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ABSTRACT

Optimal transport costs (e.g. Wasserstein distances) are used for fitting high-dimensional distributions. For
example, popular artificial intelligence algorithms such as Wasserstein Generative Adversarial Networks
(WGANs) can be interpreted as fitting a black-box simulator of structured data with certain features (e.g.
images) using the Wasserstein distance. We propose a regularization of optimal transport costs and study
its computational and duality properties. We obtain running time improvements for fitting WGANs with no
deterioration in testing performance, relative to current benchmarks. We also derive finite sample bounds
for the empirical Wasserstein distance from our regularization.

1 INTRODUCTION

Optimal transport costs, which include the Wasserstein distance and the earth-mover distance as special
cases, have become useful tools in machine learning and statistics (Kolouri et al. 2017; Arjovsky et al.
2017; Abadeh et al. 2015; Kusner et al. 2015; Cuturi 2013; Blanchet and Murthy 2019). The Wasserstein
distance is a powerful statistical tool which can be used to compare arbitrary probability distributions
defined on general spaces involving complex geometrical properties and high-dimensional features (see, for
example, (Villani 2003)). So, for example, one can use the Wasserstein distance to compare discrete vs
continuous distributions directly, without introducing smoothing, in contrast to alternatives such as the
Kullback-Leibler divergence (see (Arjovsky et al. 2017; Genevay et al. 2016) for more details). Also,
by judiciously choosing the underlying metric, a Wasserstein distance can generate either the topology
corresponding to weak convergence or the total variation distance.

The optimal transport cost between distribution µ and v with respect to the (non-negative) transportation
cost function c̃(·), denoted as Dc̃ (µ,v), is computed as the solution of a linear programming (LP) problem.
Precisely, suppose that X follows distribution µ , while Y follows distribution v. Then, Dc̃ (µ,v) is obtained
by minimizing Eπ [c̃(X ,Y )] (the expected transportation cost) over all joint distributions π of the pair (X ,Y )
satisfying the marginal distributional constraints that X ∼ µ and Y ∼ v. (If c̃ is a metric then Dc̃ (µ,v) is
the Wasserstein distance with respect to c̃ and we write Dc̃ (µ,v) = Wc̃ (µ,v) – we often omit the subscript
c̃ unless there is the potential for confusion.)

While there are algorithms that enable the evaluation of the Wasserstein distance in many settings,
solving these types of LPs inside iterative routines, for example for fitting parametric families via the
minimization of the empirical Wasserstein distance, remains challenging.

Our main contribution in this paper involves introducing regularization tools which facilitate the types
of fitting procedures involving the minimization of the Wasserstein distance over a parametric family of
distributions. In addition, owing to these regularization tools, we obtain finite sample bounds for the
empirical Wasserstein distance.
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An application that is interesting involves so-called WGAN (Wasserstein Generative Adversarial
Network) simulators, which are of significant interest in artificial intelligence, see (Arjovsky et al. 2017).

A WGAN simulator is typically calibrated as follows. Suppose that µn encodes a target empirical
measure which is a proxy for µ∞ and from which we wish to generate objects. Assume that {µ (θ) : θ ∈Θ}
is a parametric family of distributions that we wish to use to approximate µ∞. We are interested in solving

min
θ∈Θ

Wc̃ (µ (θ) ,µn) = min
θ∈Θ

sup
f :| f (x)− f (y)|≤c̃(x,y)

Eµ(θ) [ f (X)]−Eµn [ f (Y )]. (1)

The functions f in the inner sup are known as ‘actor critics’. These functions are typically parameterized
using a family of neural networks. Moreover, µ (θ) is often encoded as the output of another neural network
family with random (e.g. Gaussian) initial input and with parameters encoded by θ . The WGAN can be
interpreted via (1) as a procedure in which two different neural networks are interacting against each other.

In order to calibrate µ (θ) it is common to use an iterative procedure which involves an inner and an
outer loop corresponding to the min-max structure of the WGAN. The inner loop involves the evaluation of
an optimal actor critic function f (which depends on the current parameter θ to be updated at the outer
loop). A fair amount of experimentation and implementation tricks have been developed which can yield
convergence to a reasonable solution, (Gulrajani et al. 2017). All of these tricks can be easily adapted to our
regularization formulation and we are able to show improved training time in our numerical experiments.

WGANs represent just one of many data-driven settings in which Wasserstein distance can be used as a
fitting tool. In all of them, the distribution µn is used as a surrogate for an underlying measure µ∞ which is
the target that one wishes to learn. It is natural then to recognize that µn is an imperfect/noisy description of
µ∞ and that any other distribution which is reasonably close to µn (in the sense of being indistinguishable
given the statistical noise associated to any finite sample) should yield a similar performance to that of µn.
This perspective is particularly important in light of the fact that non-parametric empirical estimators of
the Wasserstein distance converge slowly (at rate O

(
n−1/d

)
) where d is the underlying dimension of the

distribution and n is the number of samples, see (Dudley 1969; Weed and Bach 2019). So, it is natural
to take the view that plausible variations of the data can be used to facilitate the estimation of optimal
transport costs.

Using this insight, we provide a formulation which regularizes Dc̃ (µn,µ). In particular, our regularization
formulation takes the generic form

Gδ (µn,µ) = inf{Dc̃ (ν ,µ) : ν ∈Dδ (µn)}, (2)

where Dδ (µn) = {ν : Dc (µn,ν) ≤ δ}, for some optimal transport cost Dc (µn,ν) depending on a cost
function c. As δ → 0, under mild continuity assumptions, we recover the standard optimal transport cost.

The map µn 7→ Gδ (µn,µ) is intuitively a more regular object than G0 (µn,µ) = Dc̃ (µn,µ) as it is less
sensitive to small perturbations of µn. Of course, this type of regularity is also achieved by maximizing
over a neighborhood of µn (instead of minimizing), but this operation leads to computational complications
because the optimal transport cost is a convex functional. The dual formulation of the optimal transport
costs can be used to connect our regularization, at least formally, to smoothing techniques that are often
used in the non-smooth convex optimization literature (Nesterov 2005).

As indicated earlier, the regularization approach that we take is particularly meaningful given the slow
rates of convergence in the empirical estimation of Wasserstein distances. Moreover, since the estimated
Wasserstein distance is a positive random variable, the statistical error is likely to often have a right-tail
bias, thus the minimization operation that we apply in (2) to regularize the Wasserstein distance is also
sensible as a means of mitigating this bias. However, we need to be careful to not overcompensate. So, we
also provide statistical learning bounds which can be used to ensure a choice of δ which enables the use of
Gδ (µn,µ), plus a small correction term, as an upper bound for Dc̃ (µ∞,µ). These statistical learning bounds
are presented in Theorem 4. The parameter δ > 0 could also be chosen by a cross-validation procedure.

There are other regularization methods for estimating optimal transport costs. Some of these techniques
require some smoothness or absolute continuity between the measures involved; this occurs, for example,
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when using entropic regularization, (Cuturi 2013; Sanjabi et al. 2018). Others impose low rank constraints,
as in (Forrow et al. 2019), in the setting of domain adaptation, and others (Sanjabi et al. 2018; Gulrajani
et al. 2017; Gao et al. 2017) focus on specific applications such as Wasserstein GANs. In particular, (Gao
et al. 2017) study an empirical risk minimization framework and propose a similar WGAN formulation to
ours but our formulation does not require cost functions to be differentiable, we provide expressions which
are simpler to use for computation, and we also supply out-of-sample generalization bounds.

Our regularization technique does not require smoothing or low rank properties. It acts directly at the
same level of generality as the original optimal transport formulation. However, we are able to show that
Gδ (µn,µ) can often be evaluated directly and conveniently in terms of Dc̃ (µn,µ), leading to a variation of
the optimal transport cost formulation which can then be used in conjunction with any of the regularization
methods mentioned earlier. So, we do not see our work as a competitor to these regularization methods. Our
approach can be reasonably viewed a pre-conditioning step which can be applied before any regularization
tool that uses additional data structure.

In the context of WGANs, in Section 2 we show that under mild assumptions,

min
θ

min
W (µn,ν)≤δ

W (µθ ,ν) = min
θ

sup
f :| f (x)− f (y)|≤c̃(x,y)

(
Eµ(θ) [ f (X)]−Eµn [ f (Y )]−δ

)+
. (3)

So, our regularization technique corresponds to ‘flattening’ of the optimization surface in the parameter
space θ . The amount of flattening is governed by δ , which should correspond to the degree of ambiguity in
the data, measured from a statistical point of view. This flattening has the effect of reducing the frequency
of iterates of the generative network, parameterized by θ , relative to the actor critic iterates, represented by
f . While this implementation device (i.e. iterating the actor critic more often than the generator) is used in
practice to speed up training times, our approach is theoretically supported from an optimality perspective.

In summary, our Optimal Transport regularization (OTR) formulation suggests that training of the
generative network can be reduced without loss of performance if δ > 0 is well calibrated to reflect the
size of plausible statistical noise, using cross validation. We validate our findings by experimenting on the
image data sets MNIST and CIFAR10.

The rest of the paper is organized as follows. In Section 2 we introduce the standard optimal transport
problem and present our OTR regularization formulation, convenient simplified expressions (such as (3))
and strong duality results. In Section 3, we discuss statistical learning bounds for our empirical estimator.
Our numerical examples (in Section 4) suggest that our OTR estimator is often a better upper bound than
the standard Wasserstein estimator. The proofs of all theorems are provided in the Appendix.

2 PROBLEM FORMULATION, INTERPRETATIONS AND TRACTABILITY

We start by formulating the standard optimal transport problem. To do so, we shall introduce notation
which will also be useful when describing our proposed formulation. Throughout the paper we will consider
distributions supported on metric spaces SX and SY with metrics dX and dY , respectively. We assume, for
simplicity in the exposition that the spaces are complete, separable and compact.

We shall use X to denote a generic random variables taking values in SX . Likewise, a generic random
variable Y will take values in SY . The space of Borel probability measures defined on SX and SY are
defined as ΠX and ΠY , respectively. We use ΠX ,Y to denote the set of all couplings between X ,Y (i.e. joint
Borel probability measures on SX ×SY ). Further, ΠX ,Y (µ0,ν) is the subset of ΠX ,Y such that X ∼ µ0 and
Y ∼ ν (i.e. X follows distribution µ and Y follows distribution ν).

Given a generic element π ∈ΠX ,Y , πX is the marginal distribution of X and πY is the marginal distribution
of Y . So, π ∈ΠX ,Y (µ0,ν) implies that πX = µ0 and πY = ν .

The standard optimal transport problem, also known as the Monge-Kantorovich problem, can be written
as (see (Villani 2003))

P0 : Dc̃ (µ0,ν) = min{Eπ c̃(X ,Y ) : π ∈ΠX ,Y (µ0,ν)}
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where c̃ : SX ×SY → [0,∞) is a lower semicontinuous function. Clearly, Dc̃ (µ0,ν) is the solution of a
linear programming problem (albeit, an infinite dimensional one). We now consider the corresponding
dual. First, let C (SX) and C (SY ) be the space of continuous functions on SX and SY , respectively. Next,
define A (c̃) = {(α,β ) ∈C (SX)×C (SY ) : α(x)+β (y)≤ c̃(x,y) for all x ∈SX ,y ∈SY}, then, the dual
problem formulation of P0 is

P̄0 : sup{Eµ0α(X)+Eνβ (Y ) : (α,β ) ∈A (c̃)}.

It is known (see (Villani 2003)) that strong duality holds.
To define our relaxed optimal transport formulation, we introduce the region Dδ (µ0) = {ν : Dc (µ0,ν)≤

δ}. We employ a lower semicontinuous cost function c : SX ×SX → [0,∞) satisfying c(x,x) = 0, so that
D0 (µ0) = {µ0}. As indicated in (2), we are interested in Gδ (µ0,ν) = min{Dc̃ (µ,ν) : µ ∈Dδ (µ0)}. We
have replaced the inf in (2) by min because Dδ (µ0) is a compact set in the weak convergence topology
(Prohorov’s theorem) and the optimal transport cost, as the supremum of linear and continuous functionals
(by duality), is lower semicontinuous.

In terms of the dual problem P̄0, Gδ (µ0,ν) = minµ∈Dδ (µ0) sup(α,β )∈A (c̃)Eµα(X)+Eνβ (Y ) is the form
our relaxed formulation takes. The next result indicates that duality holds in this representation, meaning,
that min and sup can be exchanged, this will serve to provide useful interpretations for Gδ (µ0,v).
Theorem 1 Gδ (µ0,ν) = sup(α,β )∈A (c̃) minµ∈Dδ (µ0)Eµα(X)+Eνβ (Y ).

The above theorem can be used to provide a formal interpretation of our regularization as a smoothing
technique related to Nesterov’s smoothing (Nesterov 2005). We have

Gδ (µ0,v) = sup
−α,β∈A (c̃)

inf
µ∈Dδ (µ0)

Evβ (Y )−Eµα (X) = sup
−α,β∈A (c̃)

(Evβ (Y )−φ (α; µ0)) (4)

where φ (α; µ0) = supµ∈Dδ (µ0)
Eµα (X) is a convex function of α . The above representation coincides in

form with the smoothing operator technique introduced by Nesterov, see (Nesterov 2005), equation (2.2).
The resulting smooth mapping in Nesterov’s representation is to be considered as a function of v, namely
v 7→ Gδ (µ0,v). While we believe that it is interesting to study the transformation (4) in future research for
the purpose of smoothing optimal transport problems, we shall focus on studying Gδ (µ0,ν). Note that
controlling the size of δ will guarantee the validity of statistical bounds when estimating optimal transport
costs from empirical data.

In addition to the smoothing interpretation given by (4), Theorem 1 also admits an economic interpretation.
Consider an agent who offers a transportation service to two customers. One of them wishes to transport a
pile of sand out of his/her backyard (this pile of sand is modeled according to distribution µ0), while the
other customer wishes to cover a sinkhole in his/her own backyard (the profile of the sinkhole is modeled
by distribution v). It would cost c(x,y) to transport mass from location x to location y if the customers
arrange to solve this transportation problem among themselves. So, the agent would wish to charge a
price α (x) per unit of mass transported from location x to the first customer, a price β (y) per unit of
mass transported from location y to the second customer, and would do so in such a way that it is cheaper
to pay these prices than to pay the cost of transporting directly without the intervention of the agent, so
α (x)+β (y)≤ c(x,y). But, of course, the agent wishes to maximize the total profit and this yields the dual
interpretation for transporting items, encoded by distributions µ0,ν . Theorem 1 indicates that Gδ (µ0,v)
solves a distributionally robust revenue maximization problem, in which the agent selects a policy which is
robust to perturbations in the shape of the pile of sand reported by the first customer.

Next, we provide another representation for Gδ (µ0,ν), which forms the basis for the design of gradient
and subgradient algorithms and further simplifications.

Theorem 2 Gδ (µ0,ν) = (−1) ·minλ≥0

{
λδ +maxπ∈ΠW,Y (µ0,ν) Eπ [h(W,Y,λ )]

}
where h : SX ×SY ×

R+→ R and h(w,y,λ ) = supx {−c̃(x,y)−λc(x,w)}.
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The above result provides further insight into the smoothness properties introduced by our regularization
technique. For instance, min-max representation justifies understanding our regularization as a regularization
technique as in (Esfahani and Kuhn 2018; Blanchet et al. 2019). Also, consider the case SX =SY and c = dX .
Then, the function h(w,z,λ ) becomes λ -Lipschitz in the w argument. In particular, for all w1,w2 ∈SX ,
h(w1,z,λ )−h(w2,z,λ )≤ supx {λc(x,w2)−λc(x,w1)} ≤ λdX(w1,w2). So, Theorem 2 implies that solving
for Gδ (µ0,ν) is equivalent to solving a standard optimal transport problem with measures µ0,ν and a cost
function that which replaces c̃(x,y) by a cost function which is λ -Lipschitz in w and λ is regularized.

In view of Theorem 2, we define g(λ ,µ0,ν)= λδ +maxπ∈ΠW,Y (µ0,ν) Eπ [h(W,Y,λ )]. Thus, Gδ (µ0,ν)=

(−1) ·minλ≥0 g(λ ,µ0,ν). The function h(·) is convex in λ and subsequently g(·) is a convex function of
λ . Hence, minλ≥0 g(λ ,µ0,ν) is a convex optimization problem. Moreover, since limλ→∞ g(λ ,µ0,ν) = ∞,
the optimal solution set for minλ≥0 g(λ ,µ0,ν) is bounded. Next, we provide a result which can be used as
a basis for a subgradient algorithm to compute Gδ (µ0,ν).
Theorem 3 If SX ,SY are convex subsets of Rd (for d ∈ N), and c̃,c are continuous, and c̃(·,y)+λc(·,w)
is a strictly convex function for λ ≥ 0,w and y, then h is differentiable in λ . Further, the left-hand and
right-hand partial derivatives of g(λ ,µ0,ν) with respect to λ are δ +minπ∈Π∗(λ )Eπ

[
∂

∂λ
h(W,Y,λ )

]
and

δ +maxπ∈Π∗(λ )Eπ

[
∂

∂λ
h(W,Y,λ )

]
respectively where Π∗(λ ) is set of optimal solutions to the problem

maxπ Eπ∈ΠW,Y (µ0,ν) [h(W,Y,λ )].

Remark 1 Theorem 3 still holds if the strict convexity condition for c̃(·,y)+λc(·,w) is replaced with the
condition that argminx∈SX

{c̃(x,y)+λc(x,w)} is a singleton for all λ ≥ 0,w and y.

Remark 2 Function g is differentiable at any point λ if and only if the set
{
Eπ

[
∂

∂λ
h(W,Y,λ )

]
| π ∈Π∗(λ )

}
is a singleton (for more details, see Corollary 4 of (Milgrom and Segal 2002)).

Theorem 3 suggests implementing a subgradient method (Bertsekas 2015) to solve minλ≥0 g(λ ,µ0,ν).
In particular, at each iteration t, using λt−1, we can find πλt−1 (a member of Π∗(λt−1)) and then λt . We
assume we have access to an oracle to solve for Π∗(λ ). Developing efficient methods to solve optimal
transport problems for Π∗(λ ) is a topic of separate interest which we will not focus in this paper. Once we
arrive at the optimal solution (λ ∗,πλ ∗) (or a reasonable approximation of the optimal solution), then an
optimal mapping between y,x solving minλ≥0 g(λ ,µ0,ν) can be constructed as follows.

1. For each point y, map it to a new point w using πλ ∗ .
2. Find x as the solution to the problem supx {−c̃(x,y)−λ ∗c(x,w)}.

We conclude this section with examples in which Gδ (µ0,ν) can be substantially simplified.
Example 1 (Wasserstein Distances of Order 2) Let c̃(x,y) = ||x−y||2 and c(x,w) = ||x−w||2. Then,

−Gδ (µ0,ν) = minλ≥0

{
δλ −

(
λ

1+λ

)
·
(

minπ∈ΠW,Y (µ0,ν)Eπ ||W −Y ||2
)}

. Let H0 = minπ∈ΠW,Y (µ0,ν)Eπ ||W−

Y ||2. Then the optimal λ is λ =

(√
H0
δ
−1
)+

.

Example 2 (Wasserstein distance of order 1 and WGANs) Let SX = SY with metric dX =
dY = d. For this subsection, let c̃(x,y) = c(x,y) = d(x,y) for all x,y ∈SX . First, we claim that if λ > 1,
h(w,y,λ ) = −d(w,y) and if λ < 1, h(w,y,λ ) = −λd(w,y). This can be seen as follows. Let x(w,y) =
argmaxx∈SX

{ −d(x,y)−λd(x,w)}. Then for λ > 1, −d(w,y) =−d(w,y)−λ ·d(w,w)≤−d(x(w,y),y)−λ ·
d(x(w,y),w)⇔ λ · d(x(w,y),w) ≤ d(w,y)− d(x(w,y),y) ≤ d(x(w,y),w)⇔ (λ − 1)d(x(w,y),w) ≤ 0⇔ x(w,y) = w.
A similar argument holds for λ < 1. In addition, since h(w,y,λ ) is the supremum of Lipschitz functions, it
is continuous in λ . So, for λ = 1, h(w,y,λ ) =−d(w,y). For λ ≥ 1, the minimum of g(λ ,µ0,ν) occurs at
λ = 1. For λ ∈ [0,1], if G0(µ0,ν)−δ ≤ 0, the minimum of g(λ ,µ0,ν) occurs at λ = 0; otherwise, the
minimum occurs at λ = 1. So,

Gδ (µ0,ν) = max{G0(µ0,ν)−δ ,0}. (5)
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Expression (5) can be directly applied to training Wasserstein GANs. For additional background on these
types of generative networks, see (Arjovsky et al. 2017; Gulrajani et al. 2017). Wasserstein GANs involve
the optimization problem minθ G0(µn,µ(θ)) where µn is the empirical measure of a real dataset and µ(θ)
is a parametric probability measure to be constructed using a generative network.

Our OTR for Wasserstein GANs takes the form

min
θ

Gδ (µn,µ(θ)) = min
θ

max{G0(µn,µ(θ))−δ ,0}= min
θ

max
f∈Lip(1)

(
Eµn f (X)−Eµ(θ) f (X)−δ

)+
, (6)

where Lip(1) represents the space of 1-Lipschitz functions with respect to the metric d (·). Note that δ = 0
recovers the problem for Wasserstein GANs. Our implementation involves just a small modification of
standard Wasserstein GAN platforms. However, it is important to choose the regularization parameter δ

carefully. The next section provides statistical guidance to this effect.
Solving (6) requires only a simple augmentation to any stochastic gradient descent procedure proposed

for Wasserstein GANs. In particular, (5) implies ∇θ Gδ (µn,µ(θ)) = ∇θ G0(µn,µ(θ))1(G0(µn,µ(θ))≥ δ ))
where 1(·) is the indicator function. So, in a stochastic gradient descent implementation, θ should be
updated only when 1(G0(µn,µ(θ))≥ δ )) and the procedure will be the same as for Wasserstein GANs.
Experiment results are provided in Section 4.

3 THE STATISTICS OF THE OTR PROBLEM
In the previous section we studied the optimization problem minλ≥0 g(λ ,µ0,ν)with respect to any distribution
µ0. In this section, we study statistical guarantees when µ0 is given by an empirical measure µn of i.i.d.
observations, so its canonical representation takes the form µn (dx) = n−1

∑
n
j=1 δXi (dx) , with the Xi’s being

i.i.d. copies of some distribution µ∞. We derive a confidence interval for G0(µ0,ν) through the use of
concentration inequalities. In this section, we focus on the case where SX = SY and dX = dY . In addition,
for all x,y ∈SX , we set c(x,y) = dk(x,y) where k ≥ 1.

Suppose c, c̃ are Lipschitz functions with Lipschitz constants L(c) and L(c̃) respectively. As a result,
h(w,y,λ ) is Lipschitz in (w,y) with Lipschitz constant Kλ = O(L(c)λ ∨L(c̃)). Define

ε(n,ρ,ζ ,Kλ ) =

√
log( 1

ρ
)

2n
+4ζ Kλ +

8
√

2Kλ√
n

∫ 4diam(SX )

ζ/4

√
N (SX ,dX ,ξ/4) log

(
2
⌈

2diam(SX)

ξ

⌉
+1
)

dξ

where N (SX ,dX ,ξ ) is the ξ -covering number for (SX ,dX ).
Theorem 4 For k = 1,d ≥ 2,ζ > 0,δ ≥ 0,λ > L(c̃) with probability at least 1−ρ , G0(µ∞,ν)≤Gδ (µn,ν)+

ε(n,ρ,ζ ,Kλ )+λδ . Also for k > 1,d≥ 2,ζ > 0,δ > 0,λ = δ−
k−1

k with probability at least 1−ρ , G0(µ∞,ν)≤
Gδ (µn,ν)+ ε(n,ρ,ζ ,Kλ )+

(
2 ·L

k
k−1 (c̃)+1

)
δ

1
k .

Remark 3 Theorem 4 also holds when µn and µ∞ are switched. Hence, with probability at least 1−2ρ ,
G0(µ∞,ν) resides in an interval centered at Gδ (µn,ν) with radius ε(n,ρ,ζ ,Kλ )+λδ for k = 1 and radius
ε(n,ρ,ζ ,Kλ )+

(
2 ·L

k
k−1 (c̃)+1

)
δ

1
k for k > 1.

Remark 4 By optimizing the upper bound in Theorem 4, we were able to recover the term 1
n1/d (curse of

dimensionality) (Dudley 1969). For more details, see the appendix for Theorem 4.

4 EXPERIMENTS
OTR Wasserstein GAN This section provides experiment results evaluating OTR WGANs from Section
2. We trained on two dataset: MNIST (LeCun 1998) and CIFAR10 (Krizhevsky and Hinton 2009). For the
WGAN implementation, we used the WGAN-GP code provided by (Gulrajani et al. 2017) and for Frechet
Inception Distance (FID) calculation we used the code provided by (Heusel et al. 2017). For every fixed
initial weights (seed), we trained our OTR WGAN with different values of δ . We performed training for
200000 generator iterations. For CIFAR10, δ ∈ {0,1.9,2.0,2.1}. For MNIST, δ ∈ {0,0.2,0.3,0.4}.
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Representative training results are provided in Figures 1a, 1b in log-log scale. Sample images generated
by OTR WGAN are provided in Figures 1c, 1d. Our experiments indicate that with an ‘appropriate’ choice
of δ , OTR WGAN has a similar test loss performance to WGAN-GP. Also on the CIFAR10 dataset, they
have similar Inception Score (Salimans et al. 2016) performance. Moreover, OTR WGAN has either the
same or faster FID (Heusel et al. 2017) convergence rate than WGAN-GP. In addition, OTR WGAN trains
faster than WGAN-GP because it skips training the Generator when the threshold criteria is not met. The
‘appropriate’ values for δ were found using cross-validation. This ‘appropriate’ value for δ should be
slightly greater than minθ W (µn,µθ ). For values of δ considerably larger than minθ W (µn,µθ ), training of
OTR WGAN is faster; however, the FID performance of OTR WGAN is worse than WGAN-GP. On the
other hand for values of δ considerably less than minθ W (µn,µθ ), the thresholding becomes ineffective
and OTR WGAN behaves similar to WGAN-GP. In addition, trying many different initial points (seeds)
indicate that OTR WGAN is more stable and has less volatility compared to WGAN-GP.

103 104 105
40

60

100

200 WGAN-GP
δ = 1.9
δ = 2.0

(a)

103 104 105

470

490

500 WGAN-GP
δ = 0.2
δ = 0.3
δ = 0.4

(b) (c) (d)

Figure 1: FID versus generator iteration for comparison of OTR WGAN and WGAN-GP: (a) CIFAR10 (b)
MNIST. In the legend, δ is the OTR WGAN parameter. Sample images generated by OTR WGAN: (c)
with δ = 2.0 when trained on CIFAR10 (d) with δ = 0.3 when trained on MNIST.

Estimating the Optimal Transport Cost In this section, we present simulation results denoting the
value of optimal transport regularization for estimating the Wasserstein distance between measures.

Let µ,ν be two probability measures defined on R20. The measure ν is constructed from 300 i.i.d
samples of N (0, I20×20) where I20×20 is the identity matrix. The measure µ is also constructed from 300
i.i.d. sampling of a random vector X ∈ R20 defined as follows. For each component Xi of X (1≤ i≤ 20),
Xi := ρRi+(1−ρ2)

1
2 T where {Ri}20

i=1,T are i.i.d. and N (0,1). In particular, 0≤ ρ ≤ 1 specifies dependence
of the Xi’s.

For n ∈ N, let µn be an empirical probability measure constructed from n i.i.d. samples from µ . For
c̃ = c = ‖ · ‖2

2, we compute the values of Gδn(µn,ν),G0(µn,ν) where δn =
1

n0.45 . Then we compare them
with the value of G0(µ,ν). To solve the optimal transport problems, the implementation from the Python
Optimal Transport Library (Flamary, R’emi and Courty, Nicolas 2017) was used.

Our experiments indicate for large enough values of n, the empirical cost functions G0(µn,ν),Gδn(µn,ν)
often incur upward shifts relative to G0(µ,ν). This is illustrated in 2. Figure 2a and Figure 2b correspond
to high and low dependence of the Xi’s, respectively.
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A PROOF OF THEOREM 1
The result follows directly from Sion’s min-max theorem (see (Sion 1958)). First, the set Dδ (µ0) is convex
because, by duality, Dc (µ0, ·) is convex (because since it is the supremum of linear functionals). Next,
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Figure 2: Estimating the Optimal Transport Cost.

since the spaces involved are compact, the set Dδ (µ0) is compact in the weak convergence topology, by
Prohorov’s theorem. Furthermore, it is immediate that the set A (c̃) is convex. Finally, the objective function
is bilinear both in (µ,v), on one hand, and (α,β ) on the other. By definition of weak convergence, the
functional is continuous in the weak convergence topology since the elements in A (c̃) are both continuous,
and bounded and the spaces are compact.

B PROOF OF THEOREM 2

We have Gδ (µ0,ν) = minDc(µ,µ0)≤δ minπ∈ΠX ,Y (µ,ν) Eπ c̃(X ,Y ). Given a coupling π ∈ ΠX ,Y (µ,ν) we
can always have a coupling between X and W ∼ µ0 (by the gluing lemma, see (Villani 2003)). Therefore,
we have that Gδ (µ0,ν) = minπ {

∫
c̃(x,y)π(dx,dy,dw) :

∫
c(x,w)π(dx,dw)≤ δ , πW = µ0, πY = ν}. So,

−Gδ (µ0,ν) = max
π

min
λ≥0,h1∈C(SX ),h2∈C(SY )

[∫
−c̃(x,y)π(dx,dy,dw)+

∫
h1(w)µ0(dw)−∫

h1(w)π(dx,dy,dw)+
∫

h2(y)ν(dy)−
∫

h2(y)π(dx,dy,dw)+λ

(
δ −

∫
c(x,w)π(dx,dw)

)]
.

Further, Sion’s min-max Theorem (Sion 1958) is applicable because the value function is both linear in π and
(h1,h2). In particular, it is concave in π and convex in (h1,h2). We then need to argue upper semicontinuity as
function of π and lower semicontinuity as a function of (h1,h2). We choose the topology of uniform convergence
over the compact sets SX and SY . Continuity then follows easily by Dominated Convergence. Now, to show
upper semicontinuity as a function of π , we consider the space of probabilities under the weak convergence
topology. It suffices to show that

∫
c̃(x,y)π(dx,dy,dw) and

∫
c(x,w)π(dx,dw) are lower semicontinuous

as a function of π , since the remaining terms involving π involve integrals of continuous functions over
compact sets (hence continuous and bounded functions) and therefore those remaining terms are directly seen
to be continuous by the definition of weak convergence (denoted by ⇒). We need to show that if πn⇒ π

as n→ ∞, then liminf
∫

cdπn ≥
∫

cdπ . By the Skorokhod representation, we may assume that there exists
Zn = (Xn,Yn,Wn) such that Zn has distribution πn and Z having distribution π , such that Zn→ Z almost surely
as n→ ∞. Then, we have that liminf

∫
cdπn = liminfE(c(Zn)) ≥

∫
E(liminfc(Zn)) ≥ E(c(Z)) =

∫
c dπ ,

where the first inequality follows by Fatou’s lemma and the second inequality follows because c is lower
semicontinuous. A similar argument holds for c̃. As a result,

−Gδ (µ0,ν) = min
λ≥0,h1∈C(SX ),h2∈C(SY )

max
π

[∫
(−c̃(x,y)−h1(w)−h2(y)−λc(x,w))π(dx,dy,dw)

+λδ +
∫

h1(w)µ0(dw)+
∫

h2(y)ν(dy)
]
.
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The above expression implies that for all x,y,w we must have: −c̃(x,y)−h1(w)−h2(y)−λc(x,w)≤ 0⇒
supx[−c̃(x,y)−λc(x,w)]≤ h1(w)+h2(y). Therefore, the desired expression is obtained from the following.

−Gδ (µ0,ν) = min
λ≥0

max
π∈ΠW,Y (µ0,ν)

{
λδ +Eµ0h1(W )+Eνh2(Y )

}
= min

λ≥0
max

π∈ΠW,Y (µ0,ν)

{
λδ +Eπ

[
sup

x
{−c̃(x,Y )−λc(x,W )}

]}
C PROOF OF THEOREM 3

The differentiability of h(·) in λ is an immediate result of Corollary 4 of (Milgrom and Segal 2002). Define
u(λ ,µ0,ν) = maxπ∈ΠW,Y (µ0,ν) Eπ [h(W,Y,λ )]. Therefore, g(λ ,µ0,ν) = δλ + u(λ ,µ0,ν). In addition,

define f (π,λ ) = Eπ [h(W,Y,λ )]. We need to show ∂

∂λ
u(λ ,µ0,ν) = Eπ∗

λ

[
∂

∂λ
h(W,Y,λ )

]
. For this statement

to hold, according to Corollary 4 of (Milgrom and Segal 2002), a sufficient condition is as follows. The
set ΠW,Y (µ0,ν) needs to be compact, f (π,λ ) needs to be continuous in π , and ∂

∂λ
f (π,λ ) needs to be

continuous in (π,λ ). In the remainder of this proof, we will show that this sufficient condition holds.
The set SX ×SY is compact. Therefore, Prohorov theorem implies under the weak convergence

topology, ΠW,Y (µ0,ν) is a compact set.
On the other hand, the function −c̃(x,y)− λc(x,w) is continuous in (x,w,y,λ ) and the supre-

mum supx {−c̃(x,y)−λc(x,w)} is attained due to the compactness of SX ,SY . Define x∗(w,y,λ ) to
be the maximizing x, which will be unique (because c̃(·,y) + λc(·,w) is strictly convex). Hence,
supx {−c̃(x,y)−λc(x,w)} = −c̃(x∗(w,y,λ ),y)− λc(x∗(w,y,λ ),w). Then, Berge’s maximum theorem
(Aliprantis and Border 2006) implies h(w,y,λ ) is continuous in (w,y,λ ) and x∗(w,y,λ ) is upper hemicon-
tinuous in (w,y,λ ). Moreover, since x∗ is a single valued correspondence, it is continuous in (w,y,λ ).

Since it is defined on a compact set and continuous, h(·, ·,λ ) is bounded. Also, f (·,λ ) is linear in π .
Therefore, under the weak convergence topology, f (π,λ ) is continuous in π .

Moreover, ∂

∂λ
f (π,λ )

(a)
= Eπ

[
∂

∂λ
h(W,Y,λ )

]
= Eπ [−c(x∗(W,Y,λ ),W )]. In this statement, (a) is an

immediate result of the fact that h(·) is convex in λ and the monotone convergence theorem together
with the fact that h(·) is differentiable in λ . Since c,x∗ are continuous, the function −c(x∗(W,Y,λ ),W ) is
continuous in (W,Y,λ ). For fixed λ , this function is bounded since it is defined on a compact set. Thus the
bounded convergence theorem implies ∂

∂λ
f (π,λ ) is continuous in λ . In addition, ∂

∂λ
f (π,λ ) is continuous

in π under the weak convergence topology. So, ∂

∂λ
f (π,λ ) is continuous in (π,λ ).

D PROOF OF THEOREM 4 AND ADDITIONAL COMMENTS

Proof of Theorem 4 It can be shown (Villani 2003) that f (X1, · · · ,Xn) :=minπ∈ΠW,Y (µn,ν)Eπ {−h(W,Y,λ )}=
supα(·)∈Lip(Kλ )

{Eµnα(W )+Eναh
λ
(Y )} where X1, · · · ,Xn are the i.i.d samples associated with the empir-

ical measure µn. Lip(Kλ ) denotes the set of all Kλ -Lipschitz functions f (·) defined on SX such that
minx∈SX | f (x)|= 0. In addition, αh

λ
(y) := supw{−h(w,y,λ )−α(w)}.

Proposition 1 For all t > 0, P( f (X1, · · · ,Xn)−E f (X1, · · · ,Xn)≥ t)≤ exp
(

−2nt2

K2
λ
.diam2(SX )

)
.

Using McDiarmid’s inequality (Boucheron et al. 2013), to prove Proposition 1 it suffices to show that
f (·) satisfies the bounded difference condition. Let X1, . . . ,Xn,X ′n be i.i.d samples from the measure µ0. Let
µn,µ

′
n be the empirical measures associated with X1, . . . ,Xn−1,Xn and X1, . . . ,Xn−1,X ′n respectively.

| f (X1, . . . ,Xn)− f (X1, . . . ,X ′n)|=

∣∣∣∣∣ sup
α(·)∈Lip(Kλ )

{Eµnα(W )+Eνα
h
λ
(Y )}− sup

α(·)∈Lip(Kλ )

{Eµ ′nα(W )+Eνα
h
λ
(Y )}

∣∣∣∣∣
≤

∣∣∣∣∣ sup
α(·)∈Lip(Kλ )

{Eµnα(W )−Eµ ′nα(W )}

∣∣∣∣∣=
∣∣∣∣∣ sup
α(·)∈Lip(Kλ )

α(Xn)−α(X ′n)
n

∣∣∣∣∣≤ Kλ

n
d(Xn,X ′n)≤

Kλ

n
diam(SX)
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Proposition 2 With probability at least 1−ρ ,

min
π∈ΠW,Y (µn,ν)

Eπ {−h(W,Y,λ )}− min
π∈ΠW,Y (µ0,ν)

Eπ {−h(W,Y,λ )} ≤

√
log( 1

ρ
)

2n
+2Rn(Lip(Kλ ))

where Rn(·) presents the Rademacher Complexity. The inequality also holds if µn,µ0 are swapped.

Proof. min
π∈ΠW,Y (µ̂n,ν)

Eπ {−h(W,Y,λ )}− min
π∈ΠW,Y (µ0,ν)

Eπ {−h(W,Y,λ )}=

sup
α(·)∈Lip(Kλ )

{Eµ̂nα(W )+Eνα
h
λ
(Y )}− sup

α(·)∈Lip(Kλ )

{Eµ0α(W )+Eνα
h
λ
(Y )}

Using Proposition 1, with probability at least 1−ρ , the above expression is less than or equal to√
log( 1

ρ
)

2n
+E

[
sup

α(·)∈Lip(Kλ )

{Eµ̂nα(W )+Eνα
h
λ
(Y )}− sup

α(·)∈Lip(Kλ )

{Eµ0α(W )+Eνα
h
λ
(Y )}

]

≤

√
log( 1

ρ
)

2n
+E

[
sup

α(·)∈Lip(Kλ )

{Eµ̂nα(W )−Eµ0α(W )}

]
(a)
≤

√
log( 1

ρ
)

2n
+2Rn(Lip(Kλ ))

where (a) is based on the first inequality in Section 5 of (Luxburg and Bousquet 2004). The proof of the
other inequality is similar.

Define qk =

{
λδ , k = 1(

2 ·L
k

k−1 (c̃)+1
)

δ
1
k , k > 1

. Now for the event of interest we have

{G0(µ0,ν)≤ Gδ (µn,ν)+ ε(n,δ ,ζ ,Kλ )+qk}

=

{
qk ≥ G0(µ0,ν)+min

λ≥0

{
δλ + max

π∈ΠW,Y (µn,ν)
Eπh(W,Y,λ )

}
− ε(n,δ ,ζ ,Kλ )

}

=

∃λ ≥ 0 : qk ≥ δλ + max
π∈ΠW,Y (µn,ν)

Eπh(W,Y,λ )− max
π∈ΠX ,Y (µ0,ν)

Eπh(X ,Y,λ )− ε(n,δ ,ζ ,Kλ )︸ ︷︷ ︸
(I)

+ min
π∈ΠX ,Y (µ0,ν)

Eπ c̃(X ,Y )+ max
π∈ΠX ,Y (µ0,ν)

Eπh(X ,Y,λ )︸ ︷︷ ︸
(II)

 .

Below, we show that the above event occurs with probability at least 1−ρ .
Lemma 1 Let (S ,d) present a compact metric space. Also let f : S →R be an L-Lipschitz function (for L>
0) (i.e. for x,y∈S , | f (x)− f (y)| ≤L ·d(x,y)). For k≥ 1,λ > 0, define yx := argmaxy∈S

{
f (y)−λ ·dk(x,y)

}
.

Then for k = 1 and λ > L, yx = x. Also for k > 1, d(yx,x)≤ (L/λ )1/(k−1) .

Lemma 1 is an immediate result of the following.

f (x) = f (x)−λ ·dk(x,x)≤ f (yx)−λ ·dk(x,yx)⇔ λ ·dk(x,yx)≤ f (yx)− f (x)≤ L ·d(x,yx)

⇔(λdk−1(x,yx)−L)d(x,yx)≤ 0
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For (I), using Proposition 2 with probability at least 1−ρ:

max
π∈ΠX ,Y (µn,ν)

Eπh(X ,Y,λ )− max
π∈ΠX ,Y (µ0,ν)

Eπh(X ,Y,λ )− ε(n,δ ,ζ ,Kλ )

≤

√
log( 1

ρ
)

2n
+Rn(Lip(Kλ ))− ε(n,δ ,ζ ,Kλ )

(a)
≤ 0

where (a) is due to Theorem 18 of (Luxburg and Bousquet 2004). For (II):

min
π∈ΠX ,Y (µ0,ν)

Eπ c̃(X ,Y )+ max
π∈ΠX ,Y (µ0,ν)

Eπh(X ,Y,λ ) = max
π∈ΠX ,Y (µ0,ν)

Eπh(X ,Y,λ )− max
π∈ΠX ,Y (µ0,ν)

Eπ{−c̃(X ,Y )}

≤ max
π∈ΠX ,Y (µ0,ν)

Eπ{h(X ,Y,λ )+ c̃(X ,Y )}.

For k = 1, Lemma 1 indicates h(x,y,λ )+ c̃(x,y) = 0 for λ > L(c̃) and all (x,y). This concludes the proof for
k = 1. For k > 1, Lemma 1 shows that for all (x,y), h(x,y,λ )+ c̃(x,y)≤ L(c̃)(L(c̃)/λ )

1
k−1 +λ (L(c̃)/λ )

k
k−1 =

2L
k

k−1 (c̃)/λ
1

k−1 . Now setting λ = ( 1
δ
)

k−1
k , we get δλ +(II)≤ (2 ·L

k
k−1 (c̃)+1)δ

1
k = qk.

Additional Comments From Theorem 18 of (Luxburg and Bousquet 2004), for connected and
centered sets SX , with the following (tighter) definition for ε(n,ρ,ζ ,Kλ ), Theorem 4 still holds.√

log( 1
ρ
)

2n
+4ζ Kλ +

8
√

2Kλ√
n

∫ 2diam(SX )

ζ/4

√
N (SX ,dX ,ξ/2) log2+ log

(
2
⌈

2diam(SX)

ξ

⌉
+1
)

dξ

In particular when SX = [0,1]d and dX is the Euclidean metric, N (SX ,dX ,ξ )≤ Hd
ξ d for ξ ≤ 1 and some

Hd > 0. So, minimizing ζ for d > 2 and sufficiently large values of n results in

ε(n,ρ,ζ ,Kλ )≤

√
log( 1

ρ
)

n
+

(
32Kλ d
d−2

)(
Hd · log2

2n

)1/d

+
(8
√

2)(8+2
√

Hd · log2)diam(SX)Kλ√
n

.

The n−1/d factor (curse of dimensionality) aligns with (Dudley 1969; Weed and Bach 2019).
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