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ABSTRACT 

Mathematical modeling provides a powerful analytic framework to investigate the transmission and control 
of infectious diseases. However, the reliability of the results stemming from modeling studies heavily 
depend on the validity of assumptions underlying the models as well as the quality of data that is employed 
to calibrate them. When substantial uncertainty about the epidemiology of newly emerging diseases (e.g. 
the generation interval, asymptomatic transmission) hampers the application of mechanistic models that 
incorporate modes of transmission and parameters characterizing the natural history of the disease, 
phenomenological growth models provide a starting point to make inferences about key transmission 
parameters, such as the reproduction number, and forecast the trajectory of the epidemic in order to inform 
public health policies. We describe in detail the methodology and application of three phenomenological 
growth models, the generalized-growth model, generalized logistic growth model and the Richards model 
in context of the COVID-19 epidemic in Pakistan. 

1 INTRODUCTION 

Emerging novel pathogens with life threatening transmission potential in humans have motivated the 
development and implementation of sophisticated computational approaches and mathematical models to 
estimate the transmission parameters, assess the impact of interventions, and generate forecasts (Colizza et 
al. 2006; Balcan et al. 2009; Merler et al. 2015; Chinazzi et al. 2020). The output from these models can be 
useful to design intervention strategies according to a local context, allocate resources and inform public 
health policies (Chretien et al. 2015). With the current outbreak of the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2 virus), the causative agent of coronavirus disease 2019 (COVID-19), having 
reached pandemic proportions, the investigation of the global situation may provide the key to 
understanding the transmissibility potential of the disease in different regions across the globe (Balcan et 
al. 2009). Multiple epidemic models, ranging from classical compartmental models based on differential 
equations to agent-based computational models, have been used to simulate, calibrate and generate 
epidemic forecasts of SARS-CoV-2 in order to understand its transmission dynamics (Pell et al. 2018). 
These models provide a framework to understand the underlying disease transmission mechanisms at 
different spatial and temporal scales and vary in complexity based on the number of parameters and 
equations characterizing the dynamic states of the systems (Chowell 2017). While highly detailed 
computational models have become increasingly popular to model detailed disease processes, simple 
dynamic models that capture a variety of empirical growth trajectories with only a few parameters (e.g., 
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growth rate, scaling of growth, total outbreak size) provide a powerful approach to characterize 
transmission dynamics and generate short-term forecasts (Chowell et al. 2016). 

Incomplete and inaccurate information during the early transmission stages of an infectious disease 
pathogen hinders the availability of detailed and reliable epidemiological data and disease-specific 
epidemiological parameters, and in turn, the application of mechanistic models of disease transmission and 
control. Moreover, reporting of infections is often influenced by the contribution of asymptomatic 
infections, local testing capacity, reporting delays, efficiency of surveillance systems, and the level of 
burden on health care facilities (Balcan et al. 2009). Therefore, phenomenological growth models can serve 
as a starting point to capture the empirical patterns of epidemics and provide estimates of early transmission 
potential to gain an understanding of the evolution of the outbreak and generate short-term forecasts of the 
epidemic trajectory (Chowell et al. 2016). It is worth noting that outbreaks of rapid dissemination often 
only spread during a few generations of disease transmission, so epidemic assessment using 
phenomenological forecasting models is crucial during the early phase of the outbreak to estimate the 
potential disease burden and approximate the scale of interventions required to contain the epidemic (Pell 
et al. 2018). 

In this paper, we employ the established dynamic phenomenological growth models which have 
provided a good description of multiple outbreak trajectories for a number of infectious diseases including 
SARS, pandemic influenza, Ebola and the current COVID-19 pandemic (Wang et al. 2012; Chowell et al. 
2019; Yan and Chowell 2019; Roosa et al. 2020a). Here we apply these models in near real time to the 
ongoing COVID-19 epidemic in Pakistan, a country located in South Asia neighboring China, the epicenter 
of the COVID-19 pandemic. The first cases of COVID-19 in Pakistan were reported in late February 2020, 
followed by a sudden upsurge in case counts in mid-March that led to a countrywide lockdown along with 
multiple other restrictions including a ban on group gatherings and meetings. These social distancing 
measures proved successful at containing the rapid rise in case incidence, and by May 22, 2020, 
countrywide lockdowns had to be lifted (Ali et al. 2020) to provide some oxygen to a suffocating economy. 
Since then, the country has re-imposed strategic lockdowns in regions reporting the highest number of cases 
(India 2020). We apply the generalized growth model (GGM), generalized logistic growth model (GLM) 
and the Richards growth model to illustrate the methodology and generate short term forecasts in near real 
time to understand the epidemic trend of the ongoing COVID-19 outbreak in Pakistan. We also assess the 
early transmission potential of SARS-CoV-2 based on the early epidemic trajectory, which can guide the 
intensity of interventions and inform public health policies.  

2 METHODS 

2.1 COVID-19 Incidence Data 

We use daily time series of polymerase chain reaction (PCR) confirmed COVID-19 case data as of July 22, 
2020 from the publicly available COVID-19 dashboard, set up by the National Institute of Health, Pakistan 
(Pakistan 2020). We retrieved the daily number of COVID-19 countrywide cases reported on the dashboard 
from the published epidemic curve. We also estimate the daily COVID-19 positivity rate i.e. the total 
number of positive test results from the total number of tests conducted.  

2.2 Models 

We use three phenomenological growth models including a two parameter GGM, a three parameter GLM, 
and Richards growth model to forecast the epidemic trajectory of COVID-19 in Pakistan. The general form 
of a phenomenological growth model is given by: 

 
𝑑𝑥!
𝑑𝑡

= 𝑓!(𝑥", …… . , 𝑥#; Θ), 𝑖 = 1,… . . , 𝑛, 
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where $%!
$&
	denotes the rate of change of the system state 𝑥!, and Θ=(𝜃", … . . , 𝜃') is the set of model 

parameters that characterizes the state of systems in the model (Lara-Díaz et al. 2019). 

2.3 Generalized Growth Model  

The generalized growth model (GGM) is a simple model that characterizes the early ascending phase of the 
epidemic. Previous studies have highlighted the occurrence of early sub-exponential growth patterns in 
various infectious disease outbreaks. This model allows for the relaxation of exponential growth by 
modulating a “scaling of growth parameter”, 𝑝, which allows the model to capture a range of epidemic 
growth profiles (Viboud et al. 2016). The GGM is given by the following differential equation:  

 
$((&)
$&

= 𝐶+(𝑡) = 𝑟𝐶(𝑡),. 
 
In this equation 𝐶+(𝑡) describes the incidence curve over time 𝑡, 𝐶(𝑡) describes the cumulative number 

of cases at time 𝑡, 𝑝∈[0,1] is a “deceleration or scaling of growth” parameter and 𝑟 is the growth rate. This 
model represents constant incidence over time if 𝑝=0 and exponential growth for cumulative cases if 𝑝 =1. 
If 𝑝 is in the range 0< 𝑝 <1, then the model indicates sub-exponential or polynomial growth dynamics 
(Chowell et al. 2016; Viboud et al. 2016; Chowell 2017).  

2.4 Generalized Logistic Growth Model 

The generalized logistic growth model (GLM) is an extension of the simple logistic growth model that 
allows for capturing a range of epidemic growth profiles, including sub-exponential and exponential growth 
dynamics. The GLM characterizes epidemic growth through the intrinsic growth rate 𝑟, a dimensionless 
“deceleration of growth” parameter 𝑝, and the final epidemic size, 𝑘- . The deceleration parameter 
modulates the epidemic growth patterns including sub-exponential growth (0< 𝑝 <1), constant incidence (𝑝 
=0) and exponential growth dynamics (𝑝 =1). The GLM is given by the following differential equation:  

 
$((&)
$&

= 𝑟𝐶,(𝑡)(1 − ((&)
."
), 

 
where $((&)

$&
 describes the incidence over time 𝑡, and the cumulative number of cases at time 𝑡 is given by 

𝐶(𝑡) (Chowell et al. 2016; Pell et al. 2018; Shanafelt et al. 2018). 

2.5 Richards Growth Model 

The Richards growth model is also an extension of the simple logistic growth model and relies on 3 
parameters. It extends the simple logistic growth model by incorporating a scaling parameter, 𝑎 , that 
measures the deviation from the symmetric simple logistic growth curve (Richards 1959; Wang et al. 2012; 
Chowell 2017). The Richards model is given by the differential equation: 
 

$((&)
$&

= 𝑟𝐶(𝑡) 91 − :((&)
."
;
/
<, 

 
where 𝐶(𝑡) represents the cumulative case count at time 𝑡 , 𝑟 is the growth rate, a is a scaling parameter 
and 𝑘- is the final epidemic size. 

2.6 Parameter Estimation 

To illustrate the fitting and 20-day ahead forecasts using the models described above, we calibrate the GGM 
to the daily incidence curve by dates of reporting in Pakistan using time series data that is available from 
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March 10–May 11, 2020. We calibrate the GLM and Richards growth model to the daily incidence curve 
by dates of reporting in Pakistan using time series data that is available from March 10–June 3, 2020.  

The uncertainty in the parameter estimates for dynamical systems can arise as a result of noise in the 
data or the underlying assumptions for the model employed to infer the parameter estimates. We will now 
focus on how to account for the uncertainty in the parameter estimates arising due to the noise in the data 
by assuming a particular error structure i.e. the negative binomial distribution. 

Model parameters are estimated by a non-linear least square fitting of the model solution to the 
incidence data by the date of reporting. This is achieved by searching for the set of model parameters Θ= =
(Θ=", Θ=0,….	Θ=')  that minimizes the sum of squared differences between the observed data 𝑦&! =
𝑦&", 𝑦&0, … . 𝑦&#  and the corresponding mean incidence curve given by 𝑓?𝑡! , Θ=@, where Θ= = (𝑟, 𝑝) 
corresponds to the set of parameters of the GGM, Θ= = (𝑟, 𝑝, 𝑘-) corresponds to the set of model parameters 
of the GLM, and Θ= = (𝑟, 𝑎, 𝑘-) corresponds to the set of model parameters for the Richards growth model. 
The objective function for the best fit solution of the model, 𝑓(𝑡! , Θ=) is given by: 

 
	Θ==arg min∑ (𝑓(𝑡! ,#

!4" Θ) − 𝑦&!)
0, 

 
where 𝑡! is the time stamp at which the time series data are observed and n is the total number of data points 
available for inference. This way, 𝑓?𝑡! , Θ=@ gives the best fit to the time series data 𝑦&! .	We estimate the best 
fit solution for the GLM and Richards growth model by initializing the parameter estimates for the nonlinear 
least squares method over a range of feasible parameters derived from a uniform distribution using Latin 
hypercube sampling. Whereas for the GGM we provide a reasonable guess of the initial parameter estimates 
for the nonlinear least squares method. We fix the initial condition according to the first data point. We also 
observe the temporal variation of the residuals (i.e. the difference between the best fit model solution and 
the time series data) to assess the quality of model fit (Chowell 2017). 

Next, we utilize a parametric bootstrapping approach, assuming a negative binomial error structure in 
the data, to derive uncertainty of the parameter estimates as previously described (Efron and Tibshirani 
1993; Chowell et al. 2006; Chowell 2017). We assume the variance to be ~24.8 times the mean for GGM 
and ~44.5 times the mean for GLM and Richards model based on our examination of the variability in the 
data. Our calibration results represent M = 200 resampled data sets, which we refit each model to in order 
to obtain M new parameter estimates. Model fits are used to obtain 95% confidence intervals for each 
parameter. 

Each of the M model fits is extended through a 20 day forecasting period and then used to generate 
m=30 data curves with negative binomial error structure; thus, these 6000 (M×m) curves are used to 
generate 95% prediction intervals for the 20-day ahead forecasts (Chowell 2017). 

The MATLAB code required to fit and forecast the epidemic trajectories using the GGM, GLM and 
Richards growth model is available upon request from the authors.  

2.7 Performance Metrics 

In order to demonstrate the performance metrics, we evaluate the performance of our two models, Richards 
growth model and the GLM by calibrating both models from March 10–June 3, 2020 and forecasting 20-
day ahead to assess their capability to describe short term incidence patterns. For the calibration 
performance, we compare the model fit to the reported case data through the calibration period, and for 
forecasting performance, we compare forecasts with the incidence data reported 20 days ahead of the last 
date of the calibration period.  

In order to compare the quality of the fits using different models as well as the performance of short 
term forecasts, we analyze four performance metrics namely the mean absolute error (MAE), the mean 
squared error (MSE), the coverage of the 95% prediction intervals, and the mean interval score (MIS) 
(Gneiting and Raftery 2007). 
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The mean absolute error and mean squared error quantify the mean deviations of the model to the 
observed data and are given by the following equations: 

 

𝑀𝐴𝐸 =
1
𝑛
E|𝑓?𝑡! , Θ=@ − 𝑦&!|
#

!4"

, 

 
𝑀𝑆𝐸 = "

#
∑ (𝑓?𝑡! , Θ=@ − 𝑦&!)

0#
!4" . 

 
In these equations 𝑦&! is the time series of the incidence curve describing the epidemic wave, 𝑡! is the 

time stamp, Θ=  is the set of best-fit model parameters, and 𝑛  equals the number of data points in the 
calibration period. For the forecasting period, 𝑛 = 20 for 20 days ahead forecast. 

To assess the model uncertainty and performance of prediction intervals, we assess the prediction 
interval coverage and the mean interval score. Prediction interval (PI) coverage is defined as the fraction of 
reported data points that fall within 95% prediction interval calculated as: 

 
𝑃𝐼	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = "

#
∑ 𝟏{𝑌& > 𝐿& 	∩ 	𝑌& < 𝑈&}#
&4" . 

 
In this equation, 𝐿& and 𝑈& are the lower and upper bounds of the 95% prediction intervals respectively, 

𝑛 is the length of the time period, 𝑌& are the data, and 1 is an indicator variable that equals 1 if 𝑌& is within 
the specified interval and 0 otherwise. 

 We also assess the mean interval score (MIS), which considers the coverage and width of 95% 
prediction interval, given by the following equation: 
 

𝑀𝐼𝑆 = 	 "
5
∑ ?𝑈&! − 𝐿&!@ +

0
-.-6

(𝐿&! −
#
!4" 𝑦&!)𝐼Y𝑦&! <𝐿&!Z +

0
-.-6

	?𝑈&! − 𝑦&!@𝐼Y𝑦&! > 𝑈&!Z. 
 

In this equation 𝐿&! 	and 𝑈&! are the lower and upper bounds of the 95% prediction interval, 𝑦&!are the 
data and I is an indicator function that equals 1 if 𝑦&! is in the specified interval and 0 otherwise (Gneiting 
and Raftery 2007). Therefore, if the PI coverage is 1, the MIS is the average width of the interval across 
each time point. For two models with an equivalent PI coverage, a lower MIS indicates narrower intervals. 

2.8 Reproduction Number, Rt, from Case Incidence using GGM 

The effective reproduction number, Rt, is defined as the average number of secondary cases generated by a 
primary case at time 𝑡 during the outbreak. This is an important measure that can influence the intensity of 
interventions required to contain an epidemic (Anderson and May 1991; Nishiura et al. 2010; Chowell et 
al. 2015). Estimates of effective Rt indicate if the disease transmission continues (Rt>1) or if the active 
disease transmission declines (Rt<1). Therefore, in order to contain an outbreak, we need to maintain Rt<1. 
We estimate the reproduction number by calibrating the GGM to the early growth phase of the epidemic 
(63 days) (Viboud et al. 2016). We model the generation interval of SARS-CoV-2 assuming a gamma 
distribution with (i) a mean of 5.2 days and a standard deviation of 1.72 days based on refs (Ganyani et al. 
2020) and (ii) a mean of 4.41 days and a standard deviation of 3.17 days based on refs. (Nishiura et al. 
2020; You et al. 2020). We estimate the growth rate parameter, r, and the deceleration of growth parameter, 
p, as described above. In order to estimate the reproduction number, we simulate the progression of 
incidence cases 𝐼!  at calendar time 𝑡!  from the calibrated GGM and apply the discretized probability 
distribution of the generation interval denoted by 𝜌! to the renewal equation (Nishiura and Chowell 2009; 
Paine et al. 2010; Nishiura and Chowell 2014). 
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𝑅7! =
𝐼!

∑ (𝐼!89𝜌9)!
94-

 

 
The numerator represents the total new cases 𝐼!, and the denominator represents the total number of 

cases that contribute to generating the new cases 𝐼! 	at time 𝑡 = i. This way, 𝑅& , represents the average 
number of secondary cases generated by a single case at time 𝑡. Next, we derive the uncertainty bounds 
around the curve of 𝑅&  directly from the uncertainty associated with the parameter estimates (r, p) as 
described above. We estimate 𝑅&	for 200 simulated curves assuming a negative binomial error structure 
where variance is assumed to be ~24.8 times the mean (Chowell 2017). The MATLAB code required to 
estimate the reproduction number using GGM is available upon request from the authors. 

3 RESULTS 

The COVID-19 epidemic trajectory displays broadly an unimodal pattern with a majority of the cases 
concentrated between May 29-June 30, 2020. A total of 269,173 cases have been reported as of July 22, 
2020 (Figure 1). The average number of new cases reported in Pakistan was estimated at ~92 cases per day 
in March 2020, followed by an increase to an average of ~4700 cases per day in June 2020, and then a 
decline to an average of ~2532 cases per day in July 2020. Subsequently, the COVID-19 positivity rate in 
Pakistan has fluctuated between ~0.4-25.8% over the course of five months (March-July, 2020). The 
monthly average COVID-19 positivity rate was ~8.2% in March 2020, ~10.5% in April 2020, ~14.9% in 
May 2020, ~18.9% in June 2020 and ~11.2% in July 2020 (Figure 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: The daily curve of new COVID-19 cases reported in Pakistan as of July 22, 2020. 
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Figure 2: Testing and positivity rates of COVID-19 epidemic in Pakistan as of July 22, 2020. The blue bars 
indicate the negative test results, the yellow bars indicate the positive test results and the orange solid line 
indicates the COVID-19 positivity rate. 

3.1 GGM Model Fit and 20-day ahead Forecast 

The GGM fits well to the early growth phase of the epidemic, and the residuals display a random scatter, 
indicating there is not a systematic deviation of the model from the data, which could suggest the model is 
not appropriate for the data. The best model fit yielded the growth rate, r, estimate at 1.0 (95% CI: 0.81, 
1.2) and the scaling of growth parameter estimate, p, at 0.72 (95% CI: 0.69, 0.75), indicating early 
polynomial growth dynamics of COVID-19. The scaling of growth parameter, p, is also well-identified 
with a narrow CI (Table 1). The 20-day ahead average forecast generated from the GGM calibrated from 
March 10-May 11, 2020 projects a reasonable ascending trajectory of the epidemic and shows that Pakistan 
could accumulate ~48486 (95% PI: 38019, 61373) additional cases in the next 20 days (between May 12-
May 31, 2020) (Figure 3). 
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Figure 3: 20-days ahead forecast of the COVID-19 epidemic in Pakistan by calibrating the GGM model 
from March 10-May 11, 2020. Blue circles correspond to the data points, the red solid line indicates the 
best model fit and the red dashed lines represent the 95% prediction interval. The vertical black dashed line 
represents the time of the start of the forecast period. 

3.2 GLM Model Fit and 20-day ahead Forecast 

The GLM calibrated from March 10–June 3, 2020 provides a reasonably good fit to the data. The best 
model fit yielded a growth rate, r, estimate at 0.92 (95% CI: 0.7, 1.1), the scaling of growth parameter 
estimate, p , at 0.73 (95% CI: 0.70, 0.77) and the final epidemic size, 𝑘-, estimate at 6.1 e+07 (95% CI: 3.4 
e+05, 1 e+08). The parameters p and r are well-identified with a much wider CI for the final epidemic size 
(Table 1). The 20-day ahead average forecast generated from the GLM model calibrated from March 10-
June 3, 2020 predicts that Pakistan could accumulate a total of ~82910 (95% PI: 58997, 105299) additional 
cases in the next 20 days (between June 4- June 23, 2020) (Figure 4), with the actual reported case count 
lying between the 95% PI observing in retrospect. While the model predicts continued epidemic growth, 
the lower bound of the 95% PI also includes a downturn or slowing down of the growth.  
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Figure 4: 20-days ahead forecast of the COVID-19 epidemic in Pakistan by calibrating the GLM model 
from March 10-June 3, 2020. Blue circles correspond to the data points, the red solid line indicates the best 
model fit and the red dashed lines represent the 95% prediction interval. The vertical black dashed line 
represents the time of the start of the forecast period. 

3.3 Richards Model Fit and 20-day ahead Forecast 

The Richards model fit to the data calibrated from March 10–June 3, 2020 indicates that Richards model is 
unable to explain the early dynamics of the COVID-19 epidemic, as it systematically under-predicts the 
first half of the epidemic curve. The best model fit yielded a growth rate, r, estimate at 0.56 (95% CI: 0.47, 
0.64), the final epidemic size, 𝑘- , estimate at 2.7 e+05 (95% CI: 2.3 e+05, 3.1 e+05) and the scaling 
parameter, a, estimate at 0.055 (95% CI: 0.048, 0.068). All the parameters are well identified with narrow 
CI’s (Table 1). Richards model calibrated from March 10-June 3, 2020 provides an under-predicted 20-day 
ahead average forecast, as the model predicted a downturn in incidence cases while daily cases were still 
increasing. The model predicted that Pakistan could accumulate a total of ~58452 (95% PI: 44400, 77222) 
additional cases in the next 20 days (between June 4-June 23, 2020) (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 

38



Tariq, Roosa, and Chowell 
 

 

 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

Figure 5: 20-days ahead forecast of the COVID-19 epidemic in Pakistan by calibrating the Richards model 
from March 10-June 3, 2020. Blue circles correspond to the data points, the red solid line indicates the best 
model fit and the red dashed lines represent the 95% prediction interval. The vertical black dashed line 
represents the time of the start of the forecast period. 

Table 1: GGM, GLM and Richards model parameter estimates. Mean parameter estimates are presented 
with the 95% confidence intervals obtained from the 200 bootstrap realizations.  

 
Model r (95% CI) p (95% CI) 𝒌𝟎 (95% CI) a (95% CI) 

GGM 1.0 (95% CI: 
0.81, 1.2) 

0.72 (95% CI: 
0.69, 0.75) 

- - 

GLM 0.92 (95% CI: 
0.7, 1.1) 

0.73 (95% CI: 
0.70, 0.77) 

6.1 e+07 (95% 
CI: 3.4 e+05, 1 

e+08) 

- 

Richards 0.56 (95% CI: 
0.47, 0.64) 

- 2.7 e+05 (95% 
CI: 2.3 e+05, 

3.1 e+05) 

0.055 (95% 
CI: 0.048, 

0.068) 

3.4 Performance Metrics 

We compare the calibration (March 10-June 3, 2020) and 20-day ahead short term forecasting performance 
of the two models, GLM (Figure 4) and the Richards model (Figure 5) in Table 2. The GLM yielded the 
best fit to the daily incidence curve of COVID-19 in Pakistan based on each of the four performance metrics. 
The RMSE was estimated to be 4.3 times smaller, MAE was estimated to be 1.4 times smaller and the MIS 
was estimated to be 1.7 times smaller for the GLM compared to the Richards growth model. The 95% PI 
coverage for the GLM model was 1.6 times the Richards model.  

For the short-term forecasting, again the GLM provided better overall performance compared to the 
Richards model. The RMSE was estimated to be 1.5 times smaller, the MAE was estimated to be 1.6 times 
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smaller and the MIS was estimated to be 2.5 times smaller for the GLM compared to the Richards model. 
The 95% PI coverage for the GLM was 40 percent better than the Richards model (Table 2). 

Table 2: Calibration and forecasting performance of the GLM and Richards growth model, calibrating data 
from March 10- June 3, 2020 and forecasting 20 days ahead. 

Model RMSE       MAE PI coverage MIS 

 Calibration period 

GLM 22.0 183.1 87.2%  1618.0 

Richards 94.9 253.8 53.5%  2790.8 

 Forecasting period 

GLM 1432.6 1241.3 40% 27760 

Richards 2186.2 2016.5 0% 70262  

3.5 Reproduction Number 

We estimate the reproduction number of COVID-19 for the first 63 epidemic days in Pakistan obtained 
using the two estimates of generation interval as described in the methods. There were minor differences in 
results using the two estimates of generation interval (as mentioned in the methods), indicating that 
estimation results are not sensitive to small differences in this parameter (Table 3). The incidence curve 
displays sub-exponential growth dynamics with a scaling of growth parameter, p, estimated at ~0.72 (95% 
CI: 0.69, 0.75) and the growth rate, r, estimated at ~1.0 (95% CI: 0.82, 1.2). The reproduction number for 
the early transmission phase was estimated to be R~1.2 (95% CI: 1.2, 1.3) (Table 3) indicating sustained 
SARS-CoV-2 transmission in the region. 
 
Table 3: Mean estimates and the corresponding 95% confidence intervals for the basic reproduction 
number, growth rate and the scaling of growth parameter during the early growth phase as of May 11, 2020. 

Parameters Generation interval: mean 
of 5.2 days and a standard 
deviation of 1.72 days based 
on refs (Ganyani et al. 2020) 
 

Generation interval: mean 
of 4.41 days and a 
standard deviation of 3.17 
days based on refs. 
(Nishiura et al. 2020; You 
et al. 2020) 

Reproduction number, R 1.2 (95% CI: 1.2, 1.3) 1.2 (95% CI: 1.2 , 1.2) 

Growth rate, r 1.0 (95% CI: 0.82, 1.2) 1.0 (95% CI: 0.82, 1.2) 

Scaling of growth 
parameter, p 

0.72 (95% CI: 0.69,0.75) 0.72 (95% CI: 0.69, 0.74) 

4 DISCUSSION 

In this manuscript we have described and illustrated the application of three relatively simple dynamical 
growth models to the COVD-19 epidemic trajectory in Pakistan. Estimates of the reproduction number for 
the early ascending phase of the epidemic with an R estimated at ~1.2 implies sustained COVID-19 
transmission in the region. This estimate is slightly lower compared to other reproduction numbers 
estimated in different geographic areas including Brazil, Peru, China, Korea, South Africa and Iran that lie 
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in the range of 1.5-7.1 (Felix and Fontenele 2020; Hwang et al. 2020; Masjedi et al. 2020; Mbuvha and 
Marwala 2020; Mizumoto et al. 2020; Munayco et al. 2020; Muniz-Rodriguez et al. 2020; Read et al. 2020; 
Shim et al. 2020; Wu et al. 2020). The initial scaling of growth parameter in Pakistan indicates a sub-
exponential growth trend (𝑝~0.7), and the poor fit of the Richards model to the early growth phase confirms 
the need for sub-exponential growth, as the assumption of exponential growth resulted in over-estimation 
for the first half of the epidemic curve (Figure 5). In the context of a highly susceptible population, it is 
likely that the spatial heterogeneity in the risk of viral infection could have contributed to the polynomial 
growth pattern. This estimate of the scaling of growth parameter is consistent with sub-exponential growth 
dynamics of COVID-19 that have been observed in Singapore (𝑝~0.7), Korea (𝑝~0.76) and other Chinese 
provinces excluding Hubei (𝑝~0.67)	(Roosa et al. 2020b; Shim et al. 2020; Tariq et al. 2020).  

The GGM and the GLM provide a good fit to the reported time series data, whereas, the Richards model 
fails to capture the early dynamics of the epidemic. However, the Richards model is able to capture the later 
part of the epidemic (May 5-June 3, 2020), though the short term forecast underestimates the observed 
incidence curve. A retrospective examination of the 20-day ahead forecasts generated from the GGM and 
GLM showed reasonable estimations of case incidence, with the actual reported case incidence covered by 
the 95% prediction interval. The actual case count between May 12-May 31, 2020 was reported at ~40379. 
This lied within the 95% PI of the 20-day ahead GGM forecast (95% PI: 38019, 61373) . Similarly the 
GLM forecasted an average of ~82910 (95% PI: 58997, 105299) cases, whereas the actual case count was 
reported ~104573 between June 4- June 23, 2020, lying within the 95% PI. However, the Richards model 
seems to under predict the number of COVID-19 cases. Richards model forecasted an average of only 
~58452 (95% PI: 44400, 77222) cases from June 4-June 23, 2020. Therefore, it is reasonable to assume 
that the suitable dynamic phenomenological growth models provide reasonable estimations of short term 
forecasts in near real time. 

We have used daily series of reported COVID-19 case incidence data from Pakistan captured by the 
NIH surveillance system to calibrate the models and forecast the epidemic trajectory. As expected, the 
surveillance system only captures a fraction of the total number of SARS-CoV-2 infections as a substantial 
number of infections remain asymptomatic and can only be detected via broad testing and tracing strategies 
(Mizumoto et al. 2020; Nishiura et al. 2020). Our study implies that, in the absence of reliable information 
about the transmission mechanisms of an emerging infection and the effects of control intervention, simple 
phenomenological models can provide an early assessment of the potential scope of outbreaks in near real-
time and serve as useful tools to generate short term forecasts of epidemic growth in real time (Chowell et 
al. 2016; Shanafelt et al. 2018). However, availability of timely case reporting is required so that projecting 
the epidemic in the future becomes worthwhile. Our study also shows promising results for forecasting the 
temporal evolution of COVID-19 epidemic in Pakistan using all the three models. We can further extend 
this work to a provincial level analysis expanding the forecasts to multiple geographic areas. Although, 
phenomenological models cannot replace mechanistic models that are amenable to incorporate different 
routes of disease transmission and realistic distributions for epidemiological parameters when the 
appropriate epidemiological data is available. These mechanistic models could be useful for long and short 
term forecasts as well as assess the impact of intervention strategies against COVID-19. However, our 
simple approach grounded on an empirical analytic framework that only requires estimating a few 
parameters has performed well in other settings to study the transmission dynamics of Ebola, Zika, and foot 
and mouth disease (Chowell et al. 2016; Shanafelt et al. 2018). These models have proved useful as the first 
response mathematical modeling toolkit to address the transmission dynamics of outbreaks (Pell et al. 
2018). 

Our study is not exempt from limitations. We use data by the date of reporting for fitting the models to 
the data, however, it is more accurate to use the data by the dates of symptom onset or after adjusting for 
reporting delays. Moreover, cases were not stratified as imported and local cases, therefore, we estimate 
reproduction number assuming all infections contribute in the same way to the transmission dynamics. 
Another limitation is the variable testing rates and testing strategies of COVID-19 that can add uncertainty 
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to the results. Some countries like Korea have tested extensively for coronavirus whereas other countries 
including Italy, Spain and Pakistan prioritized testing to severe cases or limited populations. 

In summary the mathematical and statistical methodology presented in this tutorial provides flexible 
and powerful tools to characterize and predict the trajectory of epidemics with quantified uncertainty. 
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