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ABSTRACT

A key challenge in the implementation of novel public transport systems is to maintain usability over a
broad spectrum of potential users. Transport systems that increasingly emphasise dynamic adjustment to
changing passenger numbers and destinations over time cannot rely on static schedules and routes like
traditional systems do. In this work we are investigating the use of agent-based crowd simulation to evaluate
how different passenger guidance systems affect agent navigation in a public transport hub. We study the
effects of different digital signage placement strategies in terms of crowding and walking times and also
analyse how the introduction of mobile phone guidance systems affects these metrics. Our results show that
crowd simulation is a cost and time-efficient tool for the evaluation of guidance systems in public transport
spaces that can also support the design of bus schedules and bay assignments.

1 INTRODUCTION

Research of public transport systems based on autonomous mobility is increasingly important to city planners
and decision makers in densely populated urban areas. A prevailing vision is to replace conventional
buses and trains with driver-less autonomous vehicles (AV). Such vehicles would employ various strategies,
ranging from centralised control to swarm-intelligence and platooning, to dynamically adapt to quantitative
and spatial travel demand. However, creating a dynamic transport network implies that reliance on static
routes and schedules may no longer be possible. As a result, passengers of autonomous public transport
would rely entirely on guidance systems in order to find the the correct time and place to catch a vehicle to
their desired destination and not on previous habits or knowledge. When adapting novel dynamic transport
technologies, planners are therefore faced with the challenge of designing guidance systems that provide
passengers with the necessary information to pick the correct time and place for catching their ride.

Two main types of guidance systems are currently used at bus interchanges by passengers: i) signage,
e.g., placed on the ceiling or in form of information boards, and ii) applications on personal mobile devices.
Following basic ergonomic principles, these types rank differently in terms of comprehension because
of their visual features (e.g., shape and size) and cognitive features (e.g., familiarity, complexity). These
features influence the time spent by a passenger on deliberation and the delay of putting a plan into action,
which consequently impacts the passengers’ flow within the public transport hub.

In order to understand the mechanisms of passenger flow in a public transport hub, we present a
simulation-based technology that combines existing models for crowd motion and human behaviour with
domain specific information. This allows evaluating the influence of various kinds of guidance systems on
path finding and crowd behaviour in near-future public transport interchanges.
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The contributions of this work are two-fold. First, we present an agent-based decision model for the
movement of passengers in transit hubs. Second, we evaluate the effects of two different guidance systems
on crowd behaviour in separate and combined use in a virtual scenario based on a real-life bus interchange.

The remainder of this paper is organised as follows: In Section 2, we give an overview of related
work in the field of crowd simulation for guidance systems. We present our system design and models in
Section 3. Section 4 discusses the simulation experiments and results. Section 5 concludes this article.

2 BACKGROUND AND RELATED WORK

In the past, crowd behaviour research with regards to public transport has mostly emphasised crowd motion
in constrained environments like train platforms and in emergency situations. For example, Lei et al. (2012)
focus on the evacuation of a large transit terminal subway station. Using an agent-based model, they study
the effect of occupant density, exit widths and automatic fare gates. Unfortunately, they do not consider the
effects of signage visibility.

Studies that incorporate signage visibility include the article by Zhang et al. (2017), where the authors
describe the optimisation of placement and count of signs to support the evacuation of pedestrians from
public spaces. Similarly, Chu et al. (2015) conduct a large-scale simulation study using their tool SAFEgress,
an agent-based egress simulation tool. They study the effect of signage, geometry, groups and crowds on
emergent evacuation patterns. Evacuation of crowds is rather similar to guidance of passengers to their
transport as both involve guided movement of crowds to certain destinations. Langner and Kray (2014)
have studied the impact of dynamic signage on mass evacuation. Their agent-based simulation model is
cell-based and assumes that a cell of 0.5 sqm can only accommodate one agent. In a case-study using a
football stadium, they find that dynamic signage has a positive effect on the evacuation process.

Outside the context of mass evacuation, Mikusz et al. (2016) outline a simulation method to find the
reach a network of signs has on its intended audience. The authors emphasise the importance of analysing
signs from a viewer-centric perspective. This refers to evaluating how much of the information is absorbed
by the viewer as opposed to measure raw view counts of the sign by passing viewers. While the work
focuses on signage in a university campus it is also applicable analysing digital signage in public transport
hubs and makes a case to further investigate detailed guidance information designs for digital signage.

Bauer et al. (2007) have studied methods for crowd control in public transport stations. They utilise a
macroscopic model to study the effects of temporary access restrictions as well as arriving and departing
trains. An alternative approach to studying the effect of signage visibility is proposed by Motamedi et al.
(2017). The authors propose a signage visibility analysis system based on virtual reality technology which
they validated in case studies in subway stations in Japan. Both the macroscopic model and the virtual
reality system are promising methods to validate agent-based crowd simulation tools and increase the
fidelity of the simulation.

Confirmation that agent-based crowd simulation is a valid approach for the simulation of passengers
in public transport hubs is provided by Tang and Hu (2017). They argue that cellular automatons are
insufficient due to the difficulty of adding rules and ”purposive goals” for the agents. They employ an
agent-based model to study the movement of pedestrians in large transit stations in China (Beijing and
Xuzhou) and conclude that their agent-based crowd simulation can provide valuable insights. Interestingly,
they note that in extreme situations such as emergency evacuations, the lack of irrational decisions in
agent-based models limits the applicability of the approach. Similarly, the study of Peng and Ruihua (2010)
shows that agent-based crowd simulation is feasible approach to study the movement of pedestrians in
public transport spaces. Their approach is similar to the one presented in this paper: they use a 3-tier
architecture comprised of an event tier, a navigation tier, and a agent dynamics tier. Not only can our agent
model described in the next section be mapped to these tiers, but also are the models used for each tier
(Events, A*, Social Force) similar, supporting the design decisions made for our simulation model.
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3 SYSTEM DESIGN

In the following we describe the models used to emulate information perception and behaviour of crowds
as well as the public transport hub setting to which agents are being deployed.

The simulation system is implemented in CrowdTools, a crowd simulation framework developed by the
Parallel and Distributed Computing Centre (PDCC) at NTU Singapore Cai et al. (2010). CrowdTools offers
sophisticated frameworks for modelling human decision making and emotions Luo et al. (2009) aiding the
plausible simulation of individuals, crowds and emergent behaviour. Additionally CrowdTools and its library
of models are highly customisable, which goes as far as allowing to exchange the underlying simulation
engine between the built-in engine, MASON (Luke et al. 2005) and Repast Simphony (North et al. 2013).

3.1 Agent Behaviour

A pedestrian agent in the simulated system starts out with a destination in mind for which it will attempt
to find a departure location for vehicles that are serving it. For many agents this constitutes a change
of vehicles during multi-leg itineraries, thereby emphasising the importance of quickly accessible and
digestible information. For the sake of simplicity and without loss of generality we will focus on a single
leg of the trip. Multi-leg itineraries can be constructed as a sequence of single legs where the same rules
and conditions apply for each leg. Quick decision making is relevant here as well, when itineraries that
are planned ahead of time need to be updated due to ongoing changes in traffic. The Agent behaviour
is composed of three models to combine spatial path finding, quick reasoning about currently available
information as well as collision avoidance for nearby pedestrians. Using this methodology we are able
to recreate emergent behaviour commonly observed in crowds, which is an essential input for evaluating
interchange and information designs. For spatial navigation the agent employs an A-Star algorithm that
calculates the shortest path from one point to another and around obstacles and highly crowded areas. The
search graph used by A-Star is based on a grid with cell resolution of one square metre, which is projected
onto the simulation area. CrowdTools offers a variant of the A-Star with added smoothed random noise,
which we chose to approximate a slight human error component in path finding. The algorithm is then
further customised to penalise heavily crowded areas and encourage agents to try and evade large gatherings
where possible. Every 60 seconds the search graph weights are updated by adding in the count of agents
that passed over the cell in that duration. This proved to be very effective in reducing unnaturally large
crowds that may appear as an artefact of collision detection. While navigating through the interchange,
agent collision detection is performed by a social force algorithm (Helbing and Molnar 1995). This allows
the agent to evade non-static obstacles such as other agents in an ad-hoc manner. Finally, to emulate rapid
decision making agents use the Recognition-Primed Decision (RPD) model.

3.1.1 Recognition-Primed Decision

Recognition-Primed Decision (RPD) recreates rapid decision making based on the agent’s familiarity with
the current situation. It is derived from the Recognition-Primed Decision model of human decision making
by Gary Klein (Klein 1997). RPD is motivated by the insight that people frequently make decisions based
on estimation and guesswork rather than purely rational processes. In terms of the simulation framework,
RPD is defined as a tuple of input and output <W,A >. The input W denotes the working memory, also
known as internal state, of an agent. The output A is the set of actions the agents can perform. The goal of
RPD is to find the appropriate action for an agent to execute when applied to its internal state. RPD is
fundamentally organised as a state machine where the states are referred to as experiences. Each experience
contains a directed acyclic graph of stages, which constitutes a state machine of its own. The first stage of
an experience stage graph is called entry stage. Each stage is associated with a set of cues which can be
perceived by agents. If an agent perceives a cue it can be considered an active cue.

Unlike classic state machines, transitions between experiences are not statically defined. When
transitioning from one experience to another, the next one is chosen according to the highest familiarity
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value of its entry stage. To quantify familiarity for an agent, for each experience the weights of all active
cues of its entry stage are summed up. The experience with the entry stage that is most familiar to the
agent is chosen. Once the agent enters a new experience it will traverse its stage graph. As indicated by the
directedness of the graph, stages have to be traversed in a fixed sequence while branching off is allowed.
Once an end of the state graph is reached, the experience is considered complete and a transition to another
experience will occur.

Stages check against an agent’s working memory to determine whether a violation or success occurred.
If a stage is violated, the experience it belongs to is considered violated as well and a state transition to
another experience initiated. If a state is completed, then the agent enters the next stage in the graph.
Secondly, stages provide actions that agents will perform as long as they are in the stage.

Experience Set

Experience: Search info

Single Stage

Cues - is sign visible: no
- is travel itinerary valid: no

C: - dist(sign, agent) <= MIN_DIST
- is sign visible: yes

A: - navigate towards sign

Experience: Queue at Bus Berth

Stage: Proceed To Queue

Cues - is travel itinerary valid: yes
- has reached queue: no

C: - dist(berth, agent) <= MIN_DIST
- is sign visible: yes

A: - navigate towards bus berth

E: - leave simulation

Experience: Leave Interchange

Single Stage

Cues - is sign visible: no
- is travel itinerary valid: no

C: - dist(sign, agent) <= MIN_DIST
- is sign visible: yes

A: - navigate towards sign

E: - leave simulation

Experience: Acquire Destination

Single Stage

Cues - is sign visible: yes
- is travel itinerary valid: no

C: - is travel itinerary valid: yes

A: - wait at point

E: - leave simulation

V: - is sign visible: no
- dist(sign, agent) > MIN_DIST

V: - is is travel itinerary valid: 
no

Stage: Wait at Berth Queue

Cues
- is travel itinerary valid: yes
- is waiting at queue: no
- is bus arrived: no

C: - is travel itinerary valid: yes
(not expired)

A: - wait in queue

V: - is travel itinerary valid: no

Stage: Board Bus

Cues
- itinerary is valid: yes
- is waiting at queue: yes
- is bus arrived: yes

C:
- is travel itinerary valid: yes
- dist(exit_aget, agent) <= 
MIN_DIST

A: - navigate towards exit gate

V: - is travel itinerary valid: no

Figure 1: Agent behaviour as RPD state machine.

Figure 1 shows the RPD state machine for the agents in our bus interchange simulation. The terms C
and V denote the conditions for a stage to be completed or violated, respectively.

Experiences allow to trigger events on successful exit, which are defined by the term E. Both agent
population and available experiences distinguish between arrival and transit. Arriving agents do not possess
a follow-up destination to visit, which will prompt them to enter Leave Interchange. This experience guides
an agent to conclude the current journey and depart the interchange on foot. The exit for each agent is
chosen randomly to emulate pedestrian choices to visit the adjacent mall for running errands or leaving
directly to the street.

If an agent has a destination but no a valid itinerary, the Search Info experience is entered next. The
agent will attempt to find a digital sign in the transport hub from which they can retrieve their departure
time and location. Once a sign is within a certain range and readable for the agent they can enter the
Acquire Destination experience, which mainly consists of perusing a nearby digital sign to find out the
desired itinerary. Once an agent has a valid itinerary it may enter the Queue at Bus Berth experience, with
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its sequence of three stages: stage one will prompt the agent to navigate to the queuing area of their target
berth. Stages two and three correspond to waiting in the queue and boarding the bus, respectively. This
compartmentalisation reflects the three different actions taken during the encompassing experience as well
as the strict order in which to perform them. If an agent misses their bus, the itinerary expires and becomes
invalid. As a consequence, the stage and experience are violated and a new experience that matches the
current cues perceived by the agent best is selected.

3.2 Environment and Signage Visibility

walkable area
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Figure 2: Overview of the Boon Lay bus interchange.

For our study area we selected the Boon Lay Bus Interchange as it is one of the larger interchanges
and a regional transport hub in Western Singapore. Its size of 172 by 151 meters and number of bus berths
make a fair amount of navigation necessary to move from one incoming bus to the next departure. In
figure 2 the layout and accessibility are shown. The interchange has exits and entrances towards the street
as well as a shopping mall this is also connected to a train station. The interior of the interchange is divided
into two bus berth areas. The left section acts as a terminus and contains one single entrance for arriving
buses to drop off passengers. For buses starting their routes, there are six large berths with ample queuing
space per berth for departing passengers. The far right side contains twelve smaller berths with separate
entrances and exits for each of them.

Despite the increasing number of innovations brought about by research into future public transport
systems, self-updating information boards placed at well visible locations remain critical in providing
passengers with scheduled departures, arrivals and updates thereof. Readability and comprehensibility of
the information from a given point in space is not only subject to distance and unobstructed line of sight.
Fonts, colour schemes, shapes and icons can support the perception of information. Therefore, to emulate
the visibility of publicly accessible signage, we overlay the scenario area with an individual heat map
for each sign. The cells of the heat map contain a value proportional to the visibility and legibility of
the information on the sign. This value results in part from the angle between the cell and the direction
the sign is facing as well as the absolute distance. Additional factors could include obstruction through
architectural features or difference in height, if the sign is visible from various heights or storeys in the

127



Wagner, Andelfinger, Cornet, Cai, Knoll, and Eckhoff

building. Combining the visibility matrix cell value at an agent’s location with individual agent parameters
such as their approximate eye sight or attention level determines whether an agent is able to retrieve the
information displayed on the sign.

Let ci be the cell in which agent i resides, vi the sight capability parameter of the agent, cs the cell in
which the nearest sign is placed. The agent is able to read the sign if:

los(ci,cs) ·
(
1− pen(||ci− cs||,γ(ci,cs)

)
≥ vi (1)

with ||ci−cs|| being the distance between the agent and the sign, γ(ci,cs) the angle between sign s and
the cell ci. The penalty function pen() incorporates the two parameters yielding a value between 0 and
1, 0 indicating no readability and 1 indicating perfect readability. A straightforward choice for a penalty
function is to simply linearly reduce readability with increasing distance and angle. The line of sight factor
los(ci,cs) between agent and sign resolves to 0 if the view of the sign from the agent’s position is obstructed
and to 1 otherwise.

4 EXPERIMENTS AND RESULTS

We examine the effects of multiple digital signage placement configurations. We also explore how the
pedestrian path-finding changes when a second source of information, personal mobile devices, is introduced.
Therefore we will experiment with varying rates of adoption of either technology. To generate plausible
pedestrian traffic, the population is split into 30% arriving and 70% transiting agents. For the remainder of
this paper we are focusing on the behaviour of the latter agents, while the former will provide us with
background traffic for increased realism. As a metric for assessing the quality of an interchange configuration
we measure the time a pedestrian actively spends from entering the public transport hub until boarding a
bus to leave it again. The term ’active’ includes only time spent walking to signs or berths and perusing
signage. Time spent waiting in the queue for the departing bus is ignored. If a pedestrian misses their bus
and has to return to a signage to find the next berth from which to depart, this time is added to the active
count. Our simulation uses a range of parameters that require real-life information. These have to be set on
a case-by-case basis, specific to the mode of dynamic transport, to calibrate the model accurately. Table 1
shows the most influential parameters.

4.1 Sign Distribution Scenarios

In a first set of experiments, we compare digital signage placement variations to demonstrate the effects on
crowd movement and path-finding. Figure 3 shows a visibility heat map for each of the four simulation
runs. A red value indicates good visibility of a sign, a dark blue value represents a location where there is
no sign visibility. In total, we investigate four different signage densities, ranging from low to very high:

Table 1: Simulation parameters and values used in the experiments.

Parameter Value
simulation duration 4 hours
avg. agent IAT at entrances 4.5s
avg. bus IAT {120s, 240s}
average number of alighting passengers 11
agent sensor range 20m
preferred (max) velocity mobile phone users: 0.9 (1.3) m/s, others: 1.23 (2.0) m/s
signage perusing duration 10 seconds
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(a) Low Sign Density (b) Medium Sign Density

(c) High Sign Density (d) Very High Sign Density

Figure 3: Overview of signage visibility in the evaluated simulation scenarios.

• Scenario 1 - Low Signage Density In this scenario (Figure 3a) there are only two signs placed in
the transport hub. This sparse placement would most likely be infeasible for a real-world deployment,
however, can serve as a lower bound for our experiments.

• Scenario 2 - Medium Signage Density Three more signs are added at entrances and exists of the
transit hub. The signs are spaced out over the east-west and north-south corridor. This increases the
coverage of entrances while also reducing the distance passengers have to backtrack should they
miss a bus and require updated information on future departures. The layout is shown in Figure 3b).

• Scenario 3 - High Signage Density In the third scenario, five more signs were added, bringing the
total sign count to 10. As can be seen in Figure 3c), all entries are equipped with digital signage as
well as numerous bus stops.

• Scenario 4 - Very High Signage Density In this scenario, the entire east-west corridor is covered
as well as every single bus berth entry in the north-south corridor, as shown in Figure 3d). In this
scenario, a sign is visible from almost every location in the transit hub. While such a dense signage
placement might be infeasible in a real-world scenario, this scenario can serve as an upper bound.

First, we show how the crowd simulation model can evaluate how the signage placement influences
crowding. To this end, we visualise agent movement as heat maps, shown in Figure 4. For these heat maps
we exclude passenger queues at the bus berths and focus only on active agents to emphasise hot-spots of
agent movement. The figures focus on the north-south corridor as it exhibits notably more traffic and higher
density than the rest of the interchange. The low signage density scenario requires agents starting in the
north-south corridor to walk towards the signboard located at the intersection of the two corridors. Once
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(a) Low Sign Density
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(b) Medium Sign Dens.
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(c) High Sign Density
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(d) V. High Sign Dens.

Figure 4: Cumulative heat maps of crowd densities in different signage placement scenarios.
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Figure 5: Time needed for a passenger to find the
correct bus berth.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (hours)

0

50

100

150

200

250

300

350

ac
tiv

e 
ag

en
ts

low sign density
medium sign density
high sign density
very high sign density

Figure 6: Active agents in the simulation scenario.

they learn which bus berth to go, they might even have to turn around and walk back against the stream
of people trying to reach the signboard. The heat map in Figure 4a shows that the north-south corridor
exhibits significant crowding, with some agents even temporarily stuck next to the signboard. In Figure 4b,
we observe that the two extra signs in the north-south corridor (see medium density scenario in Figure 3b)
help alleviate this problem and reduced crowding in the southern part of the corridor. However, we noticed
a new hot-spot of agent crowding caused by one particular sign that was placed near the narrow corridor
next to the escalator. Agents reading the sign blocked the corridor for passengers trying to pass the narrow
corridor. Adding additional signs (Figure 4c) reduced the crowding at this location. We observed no critical
hot-spot in the highest sign density scenario (Figure 4d). We conclude that our agent-based model captured
the expected crowding situation of the low sign density scenario, and additionally identified a hot-spot that
we did not foresee.

We also analysed the time required by agents to complete their tasks, which is to reach their outbound
connection. Figure 5 shows our results in the form of a boxplot over the averages of all 10 simulation
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(b) 80% Mobile devices,
20% Signage
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(c) 50% Mobile devices,
50% Signage
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(d) 0% Mobile devices,
100% Signage

Figure 7: Cumulative heat maps of crowd density for varying rates of mobile device and signage users.

runs. For each scenario, a box is drawn from the first quartile to the third quartile, and the median is
marked with a thick line; additional whiskers extend from the edges of the box towards the minimum and
maximum of the data set, but no further than 1.5 times the interquartile range. We observe that increasing
the sign density consistently achieves a reduction in active time required per agent, from around 5 minutes
in the low density scenario down to 3 minutes in the very high density one. The main reason for that is
that agents have to take fewer and shorter detours to a digital signboard to learn from which bus berth
their bus is departing. Noteworthy here is that not every sign is equal and the impact of a sign on the
crowd varies by its location. Signs placed in heavily frequented areas help to break up crowds quickly by
disseminating information right where a large amount of pedestrians enter the interchange. Without signs
there, crowds that congregate in these areas would have to move further to find a digital sign and thus add
to the congestion in the corridors.

Figure 6 shows the number of agents simultaneously present in the transit hub. When agents require
a longer time to finish their task, then naturally more agents populate the simulation scenario, which in
turn increases crowding, which reduces walking speeds. This negative feedback loop causes a significantly
higher number of agents to be present in the transit hub when sign density is low. Agent-based crowd
simulation can help quantify this number and therefore support the design of transit hub layouts.

4.2 Multiple Sources of Information Scenarios

In the second set of our experiments we introduce another option for digital guidance. Pedestrians now
may use either digital signage or personal mobile devices. Assuming that mobile users keep checking their
phone frequently their overall velocity will be lower compared to pedestrians who look at digital signage
once and then proceed swiftly to their departure berths (Walsh et al. 2019). To emulate this we consider an
average velocity of 1.23 metres per second for passengers without mobile devices (Rahman et al. 2012)
and we extrapolate a walking speed for mobile phone users of 0.9 metres per second (Walsh et al. 2019).
For the sake of simplicity, we assume that mobile phone users will not make use of the digital signs in the
transit hub. The given maximum velocities in the table apply for evasion manoeuvres in the social force
algorithm. The trade-off for faster movement of signage users is the necessary detour to a digital sign as
well as 10 seconds required to peruse the sign for departure information.
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Figure 8: Time needed for a passenger to find the
correct bus berth in the mobile device scenario.
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Figure 9: Active agents inside the mobile device
simulation scenario.

Analysing the agent heat maps in Figure 7 we can observe the difference in crowding caused by both
types of digital guidance systems. Mobile device users usually follow the shortest path to their bus berth,
except when avoiding crowded areas, while digital signage users tend to congregate around signs before
moving to their departure berths. The optimised paths of mobile users are more direct but also frequented
more heavily because many agents’ shortest paths are partially overlapping. Most notably this happens
at the intersection between the two main corridors but also at the narrow corridor near the escalator exit
where the lower walking speed of the agents caused crowding (Figure 4a). These effects decreased with
more users referring to digital signage as their source of information (Figures 4b and Figure 4c). Please
note that Figure 7d corresponds to Figure 4d, however normalised to the crowding in the mobile phone
scenarios to allow for visual comparison.

The lower walking speeds and the resulting crowding causes passengers in the mobile phone scenarios
to take considerably longer to reach their location. (Figure 8). We observe an average of over 5 minutes
for the 100% mobile phone scenario, which is similar to the low signage density scenario in Section 4.1.
Decreasing the number of mobile phone users lowered the average time required for each passenger to
reach their berth accordingly. This is further supported by the results shown in Figure 9 where we compare
the number of active agents over the simulation duration. The numbers of simultaneous agents exceeded
the worst case of the signage distribution experiments, causing negative feedback in terms of crowding and
thus time needed to finish their task. It appears that the penalties of detours and perusing delay are more
than offset by a more even distribution of agents throughout the interchange. A key takeaway here is that
information displays in public spaces can not only assume the function of information dissemination, but
also have the additional capability of directing the flow of crowds.

5 CONCLUSION AND FUTURE WORK

In this work we presented an approach for the evaluation of guidance systems in future hubs for autonomous
public transport. The simulation model focuses on agent-based crowd simulation and combines path finding,
collision avoidance, and rapid decision making algorithms to approximate plausible agent behaviour. As a
proof of concept, we have evaluated a scenario based on a real-world transit hub where buses are dynamically
assigned bus berths and passengers do not know in advance to which bus berth they have to walk. Our
experiments have shown that our approach is capable of capturing the influence of signage distribution on
crowding and even identify locations where the placement of signs can have negative effects. We also
analysed how an alternative guidance system based on personal mobile devices compares to a sign-based
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one and found that it has severe effects on crowding, assuming that people looking at their devices exhibit
a slower walking speed.

Future work is needed to gather information about pedestrian characteristics for an improved level of
detail and calibration of the simulation model. It should be emphasised that the experiments in this work
serve to illustrate the expressiveness of the model and deliver estimates of the effects observed. Accurate
and substantiated predictions require closely calibrated models and parameters that are fine tuned on a
case-by-case basis. There are ongoing studies looking into data collection via virtual reality experiments
and real world observation.

Not only is simulation-based evaluation a promising avenue to explore, it can be further developed into
simulation-based optimisation by automating exploration the of configurations and evaluation. This has
significant potential to aid the research and design process by automating part of it and providing a valid
pre-optimised foundation for infrastructure planners and designer to base their work on.
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