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ABSTRACT

Simulation experiments are sometimes conducted periodically, with updated parameters of the stochastic
system being modeled. Storing and reusing the past simulation experiment data may be helpful for the
current simulation experiment. In this paper, we consider reusing simulation data in repeated experiments to
develop high-quality metamodels. Specifically, we propose a generalized least square regression metamodel
whose input data include simulation outputs from the current and the past experiments. Moreover, the past
simulation outputs are reused via the likelihood ratio method. Asymptotic variance analysis is provided to
show the benefits of reusing past simulation data in prediction accuracy, and the numerical results show
the effectiveness of the proposed method.

1 INTRODUCTION

Simulation is a powerful tool to study different properties and performances for stochastic systems. For
example, investors can use dynamic asset simulation models for pricing complex financial derivatives and
estimating various risk measures for financial portfolios. In the current COVID-19 pandemic, we see that
simulation models can help health experts to predict the spread of the virus and guide major social and
economic decisions. In practice, simulation experiments are often ran periodically as the stochastic system
evolves over time. For example, in many financial institutions simulations are ran monthly or even daily to
reflect new market information and to constantly monitor the changing risk positions. We also see health
experts around the world frequently update their simulation models and provide new projections on the
numbers of infected patients and deaths due to COVID-19.

Typically, when the stochastic system of interest evolves, the simulation model is updated accordingly.
Then, new simulation experiments are conducted from blank slate, i.e., simulation outputs from past
simulation experiments are usually, if not always, discarded. This is a wasteful use of simulation outputs,
especially when model updates are minimal so outputs from past simulation experiments can still be useful
for the current simulation model. Also, simulation experiments are sometimes computationally expensive
so the outputs are scarce resources. This scarcity further justifies the reusage of existing simulation outputs
from past experiments. Lastly, past experiments can be viewed as some offline simulations that aid the
online decision-making in the current experiment. Specifically, simulation outputs from past experiments
can be used to calibrate predictive models (offline simulation stage), which are then used to make predictions
about the current simulation problem (online application stage).

This study is based on two main inspirations: Green simulation (Feng and Staum 2015; Feng and Staum
2017) and offline simulation online application (OSOA) (Hong and Jiang 2019; Jiang et al. 2019) . Green
simulation is a novel experiment design paradigm that views simulation outputs as valuable resources that
should be recycled and reused to improve the efficiency of repeated experiments. Different implementations
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of green simulation designs, such as likelihood ratio based methods (Feng and Staum 2017), control variate
based methods (Feng and Staum 2016), and metamodeling based methods (Dong et al. 2018) have been
studied in the literature. The likelihood ratio method (Beckman and McKay 1987; L’Ecuyer 1990), which is
mathematically similar to the well-known importance sampling variance reduction technique (Owen 2013;
Glasserman 2013). The proposed method in this study differs from (Feng and Staum 2017) in that the
likelihood ratio estimates are not used directed, but rather used as data points for a regression metamodel,
which is different from the likelihood ratio metamodel in (Dong et al. 2018). Lastly, unlike (Feng and Staum
2016), control variate is not considered in this study. Green simulation via likelihood ratio method adapts
the likelihood ratio method in the context of repeated experiments and study the temporal convergence
properties as the experiments are repeated indefinitely. Besides estimation problems, green simulation via
likelihood ratio has also been applied in optimization (Maggiar et al. 2018; Feng et al. 2018) and input
uncertainty quantification (Zhou and Liu 2018; Feng and Song 2019).

The OSOA framework proposes to run experiments at different values of the covariates and build
predictive models (offline simulation stage) so that the performance of the models may be predicted once
the values of the covariates are observed. When the real-time problems arises (online application stage), the
predictive models are used to assist the decision-making process. In a financial engineering application, Jiang
et al. (2019) proposed a logistic regression approach to monitor online financial risk measures, and derived
several enhanced methods to improve the prediction accuracy; Jiang et al. (2020) adopted the OSOA with
stochastic cokriging in financial derivatives pricing and risk management. The OSOA has also been applied
in simulation optimization, see Shen et al. (2018) and Gao et al. (2019).

The contribution of this paper is as follows. We combine green simulation and OSOA to improve
the efficiency of simulation experiments. Specifically, we develop accurate functional approximation for
stochastic systems via regression by reusing simulation outputs that were generated in the past. The
stochastic systems of interest evolve over time in a certain way so that past simulation outputs can be
appropriately re-weighted via likelihood ratios to produce unbiased estimates of the current stochastic
system’s performances. These likelihood-ratio weighted estimates, combined with the current simulation
outputs, are used to calibrate a regression metamodel. We show that such augmentation of data set always
improves the regression’s prediction accuracy, compared to only using the current simulation outputs. The
remainder of this article is organized as follow: Section 2 articulates the mathematical settings of our study
and reviews two main building blocks of our proposal. Section 3 provides the methodological details and
variance analysis of the likelihood ratio regression method. Section 4 presents two numerical examples to
illustrates the advantages of the likelihood ratio regression method. Section 5 concludes

2 SETTINGS AND PROBLEM FORMULATION

We are interested in approximating a parameterized function f : (X ,Θ) 7→ R given by

fθ (x) =
∫

Ξ

F(x,ξ )hθ (ξ )dξ = E[F(x,ξθ )], (1)

where F(x, ·) is measurable for all x and hθ (ξ ) is a probability density or mass function for the random
variable ξθ ; some or all of x, θ , and ξ can be vectors. The simulation model F(x,ξ ) is a semi-black-box
model where the users have access to the embedded random variable ξθ but the input-output relationship
F is unknown or complex. The design variable x encodes the deterministic components of the simulation
model that does not affect the model’s embedded random variables. In contrast, θ encodes the distributional
parameters that govern the random variable ξθ in the stochastic simulation.

We are interested in repeated experiments where the distributional parameter θ changes in each
experiment. For example, the experiment may be repeated periodically with updated parameter θ based
on a new real-world information collected between two experiments. In each experiment, the expected
simulation performance fθ (x) for multiple values of x or even the whole response surface for all x ∈X
is of interest to perform what-if analysis, sensitivity analysis, and/or optimization. For example, suppose
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an investor rebalances her portfolio weekly. Every week, she runs simulation experiments to estimate the
sufficient amount of cash that she needs to set up the portfolio in the next week. The simulation model
projects many plausible asset values in a week (i.e., the x’s) then estimates the corresponding portfolio
value (i.e., the fθ (x)’s) using updated market volatility parameter (i.e., the θ ).

For simplicity, in this study we consider one past simulation experiment that was ran using parameter
θ0 and one current experiment whose parameter has been updated as θ1; the proposed methodology can
be extended to more than two repeated experiments. In a typical workflow for repeated experiments, new
simulation experiments are ran using the updated parameter θ1; past simulation outputs associated with
parameter θ0 are discarded. In this section, we develop a novel simulation methodology that reuses these
past simulation outputs to enhance the accuracy and efficiency of the current experiment.

2.1 Regression using Simulation Outputs

Consider a fixed parameter θ ∈Θ, the function fθ (x) can be approximated via regression using the simulation
outputs F(x,ξθ ). For ease of exposition, consider a linear model

Yθ (x) := fθ (x) = [φφφ(x)]>βββ θ , (2)

where φφφ(·) = (φ1(·), . . . ,φk(·))> is a given set of basis functions and βββ θ = (βθ ,1, . . . ,βθ ,k)
> are the corre-

sponding regression coefficients. This is a linear model in φφφ , but the basis functions φφφ(·) can be nonlinear
functions of the covariate x. Asymptotic properties for regression methods have long been studied (White
1984), some of which are summarized in Section 3. Simulation outputs satisfy the assumptions required of
the data by regression models, sometimes trivially. Regression using simulation outputs has been studied
and used in financial applications such as American option pricing (Longstaff and Schwartz 2001; Tsitsiklis
and Van Roy 2001; Stentoft 2004) and risk measurement (Broadie et al. 2015; Jiang et al. 2019).

Let x1, . . . ,xm ∈X be a given set of covariates that are of interest in the current experiment. Suppose
for every covariate x1, . . . ,xm one can obtain point estimates Ŷθ (x1), . . . ,Ŷθ (xm) via simulation, then the
simulation outputs can be organized as a data set Yθ := {(Ŷθ (x j),x j) : j = 1, . . . ,m}. This data set can then
be used to calibrate the regression coefficients β̂ββ θ = β̂ββ (Yθ ) via the least-square regression, the maximum
likelihood estimation (MLE), etc. For example, for any design point x ∈X , a standard Monte Carlo
estimator for Yθ (x) is

Ŷ MC
θ (x) =

1
n

n

∑
i=1

F(x,ξ (i)
θ
), ξ

(i)
θ

i.i.d.∼ hθ , i = 1, . . . ,n. (3)

We assume that Var[F(x,ξθ )] < ∞ so the Monte Carlo estimator (3) has a finite variance for all x ∈X
and all θ ∈ Θ. Then, after running simulation experiments at x j, j = 1, . . . ,m, the simulation outputs
Y MC

θ
:= {(Ŷ MC

θ
(x j),x j) : j = 1, . . . ,m} form a data set for regression. The Monte Carlo estimator (3) is

unbiased, so the sample average can be written as

Ŷ MC
θ (x j) = Yθ (x j)+ ε(x j), E[ε(x j)] = 0, ∀ j = 1, . . . ,m.

Setting θ = θ1 for the current experiments, the regression coefficient can be estimated by using these

simulation outputs, i.e., β̂ββ
MC
θ1

:= β̂ββ (Y MC
θ1

).
It is natural to use only the current simulation outputs Y MC

θ1
to calibrate the regression model Yθ1(x).

However, in the settings of repeated experiments, past simulation outputs associated with a different
parameter θ0 can also be useful for approximating fθ1(x). Firstly, the simulation model F is the same
in both the past and the current experiments, so the past simulation outputs contain useful information
about the simulation model. Also, in the regression model (2), the basis functions are the same in both the
past and the current experiments; only the regression parameters βββ θ vary with θ . Lastly, past simulation
outputs can be conveniently stored in a database and be rapidly retrievable without running any simulation
experiments. So, rather than discarding these relevant and cheaply available past simulation outputs, we
propose to reuse them.
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2.2 Reusing Simulation Outputs via Likelihood Ratio Estimators

Consider any fixed design point x ∈X . Suppose the past simulation experiment was ran at x using
parameter θ0 and the simulation outputs {(F(x,ξ (i)

θ0
),x) : i = 1, . . . ,n} are stored and readily accessible.

The parameter for the current experiment is θ1.
Recall the probability density function (pdf) hθ (ξ ) in (1). We assume throughout this study that hθ is

a well-defined pdf for all θ ∈Θ and that all these pdfs have a common support Ξ. Then, for any x ∈X ,
the following identity holds:

fθ1(x) =
∫

Ξ

F(x,ξ )hθ1(ξ )dξ =
∫

Ξ

F(x,ξ )
hθ1(ξ )

hθ0(ξ )
hθ0(ξ )dξ = E

[
F(x,ξθ0)

hθ1(ξθ0)

hθ0(ξθ0)

]
. (4)

Based on (4), a likelihood ratio (LR) estimator for fθ1(x) is given by

Ŷ LR
θ1,θ0

(x) =
1
n

n

∑
i=1

F(x,ξ (i)
θ0
)
hθ1(ξ

(i)
θ0
)

hθ0(ξ
(i)
θ0
)
, ξ

(i)
θ0

i.i.d.∼ hθ0 , i = 1, . . . ,n. (5)

Mathematically, the LR estimator (5) is identical to a standard importance sampling estimator, but they
are used in different situations and for different purposes: Importance sampling selects a good sampling
parameter θ0 so that the resulting estimator for fθ1(x) has a small variance. Users of LR estimator could
not select the sampling parameter θ0 in the past experiment, but rather aim to reuse the past simulation
outputs to estimate fθ1(x) for the current parameter θ1.

Clearly, by identity (4), the LR estimator (5) is unbiased. So, suppose the past experiment was ran
using parameter θ0 at different covariates x0

1, . . . ,x
0
m0

, and we can write

Ŷ LR
θ1,θ0

(x0
j) = Yθ1(x

0
j)+ ε(x0

j), E[ε(x0
j)] = 0, j = 1, . . . ,m0.

Moreover, if the LR-weighted simulation outputs F(x0
j ,ξθ0)

hθ1 (ξθ0 )

hθ0 (ξθ0 )
all have finite variances, the error terms

ε(x0
j), j = 1, . . . ,m are asymptotically normally distributed as n→ ∞ by the central limit theorem. Lastly,

assuming the simulation experiments at different points x0
j were ran independently, the error terms are mutually

independent. We denote the LR-weighted simulation outputs by Y LR
θ1,θ0

:=
{(

Ŷ LR
θ1,θ0

(x0
j),x

0
j

)
: j = 1, . . . ,m0

}
.

The covariates in the past experiment can be different from those in the current experiment; we assume
they are all distinct for simplicity.

We propose to combine the LR-weighted simulation outputs Y LR
θ1,θ0

with the current simulation outputs
Y MC

θ1
to calibrate the regression model fθ1(x). Detailed discussions and analysis are provided in in Section 3.

Before proceeding, we note some limitations of the regression method and the likelihood ratio method,
which reflect the importance of our approach:

• One limitation of the LR estimator (5) is that the simulation output F(x,ξθ0) can only be reused
to estimate Yθ1(x) for the same covariate x; this limitation is rooted in the identity (4) and cannot
be lifted easily. In the presence of covariate x that does not affect the distributions of the random
variates in a stochastic simulation, (5) cannot be used to approximate the fθ (x′) for any x′ 6= x.
If only the distributional parameter θ changes between the past and the current experiments, the
unbiased LR-based metamodel in Dong et al. (2018) would be applicable.

• One can argue, correctly and understandably, that the distributional parameter θ can be amalgamated
into the covariate x in the regression model. Then the resulting regression parameter βββ would
not depend on the parameter θ . This argument is mathematically correct, but the suggested
implementation can be difficult or undesirable in the setting of repeated experiments.
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– The distributional parameter θ is only updated once in each experiment, so one needs to wait
for many repetitions of experiments to get simulation outputs associated with a reasonable
number of different values of θ . It may not be straightforward to determine the right number
of waiting periods. Also, during the waiting period, simulation outputs would likely be wasted.

– Even granted a sufficient amount repeated experiments to justify regression on θ , the current
experiment’s parameter can be close to or even outside the boundary of the parameters seen
in the past. This leads to extrapolating the regression model, which often results in inaccurate
predictions. In contrast, users often have some controls over the design points to avoid or to
alleviates extrapolation.

– Lastly, viewing θ as merely a covariate in the regression model does not take full advantage of
the known the density functions hθ . In other words, the unbiased LR estimators are overlooked.
Discarding these unbiased estimators and instead run an unnecessarily high-dimension regression
(with both x and θ as the covariates) appears to be counter-intuitive and undesirable.

3 LIKELIHOOD RATIO REGRESSION

We propose a novel methodology that reuses existing simulation outputs Yθ0 to enhance the approximation
accuracy of the function fθ1(x) for the current parameter θ1. As alluded in Section 2, we propose to combine
the past simulation outputs with the current ones, i.e., Yθ

+
1
= Y LR

θ1,θ0

⋃
Y MC

θ1
, then approximate fθ1(x) via

regression. Intuitively, by reusing the past simulation outputs, the regression parameter estimated from the
combined data set, i.e., β̂ββ θ

+
1

:= β̂ββ (Yθ
+
1
), produces a more accurate regression model than the one based

on only the current data set, i.e., β̂ββ θ1
= β̂ββ (Y MC

θ1
). This section elaborates the methodological details and

provides asymptotic analysis of the proposed method.

3.1 Reusing Simulation Outputs via Likelihood Ratio Regression

Consider the following regression model at given covariates x1, . . . ,xm,

Ŷθ (x j) := fθ (x j) = [φφφ(x j)]
>

βββ θ + ε(x j), (6)

where the error terms ε(x j), j = 1, . . . ,m, satisfy E[ε(x j)] = 0, Var[ε(x j)] =σ2
j , and are mutually independent.

Here we use m, with appropriate subscripts, to denote the number of design points in a simulation experiment.
For instance, the past and the current experiments have m0 and m1 design points, respectively. Consequently
the combined data set Yθ

+
1

has m0 +m1 covariates in total.

In matrix notation, the linear model (6) is written as ŶYY θ = ΦΦΦβββ θ +εεε, where ŶYY θ = [Ŷθ (x1), . . . ,Ŷθ (xm)]
>

is an m× 1 vector, ΦΦΦ is an m× k matrix, βββ θ a k× 1 vector, and εεε an m× 1 vector. For notational
convenience, denote the m×m covariance matrix of error vector by ΩΩΩ = Var[εεε]. Given a data set
Yθ := {(Ŷθ (x j),x j) : j = 1, . . . ,m}, one can organize the response variables into a vector ŶYY θ and calculate
the matrix ΦΦΦ using the covariates x1, . . . ,xm. Suppose the error covariance matrix ΩΩΩ is known, then one
can show (White 1984, Chapter 1) that the generalized least square (GLS) estimator for βββ θ is

β̂ββ θ := β̂ββ (Yθ ) = (ΦΦΦ>ΩΩΩ
−1

ΦΦΦ)−1
ΦΦΦ
>

ΩΩΩŶYY θ . (7)

Asymptotic properties for β̂ββ θ are summarized in Lemma 1.
Lemma 1 [Paraphrase of Theorem 1.3 in (White 1984)] Suppose that

(i) The data Yθ is generated by ŶYY θ = ΦΦΦβββ θ + εεε for some βββ θ < ∞.
(ii) The design matrix ΦΦΦ is a finite nonstochastic m× k matrix.

(iii) The covariance matrix ΩΩΩ is finite and positive definite and ΦΦΦ
>

ΩΩΩ
−1

ΦΦΦ is nonsingular for all m≥ k.
(iv) E[εεε] = 000, i.e., every error term has a zero mean.
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(v) εεε ∼N (000,ΩΩΩ), i.e., εεε follows a multi-variate normal distribution with zero mean and covariance
matrix ΩΩΩ.

Then

(a) Given (i)-(iii), β̂ββ θ exists for all m≥ k and is unique.
(b) Given (i)-(iv), E[β̂ββ θ ] = βββ θ .

(c) Given (i)-(v), β̂ββ θ ∼N
(

βββ θ ,(ΦΦΦ
>

ΩΩΩ
−1

ΦΦΦ)−1
)

.

Methodologically, our proposal is rather straightforward: We propose combine the past and the current
simulation outputs to calibrate the regression model (6) for the current parameter θ1, i.e.,

β̂ββ θ
+
1
= β̂ββ (Yθ

+
1
). (8)

It is then of our interest to analyze the properties of the combined GLS estimator (8). The variance
analysis in the following discussions show that β̂ββ θ

+
1

is asymptotically more accurate than the GLS estimator

β̂ββ θ1
= β̂ββ (Y MC

θ1
) that uses only the current simulation outputs. For notational convenience, in subsequent

discussions we add the subscripts 0, 1, and 1+ to our notations, such as ΦΦΦ1 and ΩΩΩ1+ , to denote quantities
associated with the past data set Yθ1 , the current data set Yθ1 , and the combined data set Yθ

+
1

, respectively.

3.2 Variance Analysis of Likelihood Ratio Regression

The following assumptions were alluded to previous discussions and are restated for clarity. These
assumptions are standard in analyzing likelihood ratio estimators, as they ensure that the LR estimator (5)
is unbiased and has a finite variance.
Assumption 1 Assume that the density function hθ (ξ ) has a common support Ξ for all θ ∈ Θ. Also,
assume that Var[F(x,ξθ ′)

hθ (ξθ ′ )
h

θ ′ (ξθ ′ )
]< ∞ for all θ ,θ ′ ∈Θ and for all x ∈X .

Assumption 1 ensures that all our LR estimators are well-defined and that the error covariance matrix
ΩΩΩ1+ is finite. In subsequent analysis, we assume that the basis functions φφφ(·) = (φ1(·), . . . ,φk(·))> and
the corresponding design matrix ΦΦΦ1+ satisfy (i)-(iii). So, by (a) in Lemma 1, β̂ββ θ

+
1

exists and is unique.

For condition (iv), both the Monte Carlo estimators Ŷθ (x j), j = 1, . . . ,m, and the LR estimators Ŷ LR
θ ,θ ′(x

0
j),

j = 1, . . . ,m0, are unbiased, so E[εεε] = 000 in the combined data. Therefore, E[β̂ββ θ
+
1
] = βββ θ1

by Lemma 1.

Assumption 2 For the current data set Y MC
θ1

, assume that the error terms ε(x j) = Yθ1(x j)− Ŷ MC
θ1

(x j) ∼
N (0,σ2(x j)) for some σ2(x j)> 0, for all j = 1, . . . ,m. For the LR-weighted data set Y LR

θ1,θ0
, assume that

the error terms ε(x0
j) = Yθ1(x

0
j)− Ŷ LR

θ1,θ0
(x0

j)∼N (0,σ2(x0
j)) for some σ2(x0

j)> 0, for all j = 1, . . . ,m0.
We note that Assumption 2 does not hold in general, as the distribution of the simulation outputs

F(x,ξ ) and that of the LR-weighted outputs are often unknown and complex. Nonetheless, the estimators
Ŷθ (x j) and Ŷ LR

θ ,θ ′(x
0
j) are usually sample averages of i.i.d. random variables. Therefore, as the number of

replications at each covariate grows, the central limit theorem dictates that the error terms are asymptotically
normally distributed. One of our future research objective is to adapt the conclusions of Lemma 1 to
such asymptotic normality. If Assumptions 1 and 2 hold, then β̂ββ θ1

∼ N
(

βββ θ1
,(ΦΦΦ>1 ΩΩΩ

−1
1 ΦΦΦ1)

−1
)

and

β̂ββ θ
+
1
∼N

(
βββ θ1

,(ΦΦΦ>1+ΩΩΩ
−1
1+ ΦΦΦ1+)

−1
)

by Lemma 1.
We observe that, as the simulation experiments at different covariates are ran independently, all

covariance matrices ΩΩΩ0, ΩΩΩ1, and ΩΩΩ1+ are diagonal. Specifically, the diagonal elements are ΩΩΩ0 =
diag[σ2(x0

1), . . . ,σ
2(x0

m0
)], ΩΩΩ1 = diag[σ2(x1), . . . ,σ

2(xm1)], and ΩΩΩ1+ = diag[ΩΩΩ0,ΩΩΩ1]. Also, by construc-
tion, ΦΦΦ

>
1+ = [ΦΦΦ>0 ,ΦΦΦ

>
1 ]. These observations lead to the variance analysis in Proposition 1.
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Proposition 1 Suppose Assumptions 1 and 2 hold and that ΦΦΦ
>
1 ΩΩΩ
−1
1 ΦΦΦ1 and ΦΦΦ

>
0 ΩΩΩ
−1
0 ΦΦΦ0 are non-singular.

Then

(i) Every element in the combined GLS estimator β̂ββ θ
+
1

has a smaller variance than the variance its

counterpart in β̂ββ θ1
, i.e.,

Var[β̂θ
+
1 ,`]< Var[β̂θ1,`], ∀`= 1, . . . ,k. (9)

(ii) The prediction variance of the regression model with the combined GLS estimator β̂ββ θ
+
1

is smaller

than one with β̂ββ θ1
, i.e., for any covariate x and corresponding explanatory variables φφφ = φφφ(x),

Var
[
φφφ
>

β̂ββ θ
+
1

]
< Var

[
φφφ
>

β̂ββ θ1

]
. (10)

Proof. By the Woodbury identity we have

(ΦΦΦ>1+ΩΩΩ
−1
1+ ΦΦΦ1+)

−1 =

([
ΦΦΦ
>
0 ΦΦΦ

>
1
][ΩΩΩ

−1
0 000
000 ΩΩΩ

−1
1

][
ΦΦΦ0
ΦΦΦ1

])−1

= (ΦΦΦ>0 ΩΩΩ
−1
0 ΦΦΦ0 +ΦΦΦ

>
1 ΩΩΩ
−1
1 ΦΦΦ1)

−1

= AAA−1−AAA−1(AAA−1 +BBB−1)−1AAA−1.

where AAA := ΦΦΦ
>
1 ΩΩΩ
−1
1 ΦΦΦ1 and BBB := ΦΦΦ

>
0 ΩΩΩ
−1
0 ΦΦΦ0. For convenience, let AAA`,`, AAA`·, and AAA·` be the (`,`)-th element,

the `-th row, and the `-th column of any matrix AAA.
Since ΩΩΩ1 and ΩΩΩ0 are diagonal and positive definite, AAA and BBB are positive definite. Consequently, AAA−1

and BBB−1 are positive definite. Finally, AAA−1 +BBB−1 and (AAA−1 +BBB−1)−1 are positive definite. Therefore, for
any `= 1, . . . ,k, we have

AAA−1
`· (AAA

−1 +BBB−1)−1AAA−1
·` = [AAA−1

·` ]>(AAA−1 +BBB−1)−1AAA−1
·` > 0,

and so

Var[βθ
+
1 ,`] = [(ΦΦΦ>1+ΩΩΩ

−1
1+ ΦΦΦ1+)

−1]`,` = AAA−1
`,` −AAA−1

`· (AAA
−1 +BBB−1)−1AAA−1

·` < [(ΦΦΦ>1 ΩΩΩ
−1
1 ΦΦΦ1)

−1]`,` = Var[βθ1,`].

For any covariate x and corresponding basis function values φφφ(x),

Var
[
φφφ
>

β̂ββ θ
+
1

]
= φφφ

>Var
[
β̂ββ θ

+
1

]
φφφ

= φφφ
>(ΦΦΦ>1+ΩΩΩ

−1
1+ ΦΦΦ1+)

−1
φφφ

= φφφ
>
[
(ΦΦΦ>1 ΩΩΩ

−1
1 ΦΦΦ1)

−1−AAA−1(AAA−1 +BBB−1)−1AAA−1
]

φφφ

= φφφ
>(ΦΦΦ>1 ΩΩΩ

−1
1 ΦΦΦ1)

−1
φφφ −φφφ

> [AAA−1(AAA−1 +BBB−1)−1AAA−1]
φφφ

= Var
[
φφφ
>

β̂ββ θ1

]
− [AAA−1

φφφ ]>(AAA−1 +BBB−1)−1[AAA−1
φφφ ]< Var

[
φφφ
>

β̂ββ θ1

]
,

where the last inequality holds because (AAA−1 +BBB−1)−1 is positive definite.

Proposition 1 shows the benefits of reusing past simulation outputs: (9) indicates a more accurate GLS
estimator and (10) indicates more accurate predictions from the regression model. More importantly, the
improved accuracy is obtained without running any additional simulation experiments, as we merely reuse
the simulation outputs from experiments that were ran in the past.

There are a few caveats in the proposed method. Compared to a regression that uses only the current
simulation outputs, reusing the LR-weighted simulation outputs from the past experiment requires:
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• Additional storage. When implementing the likelihood ratio regression method, the individual
replications of unweighted simulation outputs

{F(x0
j ,ξ

(i)
j ) : i = 1, . . . ,n, j = 1, . . . ,m0}

are stored and reused. In the current era, abundant low-cost storage and quick retrieval of stored
data are fair technological assumptions.

• Additional computations for calculating the likelihood ratios and calibrating a larger regression
model.

– As the unweighted simulation outputs {F(x0
j ,ξ

(i)
j ) : i = 1, . . . ,n, j = 1, . . . ,m0} are stored, the

likelihood ratios
hθ1 (ξ

(i)
θ0
)

hθ0 (ξ
(i)
θ0
)

for all i = 1, . . . ,n are needed for unbiased LR estimates.

– The unbiased LR estimates from the past experiment add more covariates into the regression
model, which increases the size of the design matrix ΦΦΦ1+ , the covariance matrix ΩΩΩ1+ , and the
responses ŶYY θ . So it requires more computations to calculate β̂ββ (Yθ

+
1
) than calculating β̂ββ (Yθ1).

Nonetheless, we envision that the proposed methodology is valuable for applications where the simulation
model F(x,ξ ) is computationally expensive. Then the above additional computations are negligible compared
to running additional simulation experiments.

4 NUMERICAL EXAMPLES

Two numerical examples are considered in this section to illustrate the advantages of the proposed likelihood
ratio regression method. Firstly, a toy example is considered to demonstrate the improved accuracy of
the proposed method in a simple setting. The second example considers estimating the risk of a financial
option portfolio, which reflects the advantage of the proposed method in a practical application.

4.1 Illustrative Toy Example

Consider a simulation experiment with distributional parameter θ = (µ,σ2), random variable ξθ ∼
N (µ,σ2), and F(x,ξθ ) = ξθ x. For any distributional parameter θ = (µ,σ2), it is of interest to ap-
proximate the function

fθ (x) = E[F(x,ξθ )] = E[ξθ x] = µx.

We will use simulation outputs to calibrate a linear regression model

Yθ (x) = β0 +β1x.

Note that the estimated intercept can be non-zero.
The parameters in the current experiment are θ1 = (µ1,σ

2
1 ) = (−1,2), so the desired response surface

is fθ1(x) =−x. In the current experiment, we first randomly select x j, j = 1, . . . ,m1 covariates in the range
[0,5], then run n = 5 replications at each of the covariates. Also, for an illustration purpose, suppose the
past experiment was ran with parameters θ0 = (µ0,σ

2
0 ) = (1,5). In the past experiment, the covariates x0

j ,
j = 1, . . . ,m0 are also randomly and uniformly selected in the range [0,5], each had n = 5 replications.

Three sets of simulation outputs can be constructed from the past and the current experiments: The
current simulation outputs, Y MC

θ1
= {(Ŷ MC

θ1
(x j),x j) : j = 1, . . . ,m1}; The unweighted simulation outputs

from the past experiment, Y MC
θ0

= {(Ŷ MC
θ0

(x0
j),x

0
j) : j = 1, . . . ,m0}; The LR-weighted simulation outputs

from the past experiment, Y LR
θ1,θ0

= {(Ŷ LR
θ1,θ0

(x0
j),x

0
j) : j = 1, . . . ,m0}.

We consider these three different data sets to calibrate the regression model:

(i) The current data set Y MC
θ1

, denoted by P2 in Figure 1.
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(ii) Directly combine the past and the current data sets without any LR-weight, i.e., Y MC
θ0

⋃
Y MC

θ1
;

denoted by CD in Figure 1.
(iii) Combine the LR-weighted outputs from the past experiment with the current simulation outputs

(denoted by LR), i.e., Y LR
θ1,θ0

⋃
Y MC

θ1
; denoted by LR in Figure 1.

For each of the above three data sets, we estimate the GLS estimates of β0 and β1, where the variances
at each covariate is estimated via the independent replications at that covariate. We compare the prediction
accuracies of the three resulting regression models to the true model fθ1(x) = µ1x at 100 equally-spaced
prediction points x = 0.05,0.1, . . . ,5. Specifically, we repeated the entire two-periods simulation and
calibrate the three regression models 100 times, i.e., macro replications. In each macro replication, the
root mean squared errors (RMSE) of the three regression model on these predictions points are calculated.
Figure 1 depicts the box plots of the RMSEs for the three different approaches in different settings.

P2 CD LR
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Figure 1: Boxplots of the three approaches for m1 = m2 = 5 (left panel) and m1 = 10,m2 = 2 (right panel).

We make the following observations from Figure 1: Firstly, in the left panel, the “CD” box plots
show higher average and wider spread of RMSEs than those of “P2”. This means that, while reusing
existing simulation outputs is an intuitive idea, it requires innovations and cautions to improve, rather than
worsening, the computational efficiency. Secondly, the “LR” box plots have lower average and smaller
spreads than the “P2” box plots, which indicates that the proposed LR regression approach is better than the
regression approach without reusing past simulation outputs. Thirdly, in the right panel, we only simulate
at two covariates points in the current experiment. This emulates cases where very limited computation is
available in the current period. In this case, the proposed LR regression, which reuses the past simulation
outputs, produces much more accurate regression models than regression using only the (very limited)
current simulation outputs.

4.2 Option Portfolio

In this example, the portfolio consists of European options, whose mature time T = 1 year, based on the
same underlying asset driven by a geometric Brownian motion: (i) Long one call option with strike K1 = 8;
(ii) Short two call options with strike K2 = 10; (iii) Long one call option with strike K3 = 12; (iv) Long
one call option with strike K4 = 16; (v) Short two call options with strike K5 = 18; (vi) Long one call
option with strike K6 = 20. Notice that the first three options form a butterfly strategy that designs to earn
a profit when the future underlying asset is close to K2. Similarly the last three options are designed to
earn a profit when underlying asset is closed to K5. So the entire option portfolio will earn a profit when
the underlying asset is close to either K2 or K5. Using to the Black-Scholes formula for vanilla European
options, we can obtain a closed-form price formula, as a function of the current underlying stock price, of
the option portfolio.
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Now suppose that we want to learn the price formula of the portfolio based on the data generated
by simulation experiments (offline simulation) and use the formula in solving real-time problems (online
application). Specifically, we learn the price formula every weekend and use the learned formula for
the following week. We also assume that the risk-free interest rate and volatility are re-calibrated every
weekend, so the price distribution of underlying asset are changed every week due to the updated model
parameters. We consider a three-week procedure (three periods) of reusing simulation data, and set
θ1 = (r1,σ1) = (0.05,0.3), θ2 = (r2,σ2) = (0.04,0.25), and θ3 = (r3,σ3) = (0.05,0.28). The following
basis functions are used:

φφφ(x) = (x,x2,x3,(x−K1)
+,(x−K2)

+, . . . ,(x−K6)
+)),

where x is the price of the underlying asset at the time of learning the formula, i.e., the design point.
Suppose that we focus on the price formula of the portfolio on the range x ∈ [5,25]. Notice that, in this

example, if the number of design points in one week is small, (x−Ki)
+ for some i = 1, . . . ,6, may just equal

to x−Ki, so combing x with these basis functions may cause multicollinearity (or near multicollinearity),
and the matrix ΦΦΦ

>
ΩΩΩΦΦΦ may not be invertible (close to singular). Such numerical difficulty makes the

prediction result via the price formula unreliable and inaccurate at least. However, if we reuse the past
simulation data in the LR regression, more design points are added and the multicollinearity issue is much
less likely. We set m1 = m2 = m3 = 10, 15, and 20, and for each case, we set n = 100, n = 1000, and
n = 10000. We use W3 and LR to denote regression using only the current simulation outputs and the
combined LR-weighted simulation outputs, respectively. Table 1 shows that our proposed LR regression
significantly alleviate the aforementioned multicollinearity issue.

Table 1: The percentage of the non-invertible cases of ΦΦΦ
>

ΩΩΩΦΦΦ based on 1000 replications.

m1 = m2 = m3 = 10 m1 = m2 = m3 = 15 m1 = m2 = m3 = 20
n = 102 n = 103 n = 104 n = 102 n = 103 n = 104 n = 102 n = 103 n = 104

W3 58.3% 53.5% 55.2% 15.1% 13.5% 11.1% 1.9% 3.0% 3.7%
LR 0% 0% 0% 0% 0% 0% 0% 0% 0%

Next, we consider different approaches to learn the price formula: (i) Only using the simulation data
conducted on the last weekend (denoted by W3), (ii) only using the simulation data conducted on the last
weekend but excluding the case of non-invertible matrix (denoted by W3D), (iii) combine the LR-weighted
outputs from the past experiment with the current simulation outputs (denoted by LR), and (iv) using
simulation data conducted on the last weekend with three times number of design points. The fourth
approach can be regarded as the best case in learning the price formula with the same number of total
design points. Similar to Example 1, we compare the predictions by each calibrated regression model to
the true model at 200 equally-spaced points St = 5.05,5.10,5.15, . . . ,25 and calculate the RMSE of the
different approaches on these test points. We repeated the entire three-period simulation 100 times, each
time the RMSE of the four approaches on these predictions points are calculated. Figure 2 depicts the box
plots of the RMSEs for the four different approaches in different settings.

We make the following observations from Figure 2: Firstly, the “LR” box plots have a smaller RMSE
than those of “W3”, which shows the benefits of reusing existing simulation outputs. Even excluding the
numerical non-invertible issue (“W3D”), the LR regression approach still performs much better. Secondly,
comparing to the best case “W3x3”, the LR regression approach almost achieves the same accuracy as if
these simulation data were all conducted at the last weekend, and it makes the LR regression approach an
appealing method in reusing simulation data to build metamodels in the repeated simulation experiments.
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Figure 2: Boxplots of RMSE for different approaches in Example 2. n = 1000; m = 10 (left panel), m = 15
(middle panel), m = 20 (right panel).

5 CONCLUSION

This paper proposes a likelihood ratio regression method to reuse simulation data generated by repeated
simulation experiments in metamodeling. As time goes, the parameters of simulation models are updated
periodically. By multiplying the likelihood ratio, the past simulation outputs seem to generate from the new
simulation experiments with the latest model parameters, then a generalized least square method is applied
to estimate the coefficients of the preset linear metamodel. Asymptotic variance analysis is conducted to
compare the variances of the coefficients estimated by the generalized linear regression with and without
reusing past simulation outputs, and to compare the prediction variances of the regression model. A toy
example and a realistic example of an option portfolio are provided to show the effectiveness of our method.
In the future research, we will derive theoretical results to determine the prediction improvement with
periodic model parameters, develop new methods that combine green simulation with offline simulation
online application, and consider simulation model misspecification issues.
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