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ABSTRACT

The nonstationary Poisson process (NSPP) is a workhorse tool for modeling and simulating arrival processes
with time-dependent rates. In many applications only a single sequence of arrival times are observed. While
one sample path is sufficient for estimating the arrival rate or integrated rate function of the process—as
we illustrate in this paper—we show that testing for Poissonness, in the general case, is futile. In other
words, when only a single sequence of arrival data are observed then one can fit an NSPP to it, but the
choice of “NSPP” can only be justified by an understanding of the underlying process physics, or a leap
of faith, not by testing the data. This result suggests the need for sensitivity analysis when such a model
is used to generate arrivals in a simulation.

1 INTRODUCTION

Consider observing one-at-a-time “arrivals” over some finite period of time [0,Te]. Let T= {T1,T2, . . . ,TN(Te)}
denote the arrival times, where 0 < T1 < T2 < · · ·< TN(Te) ≤ Te, N(t) = sup{n : Tn ≤ t} denotes the arrival-
counting process, and Λ(t) = E[N(t)] denotes the expected number of arrivals by time t (the integrated rate
function), which is unknown. We have reason to believe that this process is nonstationary in the sense that
there exists no constant λ > 0 such that Λ(t) = λ t for all 0≤ t ≤ Te. For simulation practitioners who want
to generate relevant arrivals in their simulation, two key questions are: (a) Can we estimate Λ(t) from this
data? (b) Can we test whether the data are consistent with a nonstationary Poisson process (NSPP)?

There are many reasons to hope that both answers are “yes:” NSPPs lead to tractable mathematical
models (e.g., queueing), and variate generation as input to a stochastic simulation is easy. The answer to
(a) turns out to be positive. Although not universally appreciated, there are many ways to “fit” Λ(t) or
λ (t) = dΛ(t)/dt to a single sample path T, including nonparametric methods such as Leemis (1991) and
Arkin and Leemis (2000); semi-parametric methods such as Morgan et al. (2019); and fully parametric
methods such as Lee et al. (1991). See Section 3 below for examples. Unfortunately, the answer to (b)
is negative. In Section 4 we establish the futility of testing the NSPP assumption from a single sample
path unless Λ(t) is known (Section 5). The implication is that employing an NSPP is possible, but must
be justified by the arrival process physics, not by testing the data. We begin with some basic background
in Section 2.

2 BACKGROUND

The NSPP has received considerable attention in simulation research, particuarly with respect to fitting
Λ(t) or λ (t) to data, and simulating arrivals given Λ(t) or λ (t). See Nelson (2013) for the basics, and
Section 3 below for examples.

Loosely speaking any test of nonstationary Poissonness will be based on some property that NSPPs
have but other nonstationary arrival-counting processes do not. There are four obvious candidates: If N(t)
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is an NSPP, then . . .

Total: N(Te) has a Poisson distribution.

Transformation: T j = Λ(Tj), j = 1,2, . . . are equal in distribution to arrival times of a stationary, rate-1
Poisson process.

Variation: Var[N(t)]/Λ(t) = 1 for all t ≥ 0.

Splitting: If arrivals are independently and randomly classified as type 1 with probability 0 < p < 1, and
type 2 otherwise, then the corresponding arrival times {T1 j, j = 1,2, . . .} and {T2 j, j = 1,2, . . .} are equal in
distribution to arrival times from independent NSPPs with expected number of arrivals by time t of pΛ(t)
and (1− p)Λ(t), respectively.

To the best of our knowledge the only paper to propose a test for nonstationary Poissonness in the
single-sample-path case is Brown et al. (2005), which was later refined by Kim and Whitt (2014b). These
papers address the special case when Λ(t) is piecewise linear (λ (t) is piecewise constant) and the breakpoints
are known; they exploit a version of the transformation property. Such strong assumptions are unlikely to
ever be true in practice, and getting the breakpoints right makes a difference (Kim and Whitt 2014a). Here
we are interested in the general case.

We begin by recalling some methods for fitting an NSPP to a single sample path T. These are not new,
but are usually presented in the context of multiple identically distributed sample paths (e.g., 52 Mondays).
We then investigate testing for Poissonness when Λ(t) is completely unknown, a topic that we have not
seen addressed beyond the piecewise-linear case.

3 ESTIMATION WITH A SINGLE SAMPLE PATH

There are many applications in stochastic modeling in which only a single realization is available. This is
frequently the case in time series analysis. It is also common in modeling the failure times in a repairable
system in reliability and in modeling customer arrival times in queueing. We consider a reliability application
as an illustration. In this section the underlying arrival process is assumed to be an NSPP.

The U.S.S. Halfbeak was launched on February 19, 1946 by the Electric Boat Company of Groton,
Connecticut. There are N = 71 event times (failure times, read row-wise, in hours) collected on the No. 3
main propulsion diesel engine displayed in Table 1 (Crowder et al. 1994). The observation period for this
single sample path is assumed to end at Te = 25,600 hours.

A line plot of the data is given in Figure 1. A cursory visual inspection of the pattern of failure
times reveals a concentration of failures after about 19,000 hours; the engine appears to be dramatically
deteriorating after this point in time. This inspection leads us to conclude that a nonstationary model is
appropriate. Can we infer Λ(t) from this data?

267



Nelson and Leemis

Table 1: U.S.S. Halfbeak engine failure times (hours).

1382 2990 4124 6827 7472 7567 8845 9450
9794 10848 11993 12300 15413 16497 17352 17632

18122 19067 19172 19299 19360 19686 19940 19944
20121 20132 20431 20525 21057 21061 21309 21310
21378 21391 21456 21461 21603 21658 21688 21750
21815 21820 21822 21888 21930 21943 21946 22181
22311 22634 22635 22669 22691 22846 22947 23149
23305 23491 23526 23774 23791 23822 24006 24286
25000 25010 25048 25268 25400 25500 25518

t

0 5000 10,000 15,000 20,000 25,000

| | | | || | | | | | | | | | | | |||| | || || || || ||||||||||||||||| || |||| || | | || ||| | | ||| ||||

Figure 1: Unscheduled maintenance action times.

3.1 Nonparametric Estimators of Λ(t)

The standard nonparametric estimator of Λ(t) is often known as the “step-function” estimator. For the
single observed sample path of the target NSPP, let the step-function estimator Λ̄(t) denote the number of
events observed in the time interval (0, t], for 0 < t ≤ Te. The step-function estimator takes upward steps
of height 1 at the event times from the single sample path.

Returning to the N = 71 U.S.S. Halfbeak unscheduled maintenance times, the nonparametric step-
function estimator of Λ(t) is shown in Figure 2. The steepness of Λ̄(t) beginning at about t = 19,000 hours
is indicative of the deterioration after that time indicated by the data set.
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Figure 2: Step-function integrated rate function estimator Λ̄(t).

268



Nelson and Leemis

This nonparametric estimate of Λ(t) corresponds to the intuitive interpretation of Λ(t) as the expected
number of unscheduled maintenance actions that have occurred by time t. The step-function estimator Λ̄(t)
is not a consistent estimator of Λ(t) when we are restricted to a single sample path, because extending the
observation period Te provides no additional information about any fixed time t ≤ Te. If the arrival process
is an NSPP, then we can construct the following approximate 100(1−α)% pointwise confidence interval
for Λ(t):

Λ̄(t)− zα/2

√
Λ̄(t)< Λ(t)< Λ̄(t)+ zα/2

√
Λ̄(t),

which is included in Figure 2 as dotted lines. This confidence interval is obtained by observing that Λ̄(t)
is an unbiased estimator of the mean and variance of N(t), and when Λ(t) is large the Poisson distribution
is approximatley normal.

As expected, the width of the confidence bands increases with time. One can predict the number of
failures that will occur by time 5000, for example, with greater precision than the number of failures that
will occur by time 25,000. The fact that the line connecting the end points of the point estimator, (0,0) and
(25,600,71), is not contained within the confidence bands is evidence that there is a statistically significant
departure from a constant-rate failure process; that is, the U.S.S. Halfbeak No. 3 main propulsion diesel
engine is deteriorating over time.

If the purpose of estimating Λ(t) is to simulate observations from the estimated NSPP, then using the
step-function estimator means that only the observed event times can be generated in the simulation. Leemis
(1991) developed a piecewise-linear estimator for Λ(t) that overcomes the interpolation and extrapolation
problems associated with the step-function estimator. For a single sample path of N arrivals, Λ(t) is
estimated by

Λ̂(t) =
iN

N +1
+

[
N(t−Ti)

(N +1)(Ti+1−Ti)

]
, Ti < t ≤ Ti+1; i = 0, 1, . . . , N

where T0 = 0 and TN+1 = Te.
Returning to the U.S.S. Halfbeak unscheduled maintenance action times, Figure 3 presents the piecewise-

linear estimator, along with approximate 95% confidence bounds for Λ(t) as dashed lines. The confidence
bounds are computed using the formula associated with the step-function estimator.
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Figure 3: Piecewise linear integrated rate function estimator Λ̂(t).
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3.2 Parametric Estimators of Λ(t)

A second approach for fitting Λ(t) or λ (t) to a single sample path is to formulate a parametric form for
Λ(t) and estimate the parameters, say via maximum likelihood. Assume that previous experience indicates
that the failure times for main propulsion diesel engines on vessels similar to the U.S.S. Halfbeak follow
an integrated rate function of the form

Λ(t) = (αt)β , t > 0,

where α is a positive scale parameter and β is a positive shape parameter. This integrated rate function is
known as a power law process and it has the same mathematical form as the integrated hazard function
for the Weibull distribution.

The likelihood function for an NSPP model with rate function λ (t) and integrated rate function Λ(t) is

L =

[
N

∏
i=1

λ (Ti)

]
e−Λ(Te)

and the associated log-likelihood function is

ln L =

[
N

∑
i=1

lnλ (Ti)

]
−Λ(Te).

In the specific case of a power law process, the log-likelihood function is

ln L(α,β ) = Nβ ln α +N lnβ +(β −1)
N

∑
i=1

ln Ti− (αTe)
β .

The partial derivatives of the log-likelihood function with respect to α and β are

∂ ln L(α,β )

∂α
=

Nβ

α
−βα

β−1T β
e

and
∂ ln L(α,β )

∂β
= N ln α +

N
β
+

N

∑
i=1

ln Ti− (αTe)
β ln(αTe) ,

which are the elements of the 2×1 score vector. Equating these partial derivatives to zero and solving for
α and β yields the maximum likelihood estimators

β̂ =
N

N lnTe−∑
N
i=1 ln Ti

and α̂ =
N1/β̂

Te
.

Notice that Λ̂(Te) = N, which means that the fitted integrated rate function passes through (0,0) and
(Te,N), which are the initial point and the terminal point of both the step-function and piecewise-linear
nonparametric estimates of the integrated rate function. The second partial derivatives of the log-likelihood
functions are

∂ 2 ln L(α,β )

∂α2 =−Nβ

α2 −β (β −1)αβ−2T β
e ,

∂ 2 ln L(α,β )

∂α ∂β
=

N
α
−α

β−1T β
e [1+β ln(αTe)] ,
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∂ 2 ln L(α,β )

∂β 2 =− N
β 2 − (αTe)

β [ln(αTe)]
2 .

The elements of the Fisher information matrix are the opposites of the expected values of these partial
derivatives:

I(α,β ) =

 E
[
− ∂ 2 ln L(α,β )

∂α2

]
E
[
− ∂ 2 ln L(α,β )

∂α ∂β

]
E
[
− ∂ 2 ln L(α,β )

∂β ∂α

]
E
[
− ∂ 2 ln L(α,β )

∂β 2

]
 .

This is the variance–covariance matrix of the score vector. This matrix can be estimated by the observed
information matrix, which are these same partial derivatives evaluated at the maximum likelihood estimators:

O(α̂, β̂ ) =

 − ∂ 2 ln L(α,β )
∂α2 − ∂ 2 ln L(α,β )

∂α ∂β

− ∂ 2 ln L(α,β )
∂β ∂α

− ∂ 2 ln L(α,β )
∂β 2


α=α̂,β=β̂

.

The inverse of the observed information matrix gives asymptotic estimates of the variance–covariance
matrix of the maximum likelihood estimators. The diagonal elements of this matrix can be used to give
asymptotically exact confidence intervals for α and β .

Returning to the U.S.S. Halfbeak data, the maximum likelihood estimates of α and β are α̂ = 0.00019
and β̂ = 2.7. The step-function integrated rate function estimator and the fitted power law integrated rate
function estimator are plotted in Figure 4. Both estimators end at the point (Te,N) = (25,600,71). To three
digits, the observed information matrix is

O(α̂, β̂ ) =

(
15400000000 1630000

1630000 182

)
.

0 5000 10000 15000 20000 25000

0

20

40

60

80

100

t

Λ(t)

Figure 4: Step-function and fitted power law integrated rate functions.

Ignoring the off-diagonal elements of the inverse of the observed information matrix, 95% confidence
intervals for these parameters are 0.00012 < α < 0.00025 and 2.1 < β < 3.4. The fact that the confidence
interval for β does not include β = 1 is statistical evidence that the rate function is increasing, which means
that the engine is deteriorating. This is consistent with the conclusion drawn from Figure 1.

More flexible parametric models of λ (t) have been proposed and maximum likelihood estimators
obtained, most prominently the class of exponential trigonometric polynomial rate functions; see Lee et al.
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(1991) and many follow-on papers. The parameters of many of these may be fit to only a single sample
path.

The statistical analysis throughout this section assumed an NSPP created the observed sequence of
arrivals. We next consider testing that assumption.

4 TESTING WITH A SINGLE SAMPLE PATH AND UNKNOWN RATE

Since we assume Λ(t) is not known, direct application of the transformation property is not possible without
estimating Λ(t), but clearly there is problem if we fit Λ(t) to T and then apply the fitted Λ̂(t) to the same
data T to test it. Further, as we have only one sample path, there is no direct way to assess the distribution
of the total number of arrivals, N(Te), or to estimate Var[N(t)]/Λ(t), approaches that have been exploited
when there are multiple sample paths (Gerhardt and Nelson 2009; Ross 2014). What seems to remain is
splitting; we analyze the most likely approaches to exploit it in the two subsections that follow.
Confession. The analysis that follows occurred after the authors tried all of the ideas described below and
discovered empirically that either actual NSPPs were consistently rejected as being Poisson, or non-NSPPs
were consistently accepted as being Poisson. In hindsight the issues below should have been obvious.

4.1 Splitting to Facilitate Transformation

To avoid using the same data to fit Λ(t) and then test, suppose that we randomly classify the observed
arrival times in T as type 1 or 2 with probability p for type 1. We then use the type 2 arrivals to estimate
the integrated rate function, and employ the type 1 arrivals to conduct a test of the Poisson assumption
using the estimated integrated rate function.

Let N1 and N2 be the total number of type 1 and 2 arrivals, respectively, so that N1+N2 = N(Te). If N(t)
is an NSPP, then the splitting property implies the respective integrated rate functions are Λ1(t) = pΛ(t)
and Λ2(t) = (1− p)Λ(t). Thus, an unbiased step-function estimator of Λ1(t) is

Λ̄1(t)≡
p

1− p
Λ̄2(t) =

p
1− p

N2

∑
j=1

I(T2 j ≤ t). (1)

We can then apply this estimated integrated rate function to transformation the type 1 arrival times and
create the data set

T j =
p

1− p
Λ̄2(T1 j), j = 1,2, . . . ,N1

on which to apply a test. We analyze the impact of estimating Λ1(t) in this way below.
Suppose N(Te)� j. Then Λ̄2(T1 j) is the number of type 2 arrivals before the jth type 1 arrival; thus,

based on our construction, Λ̄2(T1 j) ∼ negative binomial( j,1− p). This result does not depend upon the
original process being NSPP; it is an artifact of after-the-fact splitting.

From this insight it is easy to show that

Var[T j]

E[T j]
=

1
1− p

> 1.

Thus, even if the arrival process was NSPP, the transformed arrivals using this estimated Λ1(t) are over-
dispersed, relative to a rate-1 exponential, by an amount that depends on our chosen p and not the distribution
of the underlying arrival process.

Does a smoother integrated-rate function estimator than the step function solve the problem? It does
not. Suppose Λ(t) = Λ(t|θ), which is known up to the value of a parameter θ with unknown true value
θ0, and is differentiable with respect to θ at θ0. For simplicity of presentation suppose θ ∈ℜ, although
the analysis that follows does not depend on it being one-dimensional.
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We use {T21,T22, . . . ,T2N2} to estimate θ via θ̂ , and estimate Λ1(t) by

Λ̂1(t) = pΛ(t|θ̂)≈ p
{

Λ(t|θ0)+(θ̂ −θ0)
dΛ(t|θ0)

dθ

}
. (2)

To be optimistic, suppose that the first-order Taylor approximation in (2) is exact, and that the parameter
estimator θ̂ is unbiased. We then apply the transformation to get T̂ j = Λ̂1(T1 j). Using the fact that θ̂ is
independent of {T1 j} it is easy to show that

E(T̂ j) = E[Λ1(T1 j)] (3)

Var(T̂ j) = Var[Λ1(T1 j)]+ p2Var(θ̂)E

[(
dΛ(T1 j|θ0)

dθ

)2
]
> Var[Λ1(T1 j)]. (4)

Again the transformed process is over-dispersed and any test, even applied to Poisson data, should fail.

4.2 Splitting to Facilitate Testing Variability

Next consider testing variability. Randomly split the arrivals into k ≥ 2 types, each with equal probability
1/k. Let Ni(t) and Ti j be the arrival-counting process and arrival times, respectively, associated with type
i arrivals, and let N(t) = (N1(t),N2(t), . . . ,Nk(t)). The splitting property suggests that from this data we
can estimate Var[N1(t)]/Λ1(t) and compare it to 1.

Notice that N(Tj) ∼ multinomial( j,(1/k,1/k, . . . ,1/k)), for j = 1,2, . . . ,N(Te) as a consequence of
after-the-fact splitting, whether the arrival process is NSPP or not. The natural estimator of the mean
number of arrivals by time Tj is

Λ̄1(Tj) =
1
k

k

∑
i=1

Ni(Tj) =
j
k
.

Similarly, an estimator of the variance of the number of arrivals by time Tj is

S2
1(Tj) =

1
k−1

k

∑
i=1

(Ni(Tj)− Λ̄1(Tj))
2.

Using properties of the multinomial distribbution it is easy to show that E[S2
1(Tj)] = j/k. Thus, the statistic

S2
1(Tj)/Λ̄1(Tj) has expectation

E
[

S2
1(Tj)

Λ̄1(Tj)

]
= 1

whether or not the underlying process is an NSPP. Therefore, we obtain no traction for assessing variability,
and in fact any arrival process will appear to be an NSPP based on this test.

Thus, with an unknown rate, even if known up to a parameter to be estimated, transformation cannot
be exploited for testing. However, we can test if T is the result of an NSPP with a given rate, as illustrated
in the next section.

5 TESTING WITH A SINGLE SAMPLE PATH AND GIVEN RATE

It is possible to conduct a test to assess the Poisson assumption when a parametric model with hypothesized
parameters has been established from previous modeling. Assume again that previous testing indicates that
the failure times for main propulsion diesel engines on vessels similar to the U.S.S. Halfbeak follow an
integrated rate function of the form

Λ(t) = (αt)β , t > 0,
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where α is a positive scale parameter and β is a positive shape parameter. Assume that previous data sets
concerning the sequence of failure times associated with diesel engines aboard similar vessels to the U.S.S.
Halfbeak have revealed that a power law process with parameters α = 0.00011 and β = 4.2 provide a
reasonable fit to the data. Our goal is to assess whether the NSPP model with the hypothesized parameters
in this power law model is appropriate for modeling the U.S.S. Halfbeak failure times.

The usual approach for testing the Poisson assumption associated with an NSPP is to transform the data
values from the single sample path of the NSPP denoted by T1,T2, . . . , TN to T1 = Λ(T1), T2 = Λ(T2), . . . ,
TN = Λ(TN), which will constitute observations from a rate-1 stationary Poisson process if the hypothesized
model is correct. The one-sample Kolmogorov–Smirnov test with all parameters known can be applied to
the inter-event times of the unit-rate stationary Poisson process. The null hypothesis in terms of the failure
times in the NSPP is that an NSPP with a hypothesized power law process governs the point process. The
null hypothesis in terms of the transformed failure times is that the times between transformed failure times
is unit exponential.

For the n = 71 U.S.S. Halfbeak unscheduled maintenance times, Figure 5 shows the nonparametric
step-function estimator and the hypothesized integrated rate function for the power law process with
α = 0.00011 and β = 4.2. Figure 6 shows the empirical cumulative distribution function associated with
the transformed failure times and the cumulative distribution function for the unit exponential distribution.
The Kolmogorov–Smirnov test statistic is D71 = 0.142,which is the maximum vertical difference between the
empirical cumulative distribution function and the cumulative distribution function for the unit exponential
distribution. The p-value associated with this goodness-of-fit test using the ks.test function in R is
p = 0.105. Using a threshold of α = 0.05, we fail to reject the null hypothesis that the NSPP model governs
the point process.
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Figure 5: Step-function and power law integrated rate functions.
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Figure 6: Kolmogorov–Smirnov test geometry.

6 CONCLUSIONS

A single sample path of a nonstationary arrival process will (typically) exhibit clusters of arrivals, as
in Figure 1. However, clusters may result from Λ(t) being steep, interarrival times being variable, or a
combination of both; even stationary Poisson processes exhibit clusters. Thus, it makes intuitive sense that
it is difficult to tease out Poisson and non-Poisson effects from such data. This paper shows that what
might be considered obvious candidates to do the job do not work. That said, if process physics support the
use of an NSPP model, then there are good methods for fitting the data and therefore providing synthetic
arrivals in a stochastic simulation.
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