
some of the features appear to exhibit patterns that are not actually present in the data-generating process;
in other words, we are more likely to falsely identify j /∈A as being relevant (Fan et al. 2014).

The methodology of variable selection seeks to recover A and thereby obtain more accurate estimates
of β j for j ∈ A . In the following, we will survey two different approaches to the problem: regularized
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estimation methods (Section 3.1) that require assumptions such as (5), and screening methods (Section
3.2) that can be conducted before any estimation takes place. Before we proceed, we first comment on the
relevance of this problem to the simulation community.

As of this writing, variable selection has only begun to enter the simulation literature through “simulation
analytics” (Lin and Nelson 2016). The main distinguishing characteristic of this problem class is that the
“data” used to predict the performance of a simulated system may consist of the system’s entire simulated
trajectory (Nelson 2016). For example, if we are simulating a complex service system over a long period
of time, x may include the timestamp of every event that occurs, enabling a more granular analysis of
the causes of long delays. At the same time, the fact that we can now store this volume of data does not
mean that all of it is useful. For this reason, Jiang et al. (2020) uses variable selection (Lasso, discussed
in Section 3.1) to reduce model size and improve prediction quality. We hope that the statistical tools
surveyed here may be useful to researchers working on such problems.

3.1 Regularized Estimation Via the Lasso

Perhaps the best-known variable selection method is the Lasso, first introduced by Tibshirani (1996).
Returning to the linear regression model from (5) we solve the modified estimation problem

θ
Lasso
n = arg min

θ∈Rp

n

∑
i=1

(
yi−θ

>xi

)2
+λ

p

∑
j=1

∣∣θ j
∣∣ . (8)

The second term in (8) is a penalty incurred by assigning nonzero values to the coefficients θ j. Because the
absolute value is not differentiable at zero, the Lasso penalty will tend to encourage setting θ j = 0 rather
than simply reducing the magnitudes. We thus make a tradeoff between a model that is more accurate
(has lower squared error) in describing the given data vs. a more compact model with fewer nonzero
coefficients. Because the two terms in (8) do not have the same “units,” a scaling parameter λ ≥ 0 controls
the relative importance of the penalty term: as λ increases, the number of nonzero coefficients will shrink.

Letting θ Lasso
n (λ ) be the solution to (8) for a given λ value, the set

Ân (λ ) =
{

j ≤ p : θ
Lasso
n, j (λ ) 6= 0

}
tells us which variables have been selected by the method. Lasso performs selection and estimation
simultaneously, since we also have numerical values θ Lasso

n, j (λ ) for any j ∈ Ân.
Although θ Lasso

n technically has higher squared error than the OLS estimator θ OLS
n , in practice the

Lasso estimator will perform better out of sample. In fact this is one way to optimize the choice of λ . As
is commonly done in machine learning (Hastie et al. 2009), one partitions the available data into training
and test sets, solves (8) using only the training data, then evaluates the sum of squared errors incurred by
this estimator on the test data. One can repeat this process for many values of λ ≥ 0 (which includes the
OLS estimator as a special case) and select the value that produces the best results. As an alternative, if
one does not wish to partition the data, one can also select λ to optimize an information criterion such as
AIC or BIC (Zou et al. 2007). For example, under the BIC (Bayesian Information Criterion), the optimal
choice of λ is given by

λ
∗ = argmin

λ≥0

n

∑
i=1

(
yi−

(
θ

Lasso
n (λ )

)> xi

)2
+
∣∣∣Ân (λ )

∣∣∣ logn.

A rich theory is available for Lasso. It can be shown that the method recovers the true set A of relevant
features as n→∞ (Zhao and Yu 2006), even if p grows faster than n, and much of this theory carries over
to countless extensions and generalizations of the Lasso concept. In general, one typically solves some
variant of

θ
Lasso
n = arg min

θ∈Rp
−

n

∑
i=1

logL(yi;xi,θ)+λ

p

∑
j=1

∣∣θ j
∣∣ , (9)
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where L(y;x,θ) is the likelihood of observing y given the data x and model parameters θ . This framework
encompasses generalized linear models or GLMs (Van de Geer 2008), which satisfy

E(y) = g
(

β
>x
)
, (10)

where g is some user-specified nonlinear link function (such as the logistic function, if we wish to use a
logistic regression model) and β is a vector of true parameters. There are other extensions to hazard rate
estimation (Gaiffas and Guilloux 2012), quantile estimation (Li et al. 2010), panel data (Ibrahim et al.
2011), nonparametric models (Huang et al. 2010) and many other statistical techniques. One can also
impose more detailed constraints on the selection set Ân. For example, in the group Lasso method (Meier
et al. 2008), the set {1, ..., p} of features is partitioned into disjoint groups G1, ...,G`, and (9) becomes

θ
Lasso
n = arg min

θ∈Rp
−

n

∑
i=1

logL(yi;xi,θ)+λ

`

∑
l=1

(
∑
j∈Gl

(θ j)
2

) 1
2

. (11)

This penalty structure has the effect of selecting (or not selecting) entire groups of features, so that j ∈Gl
is selected if and only if all other j′ ∈ Gl are. This may be desirable in some applications: for example,
Gl may represent a categorical variable modeled as a set of dummy variables, and we may wish to either
include every possible category in our model, or none of them.

Despite the power and versatility of the Lasso method, it is subject to several issues. First, as we have
mentioned, (8) and its variants attempt to perform selection and estimation simultaneously. This seems
like an advantage, but the coefficients returned by Lasso are usually biased. The bias may be corrected
by refitting a model of the desired type to the selected features (Belloni and Chernozhukov 2013); for
example, if we are in the setting of OLS regression, we first solve (8) and then fit a new OLS model only
to the features in Ân.

Second, the Lasso penalty complicates computation, as can be seen from the OLS setting where θ OLS
n

has a closed-form expression, but θ Lasso
n does not. Fast computation of the Lasso estimator is an active area

of research (Shi et al. 2010, Yang and Zou 2015), but, nonetheless, if we are working with a sufficiently
complex class of models, it may not be practical to solve the Lasso problem when n and p are large. In
such cases, it may be necessary to run Lasso on a small “subsample” bootstrapped from the large dataset
(Kleiner et al. 2014).

Finally, the Lasso concept inherently requires us to specify a model, such as linear regression in (8) or
a particular generalized linear model in (9). If the model is misspecified to begin with, it does not make
much sense to ask whether or not the “true” regression coefficients are zero; furthermore, in a practical
application, we may wish to defer the choice of model until after the irrelevant features have been removed.
If this is a concern, one may wish to consider an alternative to Lasso.

3.2 Model-Free Selection Via Sure Independence Screening

The concept of sure independence screening (SIS) was introduced by Fan and Lv (2008). To illustrate it,
let us return to the linear regression model of (5). Given two vectors x,y ∈Rn, define

Ĉ (x,y) =
1

n−1

n

∑
i=1

(
xi−

1
n

n

∑
i′=1

xi′

)(
yi−

1
n

n

∑
i′=1

yi′

)
(12)

and

ρ̂ (x,y) =
Ĉ (x,y)√

Ĉ (x,x)Ĉ (y,y)
. (13)
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Of course, these are just the usual estimators of covariance and correlation given n independent samples
from a bivariate distribution. Now, for j = 1, ..., p, denote by x·, j = (x1, j, ...,xn, j) to be the vector of observed
values for the jth feature only; similarly, let y = (y1, ...,yn) be the vector of observed responses. For some
fixed 0 < c≤ 1, the set

Ân (c) =
{

j ≤ p :
∣∣ρ̂ (x·, j,y)

∣∣≥ c
}

(14)

contains all the features selected by the SIS method. In words, we estimate the marginal correlation
between the jth feature and the response, and remove the feature from our model if this quantity is below
some pre-specified threshold c. Since correlation can be viewed as a weak measure of dependence, we
are screening out any feature if the response does not (marginally) depend on it sufficiently strongly. The
threshold c can be chosen in the same way as the regularization parameter λ in Lasso; unfortunately, no
variable selection method is entirely tuning-free.

Once (14) has been found, we are free to fit a model of our choice to the set Ân (c) of selected features.
This approach separates screening from estimation: strictly speaking, (14) does not require us to assume
an OLS regression model. The main theoretical guarantee (the so-called “sure screening property”) proved
in the SIS literature is of the form P

(
A ⊆ Ân

)
→ 1 for large n, meaning that SIS is allowed to select

false positives (report irrelevant features as being relevant). The idea is that the practitioner will first run
SIS to reduce the size of the data (since SIS is exceptionally easy to implement), and only then select a
model and possibly even conduct additional variable selection to remove the remaining false positives.

In reality, however, (14) is not quite model-free, since covariance and correlation are accurate measures
of dependence only when the relationship between x and y is linear. For that reason, (Fan and Lv 2008)
proves the sure screening property only under the assumption that the data are being generated by (5). If
we use a generalized linear model, as in (10), (12)-(13) may no longer accurately identify the relevant
features. In such a setting, Fan and Song (2010) proposes the following approach. For the jth feature, we
solve the marginal maximum likelihood problem

θ̃ j = argmax
θ j

n

∑
i=1

logL(yi;xi, j,θ j) ,

that is, we fit a GLM of our chosen class, but only to the jth feature, with no other features present. One
can then decide to select the feature or screen it out based on the magnitude

∣∣θ̃ j
∣∣ or perhaps the p-value

returned by the GLM for this coefficient.
With the selection criterion thus redefined, the sure screening property can again be proved. Variants

of the SIS concept, with different measures of marginal dependence customized to different model classes,
were then developed for hazard rate estimation (Zhao and Li 2012), nonparametric models (Fan et al.
2011) and many other settings. Of particular interest to our discussion is the paper by Li et al. (2012),
which combined the SIS concept with a very general measure of dependence called “distance covariance,”
developed by Székely et al. (2007) and Székely and Rizzo (2009). Let X and Y be scalar random variables
with respective characteristic functions φX (t) and φY (t), and let φX ,Y (s, t) be their joint characteristic
function. The distance covariance between X and Y is given by

∆(X ,Y ) =
(∫
|φX ,Y (s, t)−φX(s)φY (t)|2

(
π

2s2t2)−1
dsdt

) 1
2

, (15)

and, correspondingly, the distance correlation (DC) is defined as

δ (X ,Y ) =
∆(X ,Y )√

∆(X ,X)∆(Y,Y )
,

by analogy with Pearson correlation. It is shown that (15) equals zero if and only if X and Y are independent,
which is not true for the classical covariance.
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Suppose now that we have n independent samples (xi,yi) of data. Székely et al. (2007) proposed, and
proved the consistency of, the estimator

∆̂(x,y) =
(

Ŝ1 + Ŝ2−2Ŝ3

) 1
2
,

δ̂ (x,y) =
∆̂(x,y)√

∆̂(x,x) ∆̂(y,y)
,

where

Ŝ1 =
1
n2

n

∑
i=1

n

∑
j=1

∣∣xi− x j
∣∣ · ∣∣yi− y j

∣∣
Ŝ2 =

(
1
n2

n

∑
i=1

n

∑
j=1

∣∣xi− x j
∣∣) ·( 1

n2

n

∑
i=1

n

∑
j=1

∣∣yi− y j
∣∣)

Ŝ3 =
1
n3

n

∑
i=1

n

∑
j=1

n

∑
l=1
|xi− xl| ·

∣∣y j− yl
∣∣ .

Note that this estimator is purely data-driven and does not require any knowledge of the distribution of
(X ,Y ) other than very general assumptions on the existence of its moments.

The SIS method proposed by Li et al. (2012) simply returns the selection set

Ân (c) =
{

j ≤ p :
∣∣∣δ̂ (x·, j,y)

∣∣∣≥ c
}
,

and is shown to retain the sure screening property. This version of SIS is truly model-free, as DC does not
require any assumptions about the functional dependence of y on x.

This generality comes at a cost. The validity of SIS crucially depends on the degree to which the
relevance of the jth feature can be captured in its marginal dependence on the response. This may not be
the case; there may be complex interactions between features that make it possible to detect their relevance
only when they are all considered simultaneously. Lasso would be in a better position than SIS to detect
such forms of joint dependence, precisely because it includes all of the features in the penalized estimation
problem. On the other hand, because SIS focuses on marginal dependence, it often runs much faster than
Lasso in large applications: since the computational complexity of (9) is polynomial in both n and p, it
is much easier to solve p marginal likelihood problems (or compute p DC estimators) than to solve one
problem of size n× p. We may note, however, that the two approaches need not be in opposition to each
other, and one is always free to select a model and run Lasso after a preliminary screening step using SIS.

4 APPROXIMATE INFERENCE

Once more, let us consider the OLS regression model (5). It is well-known that (6) is solved by θ OLS
n =(

X>X
)−1 X>y, where X is the matrix whose ith row is the observation xi. The same computation can be

performed recursively. Let θn be the OLS estimator given the data (xi,yi)
n
i=1, and let Σn =

(
X>X

)−1. If a
new observation (xn+1,yn+1) becomes available, the recursive update

Σ
−1
n+1 = Σ

−1
n + xn+1x>n+1, (16)

θn+1 = θn−
(

x>n+1θn− yn+1

)
Σn+1xn+1 (17)

yields the correct OLS estimator for the data (xi,yi)
n+1
i=1 . Due to the Sherman-Morrison formula, Σn+1 can

be computed without explicit matrix inversion, and therefore (16)-(17) can be computed very quickly. One
can use an arbitrary θ0 and set Σ0 = κ · I for small κ > 0 while preserving statistical consistency.

10
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This is very useful in applications where statistical models are used for online decision-making. Our
discussion of A/B testing in Section 2.4 was motivated by e-commerce applications where businesses
or platforms seek to identify algorithms, price recommendations, and website designs. In many such
problems, decisions are made in an online manner: for example, when a new visitor searches for a product,
an algorithm has to calculate a pricing offer during the time that it takes to load the webpage. The ability
to efficiently update a statistical model with new information becomes very important in such a setting.

Unfortunately, outside of the OLS setting, there are many useful statistical models where no clean
recursive update such as (16)-(17) is available. One example is the logistic regression model, a special
case of (10) where Y ∈ {0,1} and

P(Y = 1 |x) = 1
1+ e−x>β

, (18)

where x and β are the usual vectors of covariates and regression coefficients, respectively. In personalized
pricing, this model is more relevant than OLS because the only response observed from the user is whether
or not the product is purchased for the price that was offered. Typically, one fits the model by calculating
the maximum likelihood estimator of β , for which there is no closed-form expression; one instead uses
numerical procedures such as Newton’s method. Finding a recursive update for the maximum likelihood
estimator seems hopeless.

Researchers have been working on this problem since at least Spiegelhalter and Lauritzen (1990). This
paper proposed the update

Σ
−1
n+1 = Σ

−1
n + vxn+1x>n+1, (19)

θn+1 = θn−
(

1

1+ e−x>n+1θn
− yn+1

)
Σn+1xn+1, (20)

with v > 0 being a fixed tunable parameter. Comparing (20) with (17), we can see that this approach
essentially treats logistic regression as if it were linear regression. Equation (20) is obtained by replacing

the residual term yn+1−x>n+1θn of the linear regression with the “residual” term yn+1−
(

1+ e−x>n+1θn

)−1

of the logistic regression. Very similar approaches were later proposed by Jaakkola and Jordan (2000) and
Qu et al. (2013); they mainly differ in the calculations used for the parameter v, which stands in for the
variance of the residuals in linear regression (there being no such quantity in logistic regression).

It may seem surprising that (19)-(20) would ever work, since it appears to impose linear structure on
a problem that is inherently very nonlinear, but all of the above-cited papers reported promising practical
performance for this technique. More recently, Chen and Ryzhov (2020) showed that θn→ β under this
method of updating θn. The deeper reason for why this approach works ties into the theory of stochastic
approximation, which is well-known to the simulation community.

Classical stochastic approximation or SA (Pasupathy and Kim 2011) is an iterative procedure for
finding roots β of the system ∇θ F (θ) = 0 by recursively computing θn+1 = θn +αn∇θ F (θn), where αn
is a deterministic stepsize. Bottou (1998) applied SA to online maximum likelihood estimation, where the
goal is to solve maxθ ∑

n
i=1 logL(yi;xi,θ) for increasingly large n. One simply computes

θn+1 = θn +αn∇θ L(yn+1;xn+1,θn) , (21)

using the gradient of the marginal likelihood of the most recent observation. As it turns out, the update in
(20) can be viewed as a version of (21) for a transformed version of θn+1. Specifically, we first assume that
limn→∞

1
n ∑

n
i=1 xix>i = A, where A is a positive definite matrix (this is a well-known sufficient condition

for the consistency of the ordinary least squares estimator). One can then interpret (20) as a version of
(21) applied to the iterate 1

v A−
1
2 θn, rather than to θn directly. Consistency is achieved for any value of the

tunable parameter v, although of course practical performance will be sensitive to this value.
This methodology can be very useful when dealing with complicated likelihood functions arising from,

e.g., censored data. Suppose that we are trying to estimate a scalar quantity µ; suppose, furthermore, that

11
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there is a sequence of i.i.d. observations Yn ∼N
(
µ,σ2

)
, but we only see censored binary signals of the

form Bn = 1{Yn≥bn} with some sequence {bn} of thresholds. For example, consider a medical application
where bn represents the dose of an experimental drug prescribed to a human patient, with Yn being that
individual patient’s maximum tolerance for the drug, and Bn indicating the presence or absence of side
effects. In such a setting, (21) has the simple form

θn+1 = θn−αn

(
Bn+1

1
σ

φ (qn+1)

Φ(qn+1)
− (1−Bn+1)

1
σ

φ (qn+1)

Φ(qn+1)

)
,

with qn+1 =
bn+1−θn

σ
and φ , Φ being the standard normal pdf and cdf.

This method also admits another interpretation using Bayesian statistics. In Bayesian models, the
unknown model parameters, such as β in logistic regression, are viewed as random variables whose
distribution reflects the beliefs of the decision-maker and evolves over time as new information is acquired.
By constructing a probabilistic model of, e.g., β in (18), we are able to assess the likelihood of P(Y = 1 |x)
taking on different values under the same x. Such probabilistic forecasts can be integrated with optimization
methods such as Thompson sampling (Russo and Van Roy 2014) or expected improvement (Chen and
Ryzhov 2019) to make decisions that account for the uncertainty in our estimate of β .

In OLS regression, Bayesian assumptions lead to virtually no change in the update (16)-(17), but there
is no convenient Bayesian update for the other examples in this section. The methods described above can
be interpreted using the framework of approximate Bayesian inference, where the posterior distribution of
belief, given a set of observations, is projected onto a desired distributional family (often normal) in order
to easily interface with the aforementioned optimization procedures. In fact, such approximations, often
called “variational Bayesian,” have been used for many years in practical applications, the most noteworthy
example being Dangauthier et al. (2007), which applied them to estimate skill levels of users in competitive
online gaming. Other work along these lines includes Das and Magdon-Ismail (2009), Qu et al. (2015),
and Zhang and Song (2017). The work by Chen and Ryzhov (2020) was the first to prove the statistical
consistency of these various methods by interpreting them under a unified SA framework.

5 CONCLUSION

We have barely scratched the surface with regard to the opportunities for bringing ideas from statistics
into simulation research. Another very promising area, which we have not been able to discuss in detail
here, is the development of hypothesis tests for complex uncertain objects. For example, the recent work
on robust uncertainty quantification (Lam 2016) draws on ideas from distributionally robust optimization,
where confidence sets are constructed around probability distributions. Another example is the work by
Plumlee and Nelson (2018), which seeks to build confidence sets for the optimal solution of a global
optimization problem. We believe that there is much value in bringing a statistical perspective to these and
other problems in simulation, and hope that the present tutorial will help to build interest in these topics.
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