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ABSTRACT

Extending developments of Calvin and Nakayama in 2013 and Alexopoulos et al. in 2019, we formulate
point and confidence-interval (CI) estimators for given quantiles of a steady-state simulation output process
based on the method of standardized time series (STS). Under mild, empirically verifiable conditions,
including a geometric-moment contraction (GMC) condition and a functional central limit theorem for
an associated indicator process, we establish basic asymptotic properties of the STS quantile-estimation
process. The GMC condition has also been proved for many widely used time-series models and a few
queueing processes such as M/M/1 waiting times. We derive STS estimators for the associated variance
parameter that are computed from nonoverlapping batches of outputs, and we combine those estimators to
build asymptotically valid CIs. Simulated experimentation shows that our STS-based CI estimators have
the potential to compare favorably with their conventional counterparts computed from nonoverlapping
batches.

1 INTRODUCTION

Discrete-event simulation can be used to analyze many types of stochastic processes. Simulation output
analyses often report point and confidence interval (CI) estimators for steady-state performance measures
such as the mean and selected quantiles of the underlying process. Since the early 1950s, research on
simulation-based estimation of the steady-state mean has grown rapidly. By contrast since the mid-1970s,
research on simulation-based estimation of steady-state quantiles has grown much less rapidly owing to the
more-difficult challenges encountered when the output process (i) is contaminated by warm-up effects due
to non-steady-state initialization of the simulation; (ii) is autocorrelated; (iii) has a heavy-tailed distribution;
(iv) does not have a probability density function (p.d.f.); (v) has a p.d.f. with multiple modes; or (vi) has a
p.d.f. with discontinuities, vertical asymptotes, or other departures from global smoothness. While issues
(iv) and (vi) have relatively little impact on steady-state mean estimation, they complicate steady-state
quantile estimation significantly. To address challenges (i)–(iii), several steady-state quantile estimation
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procedures have been developed; see Alexopoulos et al. (2017, p. 22:3) and Alexopoulos et al. (2019a,
§1).

Of particular note are two recent sequential procedures for estimating a given steady-state ?-quantile
for ? ∈ (0, 1) that address issues (i)–(iii). Sequest (Alexopoulos et al. 2019a) is designed for estimating
nonextreme quantiles—i.e., ? ∈ [0.05, 0.95]; and Sequem (Alexopoulos et al. 2017) is designed for
estimating “extreme” quantiles—i.e., ? ∈ (0.0005, 0.05) ∪ (0.95, 0.9995). These sequential procedures
use batch quantile estimators (BQEs) computed from nonoverlapping batches to deliver CIs for a given
quantile that have been shown on a large battery of test cases to exhibit ease of use, close conformance to
user-specified requirements on CI coverage probability and precision, and high efficiency with respect to
sampling effort.

In this paper we develop a class of quantile-estimation methods based on a standardized time series
(STS) that addresses challenges (i)–(vi) and is an alternative (or potential companion) to conventional
BQE-based methods. STS-based methods have been studied extensively in the context of point and CI
estimation of the steady-state mean (Schruben 1983; Glynn and Iglehart 1990; Goldsman et al. 1990),
where they are shown to have certain performance advantages over other methods. Here we apply the STS
method to steady-state quantile estimation by extending the developments of Calvin and Nakayama (2013)
for independent and identically distributed (i.i.d.) data and Alexopoulos et al. (2019b, §4) for dependent
data. In Section 2 we formulate our key assumptions, which are substantially weaker than those of Calvin
and Nakayama (2013, p. 603). In Section 3 we use the basic asymptotic properties derived by Alexopoulos
et al. (2019b, Theorems 1–3) for the STS quantile-estimation process associated with a dependent output
process in order to establish the limiting distributions of the STS “area” variance estimators (Theorem 4)
and the asymptotic validity of CIs based on the nonoverlapping-batch STS method for quantile estimation
(Theorem 5). Section 4 details some initial simulated experimentation revealing that the STS-based quantile
estimators work as predicted by the asymptotic theory, yielding CIs that are comparable to conventional
CIs based on BQEs. Finally in Section 5 we summarize our findings and discuss directions for future work.

2 PRELIMINARIES

For given ? ∈ (0, 1) , we formulate point and confidence-interval (CI) estimators of the steady-state ?-quantile
G? of a simulation-generated response - based on the STS method of output analysis. We use the following
conventional notation: R ≡ (−∞,∞) denotes the set of real numbers; R+ ≡ [0,∞) denotes the set of
nonnegative real numbers; and Z ≡ {0,±1,±2, . . .} denotes the set of integers. If it is clear from the context
that, for example, : is a nonnegative (respectively, positive) integer-valued variable, then for simplicity we
often write : ≥ 0 (respectively, : ≥ 1). For each G ∈ R, we let � (G) ≡ Pr{- ≤ G} denote the cumulative
distribution function (c.d.f.) of the steady-state response so that we have G? = �−1(?) ≡ inf{G : � (G) ≥ ?} .
If � (G) is absolutely continuous, then we let 5 (G) denote the p.d.f. of � (G).

We seek to estimate G? from the stationary process {.: : : ≥ 1} , which is a warmed-up (i.e., truncated-
and-reindexed) version of the original sequence of simulation outputs {-8 : 8 ≥ 1} as documented in
Alexopoulos et al. (2019a, §3.1). For each G ∈ R and : ≥ 1, we define the indicator random variable (r.v.)
�: (G) ≡ 1 if.: ≤ G, and �: (G) ≡ 0 otherwise. For a sample of size = ≥ 1, we let � (G?, =) ≡ =−1 ∑=

:=1 �: (G?) ;
and when = = 0, we let � (G?, =) ≡ 0. For each ℓ ∈ Z, we let d

�
(ℓ) ≡ Corr[�: (G?), �:+ℓ (G?)] denote the

autocorrelation at lag ℓ in the indicator process; and we assume
∑
ℓ∈Z | d� (ℓ) | < ∞ so that we can define

the variance parameter of the indicator process,

f2
� ≡ lim

=→∞
=Var

[
� (G?, =)

]
= ?(1 − ?)

∑
ℓ∈Z

d
�
(ℓ) ∈ (0,∞) . (1)

Let � denote the space of real-valued (R-valued) functions on [0, 1] that are right-continuous with left-hand
limits (Billingsley 1999, §12; Whitt 2002, §3.3). We assume that the warmed-up output process {.: : : ≥ 1}
and the associated indicator process {�: (G?) : : ≥ 1} satisfy the following conditions.
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Geometric-Moment Contraction (GMC) Condition The process {.: : : ≥ 1} is defined by a function
b (·) of a sequence of i.i.d. r.v.’s {Y 9 : 9 ∈ Z} such that .: = b (. . . , Y:−1, Y:) for : ≥ 1. Moreover, there
exist constants k > 0, � > 0, and A ∈ (0, 1) such that for two independent sequences {Y 9 : 9 ∈ Z} and{
Ý 9 : 9 ∈ Z

}
each consisting of i.i.d. r.v.’s distributed like Y0 , we have

E
[ ��b (. . . , Y−1, Y0, Y1, . . . , Y:) − b

(
. . . , Ý−1, Ý0, Y1, . . . , Y:

) ��k ]
≤ �A: for : ≥ 0 . (2)

Density-Regularity (DR) Condition The c.d.f. � (G) has a p.d.f. 5 (G) that is continuous at every G ∈ R,
and supG∈R 5 (G) < ∞; moreover at the quantile G? to be estimated, we have 5 (G?) > 0, and the derivative
5 ′(G?) exists.
Functional Central Limit Theorem (FCLT) for the Indicator Process We define the following sequence
of random functions {I= (·; G?) : = ≥ 1} in �,

I= (C; G?) ≡
b=Cc
f
�
=1/2

[
� (G?, b=Cc) − ?

]
for = ≥ 1 and C ∈ [0, 1] , (3)

where b·c denotes the floor function. We assume that the sequence (3) satisfies the functional central limit
theorem (FCLT),

I= (·; G?) =⇒
=→∞ W (·) , (4)

where W (·) denotes standard Brownian motion on [0, 1] ; and =⇒
=→∞ denotes weak convergence in � as

=→∞ (Billingsley 1999, §§2–3, §8, §13).
Using the full sample {.1, . . . , .=} of size = ≥ 1, we sort the responses in ascending order to obtain

the order statistics .(1) ≤ · · · ≤ .(=) . The full-sample point estimator of G? is defined as H̃? (=) ≡ .( d=?e)
when = ≥ 1, where d·e denotes the ceiling function; and when = = 0, we let H̃? (=) ≡ 0.

We assume that a batch count 1 ≥ 2 is given. For 9 = 1, . . . , 1, the 9 th nonoverlapping batch of size
< ≥ 1 consists of the response subsequence {.( 9−1)<+1, . . . , . 9<} . From the 9 th batch of size < ≥ 1, we
compute the batch mean of the associated indicator r.v.’s, � 9 (G?, <) ≡ <−1 ∑<

ℓ=1 � ( 9−1)<+ℓ (G?); and when
< = 0, we let � 9 (G?, <) ≡ 0. When < ≥ 1, we sort the responses from the 9 th batch in ascending order
to obtain the order statistics . 9 , (1) ≤ · · · ≤ . 9 , (<) . Then the 9 th batch quantile estimator (BQE) of G? is
defined as Ĥ? ( 9 , <) ≡ . 9 , ( d<?e) when < ≥ 1; and we let Ĥ? ( 9 , <) ≡ 0 when < = 0.

Before developing the main results, we finish describing our basic notation. If the r.v.’s S and U

have the same distribution, then we write S d
= U . We let # (0, 1) denote the standard normal distribution

so that a standard normal r.v. / d
= # (0, 1) has mean 0 and variance 1; and we let Z1 = [/1, . . . , /1]T

denote a 1 × 1 standard normal random vector so that its entries {/8 : 8 = 1, . . . , 1} are i.i.d. # (0, 1). If
{U= : = ≥ 1} is a sequence of r.v.’s and {0= : = ≥ 1} is a sequence of nonnegative constants, then the
expression U= = $a.s.(0=) means there is a real-valued r.v. U and an integer =0 ≥ 1 such that |U= | ≤ U0=
for = ≥ =0 almost surely (a.s.) (Wu 2005, p. 1934). Note that U does not depend on = and U ∈ R+, but U is
not necessarily a bounded r.v. Based on this setup, Alexopoulos et al. (2019a) prove the following result.

Theorem 1 If the batch count 1 ≥ 2 is given, the batch size < ≥ 1, and the process {.: : : ≥ 1} satisfies
the GMC and DR conditions as well as the FCLT (4), then

Ĥ? ( 9 , <) = G? −
� 9 (G?, <) − ?

5 (G?)
+$a.s.

[
(log<)3/2

<3/4

]
as < →∞ for 9 = 1, . . . , 1 ; and (5)

<1/2 [ Ĥ? (1, <) − G?, . . . , Ĥ? (1, <) − G? ]T
=⇒
<→∞

[
f
�

/
5 (G?)

]
Z1 . (6)
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Equation (5) is the Bahadur representation for the BQE Ĥ? ( 9 , <). To elaborate the significance of
Theorem 1 as it will be used in the following development, we state an immediate consequence of this
result as it applies to the full-sample quantile estimator H̃? (=) .
Corollary 1 If the sample size = ≥ 1, and {.: : : ≥ 1} satisfies the GMC and DR conditions as well as
the FCLT (4), then the remainder

&= ≡ H̃? (=) − G? +
� (G?, =) − ?

5 (G?)
for = ≥ 1 (7)

in the Bahadur representation for H̃? (=) has an associated real-valued r.v. U and an integer =0 ≥ 1 such that

|&= | ≤ U
(log =)3/2

=3/4 for = ≥ =0 a.s. (8)

Thus the Bahadur representation for H̃? (=) has the form

H̃? (=) = G? −
� (G?, =) − ?

5 (G?)
+$a.s.

[
(log =)3/2

=3/4

]
as =→∞, (9)

and the central limit theorem (CLT) for quantile estimation in dependent sequences has the form

=1/2 [ H̃? (=) − G? ] =⇒
=→∞ [f� / 5 (G?)]/ . (10)

Remark 1 The proof of Theorem 1 requires a minor modification in the proof for Theorem 4 of Wu (2005)
as detailed in Alexopoulos et al. (2019a, Electronic Companion, Equations (EC.14)–(EC.15)). It must be
noted, however, that another minor modification of Wu’s proof can be used to ensure that the conclusions
of Theorem 1 and Corollary 1 hold when the DR condition is replaced by the following much weaker
condition.

Local Distribution-Regularity (LDR) Condition In some neighborhood of G? , the c.d.f. � (G) has a
positive first derivative � ′(G) and a bounded second derivative � ′′(G) .

All the following results hold if the DR condition is replaced by the LDR condition. Moreover, the
LDR condition holds for all the test processes evaluated in Alexopoulos et al. (2019a, §4), whereas the
DR condition does not hold for the queue-waiting-time processes evaluated in Alexopoulos et al. (2019a,
§§4.2–4.4) because the distribution of each associated response has an atom at G = 0, the lower end-point
of its support, and thus does not possess a p.d.f. The LDR condition can also hold when the p.d.f. 5 (G)
exists but has a finite number of (i) discontinuities (e.g., 5 (G) is an exponential, Pareto, or uniform p.d.f.);
or (ii) vertical asymptotes (e.g., 5 (G) is a beta, gamma, or Weibull p.d.f. with a shape parameter less than
1)—provided, of course, that G? is not one of the points in R of type (i) or (ii). J

3 BASIC ASYMPTOTIC PROPERTIES OF STS QUANTILE ESTIMATORS

In this section we build on Theorem 1 and Corollary 1 to establish the asymptotic behavior of two STS-based
quantile-estimation processes on � . We start with the centered-and-scaled quantile-estimation process,

Y= (C; G?) ≡
b=Cc
=1/2

{
G? − H̃? (b=Cc)

}
=

f
�

5 (G?)
I b=C c (C; G?) −

b=Cc
=1/2& b=C c for = ≥ 1 and C ∈ [0, 1] , (11)

where the remainder terms {&D : D ≥ 1} associated with the Bahadur representation for H̃? (D) are defined
by Equation (7), while we let &0 ≡ 0 so that Equation (11) holds not only when D = b=Cc ≥ 1 but also
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when D = b=Cc = 0. Thus we obtain the Bahadur representation for Y= (C; G?) ,

Y= (C; G?) =
f
�

5 (G?)
I= (C; G?) +$a.s.

[
(log =)3/2

=1/4

]
as =→∞ and C ∈ [0, 1] . (12)

The following intermediate result is proved in Alexopoulos et al. (2019b, Theorem 2).

Theorem 2 If {.: : : ≥ 1} satisfies the assumptions of Theorem 1, then

[ 5 (G?)/f� ]Y= (C; G?) =⇒
=→∞ W (·) . (13)

Next we obtain the FCLT required for an STS-based quantile-estimation procedure. As the STS
counterpart of Equation (11), we define the STS quantile-estimation process,

)= (C) ≡
b=Cc
=1/2

[
H̃? (=) − H̃? (b=Cc)

]
for = ≥ 1 and C ∈ [0, 1] , (14)

where H̃? (b=Cc) is the estimator of the ?-quantile (G?) based on the partial sample {.1, . . . , .b=C c}; and we
let B(C) ≡ W (C) − CW (1) for C ∈ [0, 1] denote a standard Brownian bridge that is independent of W (1)
(Billingsley 1999, pp. 101–102). The following intermediate result is proved in Alexopoulos et al. (2019b,
Theorem 3).

Theorem 3 If {.: : : ≥ 1} satisfies the assumptions of Theorem 1, then[
5 (G?)

/
f
�

] {
=1/2 [G? − H̃? (=)] , )= (·)} =⇒

=→∞ [W (1),B(·)] . (15)

3.1 Weak Convergence of the Full-Sample STS Area Variance Estimator

Let F(C), C ∈ [0, 1], denote a deterministic weighting function that has a continuous second derivative on
[0, 1] . The full-sample STS area variance estimator is A 2

= (F) , where

A= (F) ≡ =−1
=∑
:=1

F(:/=))= (:/=) for each = ≥ 1. (16)

In Equation (16), we selectF(·) to yield E
{[ ∫ 1

0 F(C)B(C)dC
]2

}
= 1 so that

∫ 1
0 F(C)B(C)dC d

= # (0, 1) . Since
|F(C) | is nontrivial and continuous on [0, 1], it attains a finite nonzero upper bound " ≡ sup0≤C≤1 |F(C) |
∈ (0,∞) . To establish the asymptotic distribution of A 2

= (F) as =→∞, we define the following functionals
for each H ∈ �:

Δ= (H) ≡ =−1
=∑
:=1

F(:/=)H(:/=) for each = ≥ 1, and Δ (H) ≡
∫ 1

0
F(C)H(C)dC . (17)

Since each H ∈ � is bounded and has at most countably many discontinuities in [0, 1] (Billingsley 1999,
p. 122), the function F(C)H(C) has the same properties and thus is Riemann integrable over [0, 1].

Theorem 4 If {.: : : ≥ 1} satisfies the assumptions of Theorem 1, then

A 2
= (F) =⇒

=→∞
f2
�

5 2(G?)
j2

1 , (18)

where j2
a denotes a chi-squared random variable with a degrees of freedom for a ≥ 1.
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Proof Pick H ∈ � arbitrarily. Let {H= : = ≥ 1} denote an arbitrary sequence in � such that H= → H ,
which implies that lim=→∞ ‖H= − H‖ = 0 . By the triangle inequality, we have

|Δ= (H=) − Δ (H) | ≤ |Δ= (H=) − Δ= (H) | + |Δ= (H) − Δ (H) | for each = ≥ 1. (19)

Since F(C)H(C) is Riemann integrable over [0, 1], we have lim=→∞ Δ= (H) = Δ (H) . We also observe that

|Δ= (H=) − Δ= (H) | ≤ Δ= ( |H= − H |) ≤ Δ= (‖H= − H‖) ≤ " ‖H= − H‖ . (20)

Equations (19)–(20) ensure that

lim
=→∞

Δ2
= (H=) = Δ2(H) . (21)

Using Theorem 3 and Equation (21), we can apply the generalized continuous-mapping theorem (Whitt
2002, Theorem 3.4.4) to conclude that

A 2
= (F) = Δ2

= ()=) =⇒
=→∞ Δ2

[
f
�

5 (G?)
B

]
=

f2
�

5 2(G?)

[ ∫ 1

0
F(C)B(C)dC

]2
d
=

f2
�

5 2(G?)
j2

1 . (22)

3.2 Asymptotically Valid CIs for the Nonoverlapping-Batch STS Method

From the 9 th batch ( 9 = 1, . . . , 1), we compute the statistic Ĥ? ( 9 , <), the r.v. � 9 (G?, <) , and the random
process

{
� 9 (G?, b<Cc) : C ∈ [0, 1]

}
to obtain the associated STS quantile-estimation process,

)9 ,<(C) ≡
b<Cc
<1/2

[
Ĥ? ( 9 , <) − Ĥ? ( 9 , b<Cc)

]
for < ≥ 1 and C ∈ [0, 1] . (23)

Then for 9 = 1, . . . , 1, from Theorem 3 adapted to a batch of size < rather than the full sample of size
= = 1<, we have [

5 (G?)
/
f
�

] {
<1/2 [G? − Ĥ? ( 9 , <)] , )9 ,<(·)} =⇒

<→∞ [W 9 (1),B 9 (·)] , (24)

where W 9 (1) and B 9 (·) are independent. If we prove that the random vectors
{ [

W 9 (1), Δ2(B 9)
]T : 9 =

1, . . . , 1
}
are i.i.d., then we can also show that as < →∞, an asymptotically valid 100(1− U)% CI for G?

is given by

Ĥ? (1, <) ± C1−U/2, 1
[
A 2
1,<

/
=
]1/2

, (25)

where:

Ĥ? (1, <) ≡ 1−1
1∑
9=1

Ĥ? ( 9 , <) and A 2
1,< ≡ 1

−1
1∑
9=1
Δ2
<()9 ,<) (26)

respectively denote the average of the BQEs and the average of the STS area variance estimators computed
from each of the nonoverlapping batches; and CV,a denotes the V-quantile for Student’s C-distribution with
a degrees of freedom when V ∈ (0, 1) and a ≥ 1.

Theorem 5 If {.: : : ≥ 1} satisfies the assumptions of Theorem 1, then in Equation (24) we have{ [
W 9 (1), Δ2(B 9)

]T : 9 = 1, . . . , 1
}
are i.i.d. (27)

so that Equation (25) is an asymptotically valid 100(1 − U)% CI estimator of G? as < →∞.
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Proof For each l ∈ � and 9 ∈ {1, . . . , 1}, define the functional B 9 : � ↦→ � by

B 9 ◦l(C) ≡ 11/2
[
l

( C + 9 − 1
1

)
− l

( 9 − 1
1

)]
− C11/2

[
l

( 9
1

)
− l

( 9 − 1
1

)]
for C ∈ [0, 1] . (28)

For the batch size < ≥ 1, define the corresponding Riemann-sum functional Δ< as in Equation (17).
Pick l ∈ � arbitrarily. Let {l< : < ≥ 1} denote an arbitrary sequence in � such that l= → l so that
lim<→∞ ‖l< − l‖ = 0 . We can show that��B 9 ◦l<(C) −B 9 ◦l(C)

�� ≤ 411/2‖l< − l‖ . (29)

By the triangle inequality, we have

|Δ<(B 9 ◦l<) − Δ (B 9 ◦l) | ≤ |Δ<(B 9 ◦l<) − Δ<(B 9 ◦l) | + |Δ<(B 9 ◦l) − Δ (B 9 ◦l) | (30)

for < ≥ 1. Because F(C)B 9 ◦l(C) is Riemann integrable over [0, 1], we have lim<→∞ Δ<(B 9 ◦l) =
Δ (B 9 ◦l) . We can also show that

|Δ<(B 9 ◦l<) − Δ<(B 9 ◦l) | ≤ 411/2" ‖l< − l‖ . (31)

Equations (29)–(31) ensure that

lim
<→∞

Δ2
<(B 9 ◦l<) = Δ2(B 9 ◦l) for 9 = 1, . . . , 1 . (32)

In terms of the random function I= (·; G?) = I1<(·; G?) in � defined by Equation (3), we can apply
Equation (32), the FCLT (4), and the generalized continuous mapping theorem to conclude that[

Δ2
<(B1◦I1<), . . . ,Δ2

<(B1◦I1<)
]T

=⇒
<→∞

[
Δ2(B1◦W ), . . . ,Δ2(B1◦W )

]T (33)
d
=

[
j2

1 (1), . . . , j
2
1 (1)

]T
, (34)

where the
{
j2

1 ( 9) : 9 = 1, . . . , 1
}
are i.i.d. chi-squared random variables, each with 1 degree of freedom.

Note that Equation (34) follows from the observation that if we let

W 9 (C) ≡ 11/2
[
W

( C + 9 − 1
1

)
−W

( 9 − 1
1

)]
for C ∈ [0, 1] and 9 = 1, . . . , 1, (35)

then we have

B 9 ◦W (C) = W 9 (C) − CW 9 (1) ≡ B 9 (C) d
= W (C) − CW (1) for C ∈ [0, 1] and 9 = 1, . . . , 1 (36)

becauseBrownianmotion is self-similar withHurst index 1/2 (Whitt 2002, §4.2.2). Moreover, the conclusion
(27) follows from (i) the property that W (1) and B(·) are independent; and (ii) the independent increments
property of W because the random functions {B 9 (·) : 9 = 1, . . . , 1} are respectively defined in terms of
increments of W (·) on the nonoverlapping subintervals

{(
( 9 − 1)/1, 9/1

]
: 9 = 1, . . . 1

}
of [0, 1] (Whitt

2002, §1.2.3).
From the foregoing discussion, we see that the

{
Ĥ? ( 9 , <) : 9 = 1, . . . , 1

}
and the

{
Δ2
<()9 ,<) : 9 =

1, . . . ,
}
are all asymptotically mutually independent as < →∞. From the observation that

Pr
{
1−1

1∑
9=1

j2
1 ( 9)

d
= j2

1

/
1 > 0

}
= 1, (37)
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together with Equation (6), Theorem 4, Equation (26), and the generalized continuous mapping theorem,
we see that

Ĥ? (1, <) − G?(
A 2
1,<

/
=
)1/2 =

=1/2 [ Ĥ? (1, <) − G?]
A1,<

=⇒
<→∞

/(
j2
1

/
1
)1/2

d
= C1 , (38)

where / is independent of j2
1

/
1, and C1 denotes a Student’s C random variable with 1 degrees of freedom.

This establishes the asymptotic validity of the CI (25).

Remark 2 The quantities Δ<()9 ,<) in Equation (26) can be computed in $
(
< log2 <

)
time by sorting the

sample corresponding to each batch, using pointers, and computing the expressions Δ<()9 ,<) backwards.
Then the overall computational complexity for the STS area estimator amounts to $

(
= log2 <

)
. So, aside

from some additive overhead related to updating the pointers, the STS area estimator has the same complexity
as the estimator based on the sample variance of the BQEs in Equation (39) below. J

4 EXPERIMENTAL RESULTS

In this section we conduct an empirical evaluation of the performance of the batched area variance estimator
A 2
1,<

in Equation (26) against the “classical” variance estimator based on the BQEs
{
Ĥ? ( 9 , <)

}
, namely

<(2
1,<

, where

(2
1,< ≡ (1 − 1)−1

1∑
9=1

[
Ĥ? ( 9 , <) − Ĥ? (1, <)

]2
, (39)

and the average Ĥ? (1, <) is defined in Equation (26); see Alexopoulos et al. (2019a). The respective
approximate 100(1 − U)% CI for G? based on Equation (39) is

H̃? (=) ± C1−U/2, 1−1(1,<
/
11/2 . (40)

We compared the latter interval against the following analogue of (25) based on the constant weight function
F(C) =

√
12, C ∈ [0, 1] (Schruben 1983) and centered at H̃? (=):

H̃? (=) ± C1−U/2, 1
[
A 2
1,<

/
=
]1/2

. (41)

The sole purpose of this evaluation is to validate the convergence of the batched area variance estimator
A 2
1,<

and the asymptotic validity of the CI in Equation (41). The evaluation of estimators A 2
1,<

based on
alternative weight functions (cf. Goldsman et al. 1990) as well as linear combinations of A 2

1,<
and (2

1,<

(cf. Schruben 1983) is the subject on ongoing work.

Remark 3 Recently we proved that under the assumptions of Theorem 1 as < → ∞, (i) the CI (40) is
asymptotically exact; and (ii) Bias

[
A 2
1,<

]
≡ E

[
A 2
1,<

]
− f2

�

/
5 2(G?) = $ (<−1/4). Moreover, we showed

that in steady-state operation, the M/M/1 queue waiting times satisfy the GMC condition. Proofs of these
results will appear in follow-up work. These results provide the basis for the following example. J

Example: M/M/1 Queue Waiting Times Our test process {-: : : ≥ 1} was generated by a stationary
M/M/1 queueing system with first-in-first-out (FIFO) service discipline, arrival rate _ = 0.8, and service
rate l = 1. Specifically, -: is the time spent in the queue by the :th arriving customer prior to service.

In this system the steady-state server utilization is d = _/l = 0.8, and the steady-state c.d.f. of -: is

� (G) =


0 if G < 0,
1 − d if G = 0,
1 − d4−l (1−d)G if G > 0;

(42)
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hence the steady-state distribution of -: has mean `- = d/(l−_) = 4, and the quantiles of this distribution
are easily evaluated by inverting Equation (42). This steady-state distribution is markedly nonnormal, having
an atom at zero, an exponential tail, and a skewness of 2(3−3d+ d2)/[d1/2(2− d)3/2] ≈ 2.1093. The latter
properties can induce a significant skewness in the corresponding BQEs

{
Ĥ? ( 9 , <)

}
that can degrade the

performance of the CI given in Equation (40), resulting in a coverage probability that can be substantially
below the nominal level (Alexopoulos et al. 2019a). Because of the atom at zero in the c.d.f. (42), we
only considered values of ? > 1 − d = 0.20.

The variance parameter f2
�
of the indicator process was computed from Equation (22) of Blomqvist

(1967). After some algebra, we obtained the following analytical expression for the asymptotic variance
f2 ≡ f2

�
/[ 5 (G?)]2:

f2 =
1

l2(1 − d)4

{
[−2 + ?(3 − d) + 2d] (1 + d)

1 − ? − 4d ln
( d

1 − ?

)}
. (43)

We generated the stationary version {.: : : ≥ 1} of this waiting-time process by sampling .1
using Equation (42), and then using Lindley’s recursion. Table 1 below studies the performance of the
aforementioned variance estimators and the approximate 95% CIs computed based on Equations (40) and
(41) for a fixed batch count 1 = 32 and increasing batch sizes < = 2ℓ , ℓ = 10, 11, . . . , 20. We note that
batch sizes with ℓ ≤ 15 are inadequate for variance estimation in this problem (Alexopoulos et al. 2019a).
All entries are based on 2,500 independent replications using the random-number package of L’Ecuyer
et al. (2002). We selected two values of ?, the upper quartile (? = 0.75) and the extreme value ? = 0.99.
Column 1 contains the values ?, G?, and f2 (in bold red type); and column 2 lists ℓ = log2(<). Columns
3 and 8 display the averages of the variance estimates A 2

1,<
(labeled as “STS Area Variance Estimator”)

and <(2
1,<

based on Equation (39) (labeled as “NBQ Variance Estimator”), while columns 4 and 9 display
the averages of the bias of the respective replicate variance estimates. Columns 5 and 10 list the standard
deviations of the STS area and NBQ variance estimators, while columns 6 and 11 contain the respective
standard errors (CI half-lengths divided by the associated C-quantile). Finally, columns 7 and 12 display
the estimated coverage probabilities of the 95% CIs in Equations (39) and (41), respectively.

A careful examination of Table 1 revealed the presence of substantial bias in the variance estimates; this
bias apparently became more prominent for extreme quantiles. For example, when ? = 0.75 the average
relative bias (bias divided by the true variance) of the STS area estimator decreased slowly from a whopping
47.1% above the asymptotic variance for < = 210 to about 0.2% for < = 220. When ? = 0.99, the variance
estimates approached their limit even more slowly, with a relative bias that started at nearly 85% below the
asymptotic variance for < = 210, became positive near < = 215, and then dropped slowly as < increased.
Notice that for < = 220 (total sample size = = 225 ≈ 33 million), the average relative bias of the STS area
estimator was 1.17% while the average relative bias of the NBQ variance estimator was a bit lower (0.94%).
These nonmonotone convergence patterns became more transparent from Figures 1 and 2. The behavior
of the bias of both estimators is an open problem and a subject of ongoing research. At this juncture, we
would like to caution the reader that for this extreme value of ?, the automated sequential procedure of
Alexopoulos et al. (2019a), that is based on the BQEs in Equations (39)–(40), often delivered CIs that
exhibited significant undercoverage while requiring excessive sample sizes. This motivated the development
of the Sequem procedure (Alexopoulos et al. 2017) for the more-difficult problem of estimating extreme
quantiles.

We now turn to the remaining statistics in Table 1. The standard deviation of the STS area estimator
also converged to the theoretical limit

[
2f4/1

]1/2
= 21/2 [f2

�
/ 5 2(G?)

]
/11/2 based on Equation (22). For

instance, when ? = 0.99 and < = 220, the average standard deviation 48921.9 was only 4.11% larger
than the theoretical limit f2/4 = 47815.2. When ? = 0.75, the estimated coverage probability of the
approximate 95% CIs was near the nominal rate for all batch sizes. Unfortunately, this was not the case
for ? = 0.99, when the approximate 95% CIs exhibited substantial undercoverage for moderate sample
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sizes; indeed, the estimated coverage probabilities started approaching 0.95 as < ≥ 216. Overall, both
methodologies appeared to be equally competitive when ? = 0.75, while the conventional NBQ method
appeared to dominate when ? = 0.99.

Table 1: Experimental results for a stationary waiting-time process in an M/M/1 queueing system with
traffic intensity d = 0.8. All estimates are based on 2500 independent replications with 1 = 32 batches and
batch sizes < = 2ℓ , ℓ = 10, 11, . . . , 20.

STS Area Variance Estimator NBQ Variance Estimator
?
(G?) 95% CI 95% CI

Variance ℓ Var. Est. Bias St. Dev. St. Error Cover. Var. Est. Bias St. Dev. St. Error Cover.
0.75 10 4853.0 1554.3 3419.9 0.3683 95.92 4798.4 1499.7 3211.7 0.3675 96.12

(5.8158) 11 4992.9 1694.2 3657.9 0.2652 96.56 4113.1 814.4 2162.2 0.2442 95.80
3298.7 12 4242.5 943.8 2046.1 0.1759 96.16 3703.1 404.4 1329.6 0.1657 95.96

13 3819.2 520.5 1402.5 0.1189 96.32 3466.6 167.9 1036.7 0.1138 95.68
14 3547.5 248.8 1045.6 0.0814 95.36 3366.1 67.4 905.0 0.0794 95.16
15 3412.5 113.8 936.5 0.0565 94.64 3345.8 47.1 878.2 0.0560 94.72
16 3356.4 57.7 873.3 0.0397 94.60 3337.2 38.5 861.3 0.0396 94.80
17 3332.1 33.4 859.7 0.0280 94.48 3327.3 28.6 839.2 0.0279 94.68
18 3316.1 17.4 814.8 0.0197 94.60 3312.8 14.1 829.5 0.0197 94.76
19 3310.2 11.5 838.5 0.0139 94.36 3306.4 7.7 856.2 0.0139 94.68
20 3292.4 −6.3 813.3 0.0098 94.64 3316.4 17.7 853.0 0.0099 95.04

0.99 10 27618.0 −163642.9 17700.9 0.8782 54.88 53584.8 −137676.1 30487.4 1.2358 71.00
(21.9101) 11 54706.7 −136554.2 37687.2 0.8694 67.96 80128.0 −111132.9 37863.4 1.0790 80.12
191260.9 12 92768.8 −98492.1 66686.8 0.7992 79.08 123087.5 −68173.4 56786.8 0.9468 89.04

13 135781.4 −55479.5 93622.5 0.6872 87.72 179439.6 −11821.3 87474.8 0.8065 93.52
14 179612.2 −11648.7 128351.8 0.5616 91.20 218074.5 26813.6 117142.2 0.6271 94.56
15 204721.9 13461.0 110567.3 0.4300 94.40 213376.8 22115.9 109485.9 0.4414 94.88
16 209708.5 18447.6 106715.1 0.3094 95.44 202610.7 11349.8 77118.1 0.3065 95.84
17 203575.5 12314.6 70787.1 0.2174 95.32 195545.3 4284.4 55570.2 0.2138 95.00
18 199606.7 8345.8 57125.7 0.1527 95.24 193632.8 2371.9 53765.4 0.1505 94.84
19 196112.6 4851.7 52084.9 0.1072 95.52 192647.7 1386.8 51991.8 0.1062 95.20
20 193492.2 2231.3 49780.2 0.0753 95.52 193054.5 1793.6 48724.2 0.0753 95.16

Figure 1: Average variance estimates for the marginal 0.75-quantile of a stationary waiting-time process
in an M/M/1 queueing system with traffic intensity d = 0.8. All estimates are based on 2500 independent
replications with 1 = 32 batches and batch sizes < = 2ℓ , ℓ = 10, 11, . . . , 20.
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Figure 2: Average variance estimates for the marginal 0.99-quantile of a stationary waiting-time process
in an M/M/1 queueing system with traffic intensity d = 0.8. All estimates are based on 2500 independent
replications with 1 = 32 batches and batch sizes < = 2ℓ , ℓ = 10, 11, . . . , 20.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we developed the theoretical foundations for nonoverlapping batch-based STS point and
CI estimators for marginal quantiles arising from steady-state simulation output. The theory and several
generalizations are the subjects of ongoing work, where we: (i) provide all proofs in a complete, self-
contained form; (ii) provide more details on point estimator properties; (iii) study area estimators based on
various weight functions; (iv) consider other STS estimators besides the area estimator, e.g., the Cramér–von
Mises (CvM) estimator; (v) offer an extensive Monte Carlo study so as to better depict empirical estimator
performance; and (vi) study overlapping versions of the area and CvM estimators. Our ultimate goal is
the devise automated sequential procedures for delivering CIs for steady-state quantiles satisfying both
absolute and relative precision requirements, as motivated by the effectiveness of the SPSTS method for
the steady-state mean in Alexopoulos et al. (2016).
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