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ABSTRACT

We develop and analyze Monte Carlo simulation estimators for path integrals of a multivariate diffusion
with a general state-dependent drift and volatility. We prove that our estimators are unbiased and have finite
variance by extending the regularity conditions of the parametrix method. The performance of our estimators
is illustrated on numerical examples that highlight some applied problems for which our estimators apply.

1 INTRODUCTION

Suppose Y ∈ Rd solves the stochastic differential equation (SDE)

dYt = µ(Yt)dt +σ(Yt)dWt (1)

for a m-dimensional (standard) Brownian motion W and suitable drift and diffusion coefficients µ : Rd→Rd

and σ : Rd→Rd×m. Exact simulation of multivariate diffusions (d ≥ 2) with general coefficients is known
to be a challenging problem (Blanchet and Zhang 2017). Discretization methods are widely applicable
however. For example, consider the Euler scheme

dY π
t = µ(Y π

tk )dt +σ(Y π
tk )dWt tk ≤ t < tk+1 (2)

defined over a finite, increasing sequence {tk}⊆ [0,T ] of discretization points satisfying 0= t0 < T =maxk tk.
It is well known that the Euler process Y π may be used to estimate E( f (YT )) with order-one (weak)
convergence (i.e., |E( f (YT ))−E( f (Y π

T ))| ≤CT, f maxk |tk− tk−1|) under various assumptions on the function
f and the coefficients. The leading constant CT, f , the rate of convergence, or both, may be unsuitably large
for applications that involve small estimates or model sensitivities. For these (and other) reasons, unbiased
estimators based on the representation

E ( f (YT )) = eλT E
(

f (Y π
T )

NT

∏
k=1

λ
−1

ϑτk−τk−1(Y
π
τk−1

,Y π
τk
)
)

(3)
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have recently been developed. In (3), the Y π is defined analogously to (2), but use random discretization
points {τk} in lieu of {tk}. Precisely, {τk} form the arrival times of a counting process N, which in (3) is
taken to be Poisson of rate λ > 0. The weight function ϑ is defined via the coefficients µ,σ and corrects for
the bias generated by the Euler iterates {Y π

τk
}. Approaches based on (3) are known as parametrix methods

and lead to unbiased estimates of E( f (YT )). In contrast, the plain Euler estimator f (Y π
T ) is biased.

The parametrix method has long been applied in the study of solutions to partial differential equations,
but only recently have probabilistic representations of the form (3) been proposed for diffusion simulation
(Bally and Kohatsu-Higa 2015). The scheme has tremendous potential, not only in terms of accuracy, but
also in terms of run-time. For instance, the rate λ of the Poisson process generating the points {τk} can
be relatively small, resulting in relatively few iterates Y π

τk
that are needed. A fine discretization (i.e., more

Y π
tk ) is required to control the bias of the plain Euler method. Parametrix estimators do suffer from a large

variance, but this drawback may be mitigated with a greater number of parallelized Monte Carlo trials.
Furthermore, significant progress has been made on controlling the variance of a parametrix estimator
(Andersson and Kohatsu-Higa 2017).

A genuine shortcoming of the parametrix method, however, lies in the smoothness and compact support
assumptions on the objective function f that are required for (3) to hold. These are often too restrictive for
applications (however, see Doumbia et al. (2017) for a relaxation to Lipschitz continuous f ). Moreover,
while unbiased estimators for expectations of functions of a skeleton (Yt1 , . . . ,Ytn) have been designed
(Henry-Labordère et al. 2017), to our knowledge, no unbiased estimators for path integrals

∫ T
0 Λ(Yt)dt

given a function Λ : Rd → R appear in the literature. Using recently developed Gaussian upper bounds
and existence results for the density of a diffusion with a Lipschitz drift (see Menozzi et al. (2020)), we
are able to treat several important extensions.

– We extend the parametrix method to path integrals by generalizing formula (3) to expectations of the
form E

(∫ T
0 Λ(Yt)dt

)
for a Lipschitz continuous function Λ and diffusion Y in (1). A direct application

of the parametrix formula to the joint process
(
Yt ,
∫ t

0 Λ(Ys)ds
)

t≥0 leads to assumptions on Λ inherited
from the parametrix method. Namely, the drift Λ must be twice continuously differentiable and
bounded. Requiring Λ be only Lipschitz continuous is a significant relaxation.

– We extend the parametrix method by relaxing f to have exponential growth and to expectations of the
form E

(
e−

∫ T
0 Λ(Yt)dt f (YT )

)
. The latter extension treats a wide array of applications in finance where

the term e−
∫ T

0 Λ(Yt)dt serves as a discount factor. Such expressions are also related to killed diffusions
as the discount factor may be replaced by the indicator 1{η>T} where η is a “killing” time of Y of
intensity Λ(Y ) (see Collin-Dufresne et al. (2004) for example).

We develop these extensions without sacraficing the variance properties of our estimators. In particular,
a finite variance of the estimator in (3) is achieved by replacing the Poisson process N by an alternative
counting process (e.g., one with Beta distributed interarrival times as in Andersson and Kohatsu-Higa
(2017)). The same approach extends to our estimators.

The paper is structured as follows. Section 2 describes the construction of the path integral and the killed
diffusion estimator. It also supplies the theorems guaranteeing the unbiasedness and the finite variance of
both parametrix estimators. Section 3 establishes the proofs of the theoretical results. Section 4 supports
our findings with numerical experiments. The Appendix collects the auxiliary results that are required by
our proofs.

2 MAIN RESULTS

Fix T ∈ (0,∞). Consider the joint process X = (Y,Z) where Y is the diffusion in (1), and Z is a one-
dimensional diffusion with drift coefficient Λ and a constant coefficient of diffusion. More precisely, let
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(Y,Z) solve

Yt = y0 +
∫ t

0
µ(Ys)ds+

∫ t

0
σ(Ys)dWs,

Zt =
∫ t

0
Λ(Ys)ds+νBt ,

(4)

where B is a one-dimensional Brownian motion independent of W , and a constant ν > 0. The nonrandom
y0 ∈ Rd denotes the starting point of Y .

Let Ck
b(D) be the space of functions on D with k bounded derivatives.

Assumption 1 There exist constants a1,a2 > 0 such that the a = σσ> satisfies a1I � a(y) � a2I for all
y ∈Rd (and I, the d×d identity matrix). Moreover, µ ∈C1

b(Rd), σ ∈C2
b(Rd) and Λ : Rd →R is Lipchitz

continuous.
Weak solutions X = (Y,Z) to the integral SDE (4) exists under the conditions on the coefficient in

Assumption 1 (Krylov 1974).
We say G : D→R (| · |, a Euclidean norm on D) has exponential growth if there are constants c,C > 0

with |G(u)| ≤Cec|u| for all u ∈D .
Assumption 2 f : Rd → R is measurable and of exponential growth.

Our parametrix estimators use the following Euler processes,

dY π
t = µ(Y π

τk
)dt +σ(Y π

τk
)dWt

dZπ
t = Λ(Y π

τk
)dt +ν dBt

τk ≤ t < τk+1, (5)

for an increasing sequence of arrival times {τk}k∈N of a counting process N that is taken to be independent
of W and B. We denote by Xπ , the joint Euler process (Y π ,Zπ), which starts in (y0,0) ∈ Rd+1. When N
is nonexplosive (i.e. Nt < ∞ almost surely for all t ≥ 0), the associated discretization spacings π have the
form 0 = τ0 < τ1 < · · ·< τNT < T almost surely.

For x1 = (y1,z1) ∈ Rd+1 and x2 = (y2,z2) ∈ Rd+1, define

θt(x1,x2) = ϑt(y1,y2)+(Λ(y2)−Λ(y1))
(z2− z1−Λ(y1)t

tν2

)
ϑt(y1,y2) =

1
2

∑i, jϑ
i, j
t (y1,y2)−∑iρ

i
t (y1,y2)

ϑ
i, j
t (y1,y2) = ∂

2
i, ja

i, j(y2)+∂ jai, j(y2)hi
t(y1,y2)

+∂iai, j(y2)h
j
t (y1,y2)+(ai, j(y2)−ai, j(y1))h

i, j
t (y1,y2)

ρ
i
t (y1,y2) = ∂iµ

i(y2)+(µ i(y2)−µ
i(y1))hi

t(y1,y2)

ht(y1,y2) = Hta(y1)(y2− y1− tµ(y1))

(6)

where H denotes the Hermite polynomials. For any matrix m we have 1st-order polynomials H i
m(x) =

−(m−1x)i and 2nd-order polynomials H i j(x) = (m−1x)i(m−1x) j−(m−1)i j. See also Bally and Kohatsu-Higa
(2015).

For simplicity, we take independent interarrivals {τk−τk−1}∞
k=1 with a common density ψ and survival

function Ψ(t) = P(τ1 > t) =
∫

∞

t ψ(s)ds.
Recall, Xπ = (Y π ,Zπ). We adopt the convention, ∏

0
k=1ck = 1.

Theorem 1 Suppose µ , σ , and Λ in (4) satisfy Assumption 1. Then,

E
(∫ T

0
Λ(Yt)dt

)
= E (UT ) ,

UT =
Zπ

T
Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)
. (7)

279



Chen, Shkolnik, and Giesecke

The estimator (7) does not involve the coefficient ν since E(Bt) = 0.
Theorem 2 Suppose the µ , σ , and Λ in (4) satisfy Assumption 1, the objective function f satisfies
Assumption 2, and let ν2

T = ν2T/2. We have,

E
(
e−

∫ T
0 Λ(Yt)dt f (YT )

)
= E(UT ) ,

UT =
e−Zπ

T f (Y π
T )

eν2
T Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)
. (8)

These results may be coupled with those in Chen et al. (2019) to incorporate a jump-diffusion setting.
When Λ = 0 and the density ψ is exponential with rate λ , we recover (3) (θ = ϑ ), but with significantly
relaxed conditions on f than those in the literature. When f = 1, we recover the results of Wagner (1987)
and Wagner (1988). Note,

E
(
1{η>T} f (YT )

)
= E(UT ) (9)

for UT in (8) and for η , a stopping time with (nonnegative) intensity Λ(Y ) (Theorem 3.1 of Giesecke and
Shkolnik (2020) establishes this identity under Asssumption 1). This extends the scope of Theorem 2 to
killed diffusions.

The variance of the estimators depends heavily on the choice of parameters ν and the choice of the
counting process N. We recommend ν > 1/2 to avoid division by small numbers in (6). The choice of
a Poisson process for N as in (3) leads to an infinite variance. Choices that lead to a finite variance are
discussed in Andersson and Kohatsu-Higa (2017). One example includes Beta distributed interarrivals on
[0,T + ε] for a ε > 0, i.e.,

ψ(δ ) = 1/
√

4δ (T + ε) . (10)

Theorem 3 Let UT be the estimator in Theorems 1 or 2 that satisfies the associated assumptions. Then,
E(U2

T )< ∞ provided ψ is given by (10).
The result generalizes to other ψ in Andersson and Kohatsu-Higa (2017).

3 THEOREM PROOFS

We begin by establishing Theorem 3 which guarantees that the variance of our estimators is finite. We
leverage following auxiliary result.
Lemma 1 Suppose µ , σ , and Λ satisfy Assumption 1. Let n ∈ N and set Πn = {(t1, . . . , tn) ∈ (0,T )n :
tk−1 < tk}. For 1 ≤ p < ∞ and measurable G : Rd+1→ R of exponential growth, define un : Πn→ R as
(t0 = 0)

un(t1, . . . , tn) = E
(∣∣∣G(Xπ

T )
n

∏
k=1

θtk−tk−1(X
π
tk−1

,Xπ
tk )
∣∣∣p). (11)

There exists a constant CT such that un(t1, . . . , tn)≤Cn
T ∏

n
k=1(tk− tk−1)

−p/2.
We defer the proof of Lemma 1 to the Appendix.

Remark 1 The constant CT depends on T,d, p,ν ,y as well as the coefficients µ,σ ,Λ and the function G,
but not on n, nor the times points {tk}n

k=1.
A similar bound appears in Corollary 4.2 of Andersson and Kohatsu-Higa (2017), but for Λ continuously

differentiable and bounded and G, also bounded. It is key to establishing finite variance of the estimators
involving interarrival densities ψ such as (10). We follow an argument similar to that of Proposition 7.3
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of Andersson and Kohatsu-Higa (2017), to show that

E ( |UT |p)< ∞ 1≤ p < ∞, and

UT =
G(Xπ

T )

Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)
.

(12)

To see this, observe that by the independence of the{τk}k∈N (hence NT ) and X , almost surely φNT (τ1, . . . ,τNT )=
E ( |UT |p | {τk}k∈N)) for φ given by

φn(t1, . . . , tn) =
un(t1, . . . , tn)

|Ψ(T − tn)∏n
k=1ψ(tk− tk−1)|p

.

We have, E ( |UT |p) = ∑
∞
n=0 E(1{NT=n}E(|UT |p | {τk}k∈N), and so

E ( |UT |p) =
∞

∑
n=0

E(1{NT=n}φNT (τ1, . . . ,τNT ))

=
∞

∑
n=0

∫
Πn

un(t1, . . . , tn)dt1 . . .dtn
|Ψ(T − tn)∏n

k=1ψ(tk− tk−1)|p−1 (13)

as E(1{NT=n}φn(τ1, . . . ,τn))=
∫

Πn
φn(t1, . . . , tn)Ψ(T − tn)∏n

k=1ψ(tk − tk−1)dtk by Andersson and Kohatsu-
Higa (2017), Lemma 7.1), provided the right side converges. Applying the bound Ψ(T − tn) ≥ Ψ(T ) =∫ T+ε

T ψ(s)ds > 0 and the ψ in (10), we indeed have by Lemma 1 that the series converges, and

E (|UT |p)≤
∞

∑
n=0

Kn
T

∫
Πn

n

∏
k=1

(tk− tk−1)
−γdtk < ∞ (14)

for a constant KT ≥ CT , γ ∈ (0,1) and all 1 ≤ p < ∞ (Andersson and Kohatsu-Higa 2017, Proposition
7.3). Having established (12), by considering only 1 ≤ p ≤ 2, we deduce the claim in Theorem 3, as
the estimator UT in both (7) and (8) has a G of exponential growth. By the same argument, alternative
interarrival densities ψ may be employed.

Next, we prove our estimators are unbiased.
Lemma 2 Suppose X =(Y,Z) in (4) has coefficients µ,σ and Λ satisfying Assumption 1. For G : Rd+1→R,
measurable and of exponential growth,

E(G(XT )) = E
(

G(Xπ
T )

Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)

)
. (15)

We defer the proof of Lemma 2 to the Appendix. The lemma extends the parametrix method to objective
functions G of exponential growth and to one of the components of the diffusion (namely, Z) to a Lipschitz
continuous drift. Here, we illustrate its application to Theorems 1 and 2.

Since B is independent of W (hence, independent of Y ),

E (ZT ) = E
(∫ T

0
Λ(Yt)dt

)
,

E
(
e−ZT f (YT )

)
= eν2

T E
(

e−
∫ T

0 Λ(Yt)dt f (YT )
)
.

(16)

We apply Lemma 2 with G(x) = z and G(x) = e−z f (y) for (y,z) = x and f measurable and of exponential
growth to the left sides of (16) to obtain parmetrix formulas like (15). Finally, adjusting for the term ν2

T
in (8) (but not in (7)) yields the claims of Theorems (1) and 2.
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We remark that the above argument leads to the design of additional estimators, provided the adjustment
for the Brownian motion B may be performed. For example, the quadratic G(x) = z2 may be addressed
using

E (Z2
T )−ν

2T = E
((∫ T

0
Λ(Yt)dt

)2
)

(17)

again appealing to the independence of Y and B, and that E(BT ) = 0 and E(B2
T ) = T . Again applying

Lemma 2 to the left side of (17), yields the appropriate paramtetix formula for estimating the right side
of (17) without bias. The parameter ν cannot be set to zero as it is key to establishing (15).

4 NUMERICAL EXAMPLES

We provide numerical results to demonstrate the performance of our estimator. Based on the Assumptions
1 and 2, we consider Y solving

dYt = sin(Yt)dt +
√

0.4+0.2sin(Yt)dWt . (18)

We test estimators for
∫ T1

0 Λ(Xt)dt and e−
∫ T2

0 Λ(Yt)dt f (YT2), where T1 = 1, T2 = 0.2, Λ(x) = 0.2+ x and
f (x) = ex. Different T1 and T2 ensure the two objective function values are roughly of the same order of
magnitude. The drift and volatility of Y are smooth and bounded, but the functions Λ and f both extend
the typical scope where the parametrix estimator applies.

We compare the parametrix estimators with the Euler method, to test for a bias in the Euler method and
for its absence in the parametrix estimator. A nearly exact expectation is computed with a very large number
of Monte Carlo trials and a very fine discretization. For the benchmark Euler method, the computation
budget is allocated according to the trade-off rule in Duffie and Glynn (1995). Specifically, letting p denote
the number of (uniformly spaced) discretization points tk in (2), we run M = p2 Monte Carlo trials. This
approach balances the bias of the Euler scheme with the statistical error of Monte Carlo. For p = 27, the
Euler and parametrix scheme have a nearly identical run-time of 5×10−4 seconds per similation trial.

Tables 1 and 2 summarize our numerical experiments. Table 1 reports estimates of the expectaton of
a path intergral of the diffusion Y . The error of each estimate falls within the 99% confidence interval,
indicating no bias in either method. Hence, the trade-off rule between bias and computional budget masks
the bias of the Euler scheme; (alternatively, this effect may be due to cancellation errors facilitated by the
linear choice of Λ). The variance of the Euler samples is roughly 0.22 for each discretization. In contrast,
the parametrix estimator exhibits a sample variance that is hundreds of times larger; yet, it appears bounded,
confirming our theoretical findings. Significantly longer running times were then required to match the
performance of the Euler scheme. While many of the computations to assemble the parametrix estimator
may be parallelized, more work to reduce its variance is needed to outperform the Euler method on this
example.

Table 2 reports estimates of E(1{η>T2} f (YT2)) where η is a stopping time with intensity Λ(Y ), or
equivalently the expectation of a discounted payoff f (YT2). In this example, we begin to observe the bias
in the Euler scheme, as the error of its estimates begins to exceed the size of the confidence interval. In
contrast, the parametrix estimate error always remains well within the bounds of the statistical uncertainty.
The sample variance of the estimates produced by the Euler scheme is roughly 0.73, increasing relative to
the path-integral example. In contrast, the sample variance of the parametrix estimator decreased. For this
reason, the errors made by the parametrix method are significantly lower than those of the Euler method.
This highlights the advantages of the paramterix family of estimators.

5 CONCLUSION

The parametrix method allows for unbiased simulation estimators of diffusions. While the approach has
great potential for fast and accurate simulation, current theoretical results limit the scope of its application.
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Table 1: Estimation of E
(∫ T1

0 Λ(Yt)dt
)

for model (18) with the parametrix and Euler methods. “Error”
reports the absolute value between the (nearly) exact value and the Monte Calro estimate based on M trials.
Normal confidence intervals (CI) accompany each estimate.

Parametrix Euler

M Error Variance 99% CI M p Error 99% CI

106 0.0013 62.06 0.0200 214 27 0.0057 0.0094
107 0.0009 65.23 0.0065 216 28 0.0031 0.0047
108 0.0014 73.21 0.0021 218 29 0.0006 0.0024
109 0.0003 69.78 0.0007 220 210 0.0005 0.0012

Table 2: Estimation of E
(
e−

∫ T2
0 Λ(Yt)dt f (YT2)

)
for model (18) with the parametrix and Euler methods. “Error”

reports the absolute value between the (nearly) exact value and the Monte Calro estimate based on M trials.
Normal confidence intervals (CI) accompany each estimate.

Parametrix Euler

M Error Variance 99% CI N h Error 99% CI

106 0.0072 57.35 0.0193 214 27 0.0134 0.0172
107 0.0016 56.56 0.0061 216 28 0.0015 0.0086
108 0.0003 56.61 0.0019 218 29 0.0040 0.0043
109 0.0001 56.54 0.0003 220 210 0.0033 0.0022

We extend the parametrix method to accommodate several classes of problems encountered in practice.
In particular, we extend the method to path integrals and to killed diffusions which arise frequently in
modeling. Our theoretical results establish the unbiasedness and finite variance properties of the estimators.
Numerical examples illustrates the performance of the estimators relative to a biased, Euler discretization
scheme.

A AUXILIARY RESULTS AND NOTATION

Let ϕc denote the multivariate Gaussian density with a zero mean and variance (matrix) c. Denote by q
the transition kernel of the Euler process Xπ = (Y π ,Zπ) defined in (5) on the interval [τk,τk+1), given
(Xπ

τk
,τk,τk+1). The law of (Y π ,Zπ) given Xπ

τk
= (y1,z1) ∈ Rd+1 is Gaussian with covariances a(y1) =

(σσ>)(y1) ∈ Rd×d and ν2 for Y π and Zπ respectively with means y1 +µ(y1) and z1 +Λ(z1). For initial
and final points x1 = (y1,z1) and x2 = (y2,z2) ∈ Rd+1, the density qt(x1,x2) decomposes as

qt(x1,x2) = ϕta(y1)(y2− y1−µ(y1)t)ϕtν2(z2− z1−Λ(y1)t) (19)

as the Brownian motions W and B driving Y π and Zπ are independent.
Lemma 3 For any symmetric c ∈Rd×d for which there exist constants c1,c2 > 0 satisfying c1I � c� c2I,
we have that for 0 < t < T ,

ϕtc(y2− y1−b(y1)t)≤CT ϕ2tc2I(y2− y1) (20)

where CT = 2d/2eT‖b‖∞/(2c1) and for all y1,y2 ∈ Rd .

Proof. See Lemma A.1 of Andersson and Kohatsu-Higa (2017).
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We provide a bound on the bias correcting weights θ in (6). For a function f , let ‖ f‖∞ = supx | f (x)|
where | · | is the Eucledian norm.
Lemma 4 Suppose that Assumption 1 holds for the coefficients µ,σ and Λ determining θ in (6). Then
for any 1≤ p < ∞ and 0 < t ≤ T , we have

|θt(x1,x2)
pqt(x1,x2)| ≤

KT

t p/2 ϕ4ta2I(y2− y1)ϕ2tν2(z2− z1−Λ(y1)t) (21)

for all x1 = (y1,z1),x2 = (y2,z2) ∈ Rd+1 and a constant KT that depends on T,d, p,c1,c2,‖µ‖∞ and the
Lipschitz constant of Λ (per Assumption 1).

Proof. We have θ(x1,x2) = ϑt(y1,y2)+(Λ(y2)−Λ(y1))
( z2−z1−Λ(y1)t

tν2

)
, where ϑ satisfies, by Lemma 4.1

in Andersson and Kohatsu-Higa (2017),

|ϑt(y1,y2)
p
ϕta(y1)(y2− y1−µ(y1)t)| ≤

C′T
t p/2 ϕ4ta2I(y2− y1) (22)

for a constant C′T that depends on d,a1,a2,‖µ‖∞ and T .
Next, applying Lemma 3 with constant CT and y = y2− y1−µ(y1)t, and letting L denote the Lischitz

constant of Λ, we obtain

|Λ(y1)−Λ(y2)|pϕta(y1)(y)≤
CT L
t p/2 |y2− y1|p ϕ2ta2I(y2− y1)

≤ LT

t p/2 ϕ4ta2I(y2− y1) (23)

for a constant LT , where the Gaussian decay of ϕ is used to bound |y2− y1|p. The latter argument also
yields that for z = z2− z1−Λ(y1)t,∣∣∣ z

tν2

∣∣∣pϕtν2(z)≤
(
8p
√

T/t
)p

ϕ2ν2t(z) .

The claim now follows by using the identity |a+b|p ≤ 2p−1(|a|p+ |b|p) for the two terms of θ and applying
the bounds above to arrive at (21).

B PROOF OF LEMMA 1

Using the transition law q of Xπ (Appendix A) to write un(t1, . . . , tn) =E
(∣∣∣G(Xπ

T )∏
n
k=1 θtk−tk−1(X

π
tk−1

,Xπ
tk )
∣∣∣p),

yields the Lebesgue itegrand( n

∏
k=1
|θtk−tk−1(xk−1,xk)|pqtk−tk−1(xk−1,xk)

)
|G(xn+1)|pqT−tn(xn,xn+1)

which is integrated over all (x1, . . . ,xn+1) ∈ R(d+1)×(n+1). By Lemma 4, for a constant K′T , this integrand
is bounded above by ( n

∏
k=1

K′T
(tk− tk−1)p/2 q̂tk−tk−1(xk−1,xk)

)
|G(xn+1)|pq(xn,xn+1)

where q̂ is the transition law (c.f., the transition law q of Xπ in (19)),

q̂t(xk−1,xk) = ϕ4ta2I(yk− yk−1)ϕ2tν2(zk− zk−1−Λ(yk−1)t) (24)
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with (yk,zk) = xk of a process X̂ = (Ŷ , Ẑ) that starts in (y0,0)∈Rd+1. Observe that Ŷ is mean-zero Gaussian
(w.l.o.g., driven by W ) with independent components and covariance matrix 4a2I. But, Ŷ depends on Ẑ,
defined by Ẑt` = ∑

`
k=1Λ(Ŷtk−1)(tk− tk−1)+

√
2νBt` (w.l.o.g., B in (5)).

By Lemma 3 and (19), for a constant CT , we have the upper bound

qt(xn,xn+1)≤CT ϕ4ta2I(y2− y1)ϕ2tν2(z2− z1−Λ(y1)t) =CT q̂t(xn,xn+1)

and assembling the above estimates, we deduce the following bound.

un(t1, . . . , tn)≤CT E (|G(X̂T )|p)
n

∏
k=1

K′T
(tk− tk−1)p/2 (25)

It remains to bound E (|G(X̂T )|p). For constants c,C > 0 we have

|G(X̂T )|p ≤C exp(cp|ZT |+ cp∑
d
i=1|Ŷ i

T |)

by the exponential growth of G and |x|=
√

∑
d+1
i=1 x2

i ≤ ∑
d+1
i=1 |xi|. Further,

E(|G(X̂T )|p)2 ≤CE(e2cp|ZT |)∏
d
i=1E(e2cp|Ŷ i

T |) (26)

by the independence of the {Ŷ i
T}. Applying the Lipschitz property of Λ, the triangle inequality and that

∑
n
k=1∑

k
`=1|b`−b`−1|= ∑

n
k=1k|bn−k+1−bn−k|,

|ẐT | ≤ |Λ(y)|T +T L
n

∑
k=1
|Ŷtk − y|+

√
2ν2|BT |

≤ |Λ(y)|T +T L
n

∑
k=1

k|Ŷtn−k+1− Ŷtn−k |+
√

2ν2|BT |

for L the Lipschitz constant of Λ. Applying the independence of increments property of Ŷ and its
independence with the Brownian motion B yields,

E(e2cp|ZT |)≤ e2|Λ(y)|T E(e
√

8(cpν)2|BT |)∏n
k=1E(e2cpT L|Ŷtn−1+1−Ŷtn−k |) (27)

To conclude, note that for any zero-mean normal random variable Q ∈ Rd with independent components
each of variance 4a2 and δk > 0, we have

E(eδk|Q|)≤∏
d
i=1E(eδk|Qi|)≤∏

d
i=12E(eδkQi

) = ed(1+2a2δ 2
k ) .

As |Ŷtk − Ŷtk−1 |
D
= (tk− tk−1)Q, assembling, (25), (26) and (27), we see CT E(|G(X̂T |p) is bounded above

by a constant of the form bnd for b > 0 that depends on a2,T,L,c, p,y,ν . This constant does not depend
on the points {tk} as ∑

n
k=1 δ 2

k ≤ (∑n
k=1|δk|)2 ≤ T 2 where we set δk = tk− tk−1, as tn < T . The latter point

addresses Remark 1 and concludes the proof.

C PROOF OF LEMMA 2

Let {Λ`}`∈N be a sequence of functions in C1
b(R) such that Λ`→ Λ pointwise (this is guaranteed by first

truncating Λ so that it is bounded and then using the fact that smooth, bounded functions are dense in the
space of bounded, continuous functions; in norm and hence pointwise). Define,

Z`
t =

∫ t

0
Λ(Ys)ds+νBt (28)
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and let X ` = (Y,Z`). Denote by X `,π = (Y π ,Z`,π) the associated process, defined identically to (5) by with
Λ` replacing Λ. It follows that X `,π is a (d + 1)-dimensional diffusion that satisfies the assumptions of
the plain parametrix method (i.e., C1

b drift and uniformly elliptic, C2
b volatility) for a weight function θ `

defined identically to θ in (6) but with Λ` replacing Λ.
We accomplish the proof in two steps. First, we prove the statement for G smooth and of compact

support. In the second step, we extend the result to G measurable and of exponential growth.
Step 1. Let G be smooth and of compact support. The G is bounded, with bound ‖G‖∞ < ∞. We then

have the standard parametrix formula,

E (G(X `
T )) = E (U`

T )

U`
T =

G(X `,π
T )

Ψ(T − τNT )

NT

∏
k=1

θ `
τk−τk−1

(X `,π
τk−1 ,X

`,π
τk )

ψ(τk− τk−1)
.

(29)

for every `∈N. Since X `
T →XT almost surely, G(x)≤‖G‖∞ and G is continuous, by dominated convergence,

lim`↑∞ EG(X `
T ) = EG(XT ). Similarly, as U`

T → UT (the integrand on the right side of (15)) almost surely,

E (G(XT )) = lim
`↑∞

E(U`
T ) = E(UT )

UT =
G(Xπ

T )

Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)

(30)

provided there exists an integrable random variable VT ≥ sup` |U`
T |.

We show that the required random variable V = |VT | is given by

VT =
‖G‖∞

Ψ(T − τNT )

NT

∏
k=1

|ϑtk−tk−1(Y
π

tk−1
,Y π

tk )|+L|Y π
tk −Y π

tk−1
||Qk|

ψ(τk− τk−1)
,

where Qk = Z`,π
tk −Z`,π

tk−1
−Λ(Y π

tk−1
)(tk− tk−1) = Btk −Btk−1 is has the standard Normal distribution and is

independent of Y π .
To show that E(VT )< ∞, observe that (see (6)),

θ
`
tk−tk−1

(X `,π
tk−1

,X `,π
tk ) = ϑtk−tk−1(Y

π
tk−1

,Y π
tk )+(Λ`(Y π

tk )−Λ`(Y π
tk−1

))Qk

and due to the fact that each Λ` is Lipschitz with constant L`,

|θ `
tk−tk−1

(X `,π
tk−1

,X `,π
tk )|= |ϑtk−tk−1(Y

π
tk−1

,Y π
tk )|+L∗|Y π

tk −Y π
tk−1
| |Qk|

where L∗ = sup` L` < ∞ (since the limit Λ is Lipschitz).
By steps identical to (13) with p = 1, we deduce that

E (|VT |) =
∞

∑
n=0

∫
Πn

vn(t1, . . . , tn)dt1 . . .dtn . (31)

where, after setting δk = tk− tk−1, we have

vn(t1, . . . , tn) = ‖G‖∞ E
(

∏
n
k=1|ϑδk(Y

π
tk−1

,Y π
tk )|+L|Y π

tk −Y π
tk−1
||Qk|

)
= ‖G‖∞ E

(
∏

n
k=1|ϑδk(Y

π
tk−1

,Y π
tk )|+

√
2L2
∗

π
|Y π

tk −Y π
tk−1
|
)
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and the last equality follows by the (mutual) independence of the {Qk}n
k=1, their independence of Y π and

the conditioning on the {Y π
tk }

n
k=1 that uses the fact that E(|Qk| | {Y π

tk }
n
k=1) = E(|Qk|) =

√
2/π for every

1≤ k ≤ n.
It now only remains to verify that the series in (31) converges. Denoting by qY , the transition law of

Y π (i.e., qY
t (y1,y2) = ϕta(y1)(y2− y1−µ(y1)t)),

|ϑtk−tk−1(yk−1,yk)|qY
δk
(yk−1,yk)≤

CT√
t
ϕ4δka2I(yk− yk−1)√

2L2
∗

π
|yk− yk−1|qY

δk
(yk−1,yk)≤

LT√
t
ϕ4δka2I(yk− yk−1)

for constants CT ,LT > 0 by using (22) and (23) (taking p= 1). It follows that vn(t1, . . . , tn)≤ (CT +LT )
n/
√

t.
As desired (31) converges as in (14).

This concludes the proof of (30) for G smooth and of compact support and Λ in the definition of θ

taken to be only Lipschitz continuous.
Step 2. In this step, we extend (30) to G measurable and of exponential growth. First, we observe

that by an argument identical to that of Lemma 3.1 of Chen et al. (2019) (see also Remark 3.2 in that
reference) (30) holds for G measurable and bounded. Therefore, taking G measurable and of exponential
growth, and defining GK(x) = (G(x)∧K)∨ (−K) for K > 0, formula (30) holds for each GK replacing G.
The extension to G follows again by applying dominated convergence twice, as done below.

First, to conclude that limK↑∞ E(GK(XT )) =E(G(XT )), we note that GK(XT )→G(XT ) almost surely and
observe that |GK(XT )| ≤ |G(XT )| ≤Cec|XT | =Cec|ZT |+c∑

d
i=1 |Y i

T |, denoted by AT , for some constants C,c > 0
per the exponential growth of G. By the Gaussian density bound for the random variable XT = (YT ,ZT )
from Menozzi et al. (2020), Theorem 1.2, the random variable AT is integrable, and the stated claim
follows.

Lastly, we prove limK↑∞ E(UK
T ) = E(UT ) with UT in (30) with G measurable and of exponential growth,

and for GK above, the UK
T given by

UK
T =

GK(Xπ
T )

Ψ(T − τNT )

NT

∏
k=1

θτk−τk−1(X
π
τk−1

,Xπ
τk
)

ψ(τk− τk−1)

We have |UK
T | ≤ |UT | with UT in (30) and E(|UT |)< ∞ per (12) (and Lemma 1). This concludes the proof;

E(G(XT )) = E(UT ) as required.
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