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ABSTRACT

Although the scientific community has proposed numerous models of Earth and human systems, there are few
tools available that support the model coupling that is necessary to capture their complex interrelationships
and promote further research cooperation. To address this challenge, we propose System Integration
with Multiscale Networks (SIMoN), an open source modeling framework with a novel methodology for
supporting heterogeneous geospatial regions. SIMoN enables users to define consistent aggregation and
disaggregation maps for transformation between disparate notions of geospatial units such as counties,
watersheds, and power regions. We have applied this unique tool to couple models across domains including
as climate, population, and food-energy-water (FEW) systems.

1 INTRODUCTION

With the rise of globalization, climate change, population growth, and resource depletion, new modeling
techniques are needed to assess the sustainability of our future resources. These methods must adapt to
highly coupled domains, accommodate new models and data as they emerge, facilitate validation through
model comparison, and handle the patchwork of data and models available with different units, definitions,
and geo-temporal scales.

Currently, many researchers focus on single domain models at incompatible geospatial scales, which
poses a challenge in predicting the far-reaching impacts from changes or failures in a single system. We
introduce a new framework – System Integration with Multiscale Networks (SIMoN) – for joint model runs
that addresses the challenge of data transformation between models with disparate geospatial definitions.
The SIMoN framework assists modelers in predicting the availability of critical resources such as power,
water, and food in the future. The framework also incorporates population and climate change models, as
these are strong drivers for resource demand and availability. These domains each come with their own
hierarchies of geospatial regions which include political, topographical, regulatory, and coordinate grid
induced boundaries.

Here, we outline our approach to combine these many definitions into a general notion of geospatial
partitions that organize the problem. We also demonstrate the capability of SIMoN to integrate models and
data from disparate domains by predicting water availability in 2050, as it depends on population growth,
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climate change, and corresponding increases in demand for thermoelectric cooling. Multiple modeling
architectures are shown which have been run in SIMoN, demonstrating its flexibility for model exchange.

In addition to our modeling accomplishments, we will describe the more general mathematical and
software framework used to integrate data and models that operate on heterogeneous geospatial regions.
We define types of transformation functions, called aggregators and disaggregators, to exchange data across
previously incompatible systems. These aggregators and disaggregators must conform to a set of axioms,
designed to reduce the propagation of error and provide a provable notion of consistency. Such functions
are reusable for connecting different model sets into a joint modeling architecture.

The SIMoN framework is designed to be extensible and flexible, including tools to enable the introduction
of new domains. We expect the set of geospatial definitions, tranformation functions, and domain models
available in SIMoN to grow as it is applied to further challenges in cross-domain integration.

2 PREVIOUS WORK

Integrated approaches to modeling the food-energy-water (FEW) nexus have been increasing for the past
decade or two. For instance, Lubega and Farid created a physics-based model for the water-energy nexus
using the Systems Modeling Language (SysML) (Lubega and Farid 2014). Additionally, Tidwell et al
created a system dynamics model for integrated management and decision support of electrical and water
systems in the US (Tidwell et al. 2009). Some efforts even brought together siloed decision support
modeling systems for a more integrated approach. For example, Yates and Miller (2013) linked the Water
Evaluation and Planning (WEAP) modeling system (Huber-Lee et al. 2005) with the Long Range Energy
Alternatives Planning (LEAP) system for integrated energy and water planning. Most recently, Endo et al.
(2017) provided an overview of research in the area of food, energy, and water, including tools developed
for modeling and analysis.

Current approaches to modeling FEW and related systems are generally tailored to the subset of systems
that they address and are not designed for adaptation to new or different models within these sectors. As
such, they also do not address between-model differences in geospatial or temporal scales that may occur
when marrying two or more models that were not initially designed to work together or that were developed
in isolation. Further, due to the complicated nature of the interactions between systems, as well as the
enormous extent of each individual system, many researchers focus on two of these systems at a time
(Bazilian et al. 2011). Additionally, current approaches do not aim at developing a flexible framework
that would allow further systems to be included in analysis, but rather focus on development of individual
models and their interactions.

There are more general modeling and simulation tools used in this space, though none filling all the
gaps mentioned in the previous paragraph. For instance, consider Dymola (Dempsey 2006), a component
modeling tool that models physical parts and thus operates exclusively at a physical level. The General
Algebraic Modeling System (GAMS) (Bussieck and Meeraus 2004) is a powerful optimization tool that
does not aid modellers in handling different temporal and geospatial scales. The Climate, Land, Energy,
and Water (CLEW) modeling framework (Hermann et al. 2011) is concerned with resource modeling
in order to identify relationships between sectors and how to minimize trade-offs. It may be used at
different geospatial scales, though models in each sector must agree on a single geospatial scale. The
Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) (Giampietro et al.
2009) allows for modeling at multiple scales with a focus on the performance of socioeconomic activities
and ecological constraints in order to understand and societal analyze resource use its impacts on the
environment. The Global Change Assessment Model (GCAM), developed as a collaboration between
the University of Maryland and the Pacific Northwest National Laboratory (PNNL), is another integrated
assessment tool for exploring the impacts of global change (Edmonds and Reiley 1985; Edmonds et al.
1997). The individual GCAM models, as well as the temporal and geospatial scales are fixed within the
larger GCAM model. Furthermore, simultaneous solvers couple the GCAM domains tightly. The approach
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laid out in this paper allows the user to more flexibly combine models without simultaneously solving over
the same geospatial regions.

3 MODEL ASSUMPTIONS AND INITIAL MODELS

SIMoN models are assumed to work together to predict the supply, demand, or distribution of resources in
the future using discrete time steps. The goal of SIMoN is to provide tools for combining existing models.
Thus, initial SIMoN experiments have used publicly available data sets and relatively simple Python models
for proof-of-concept. The SIMoN framework is open source and includes a domain model library with
example models for various domains including power, water, and population. The framework captures
the most important interactions between these models in the interface described in Section 8: Software
Framework. Models currently implemented for demonstration include:

• The population model uses Holt’s linear regression method (Hyndman and Athanasopoulos 2018)
(implemented in the statsmodel Python package) to predict the population of each county. It
extrapolates US Census Bureau population data (United States Census Bureau 2020) from 2000 to
2016 into the future, making a population prediction for each future year. The model gives more
weight to the most recent historical data, so the population change from 2015 to 2016 is more
significant than the change between 2000 and 2001.

• The power demand model calculates each county’s power demand by multiplying its population
by its state’s power consumption per capita based on total state-level power sales (U.S. Energy
Information Administration 2018a).

• The power supply model calculates the carbon dioxide emissions and thermoelectric water usage
of each North American Electric Reliability Corporation (NERC) sub-region’s power production by
assuming that power supply can freely shift to meet power demand in equilibrium (supply = demand,
production = consumption) at a constant price. The provided energy profile, generated using U.S.
EIA plant-level emissions and water consumption data (U.S. Energy Information Administration
2018b), gives each NERC sub-region’s pre-calculated rates of emissions and water usage per MWh
of energy production. Each NERC sub-region’s power demand is multiplied by its profile rates to
determine its total carbon dioxide emissions and its thermoelectric water usage, for the level of
power that is demanded and produced.

• The water demand model calculates each county’s water demand (Dieter et al. 2018) by multiplying
its population by its water consumption per capita, and then adding the county’s thermoelectric
water usage from the power supply model’s output. Water consumption rates for each county were
calculated by subtracting “thermoelectric recirculating, total consumptive use, fresh in Mgal/d”
from “irrigation and thermoelectric water, total consumptive use, fresh in Mgal/d”. The difference
was divided by the county’s 2015 population, then multiplied by 365 to convert the daily rate to
the annual rate.

• The GFDL CM3 climate model (Griffies et al. 2011), published by the National Oceanic and
Atmospheric Administration (NOAA), uses representative concentration pathways to determine
atmospheric conditions and its effects on temperature, precipitation, and evaporation. The SIMoN
model does not perform any of these actual calculations, but simply retrieves pre-calculated data
from the config file.

Another major model under development includes a water supply model, which follows the general
guidelines that are used to determine water resource budgets for each area as described by the Michigan Water
Resources Department assuming a steady state water budget (Michigan Water Resources Division 2010).
Water availability is derived from input (rainfall) and consumption (evaporation, evapotranspiration, and
human use) for each Hydrologic Unit Code 8 (HUC8) watershed, where both consumption and geospatial
definitions are found in public USGS data sets (Unites States Geographical Survey 2019). An alternative
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population model uses a logistic regression approach. The FAIR climate model (Smith et al. 2018) can
act as an alternative to the GFDL CM3 climate model.

It is up to the modeler running the SIMoN framework to decide which models to use and how these
models should interact within the framework. The examples of data exchange given here can be enriched
or reduced. A strength of SIMoN is the ability of a modeler to easily test several simulation scenarios by
swapping out different models while maintaining compatibility across the system. Figure 1 demonstrates
two configurations of SIMoN for the contiguous United States using different climate models. One uses
Climate RCP predictions while the other uses the FAIR climate model. When a new model is included,
the modeler must redefine the interactions of the new model with the rest of the system so that inputs and
outputs are shared appropriately across models.

Figure 1: Left, SIMoN uses the FAIR climate model which incorporates CO2 emissions from the power
sector. On the right, SIMoN uses precomputed outputs of GFDL CM3. The arrows show data flow.

4 GEOSPATIAL DEFINITIONS

The SIMoN framework is designed to capture the interactions between domains such as power, water,
population, climate, and food. Each of the domains modeled in SIMoN has its own definitions of geospatial
regions. In fact, domains tend to have entire hierarchies of geospatial partitions associated to them, as this
is a natural way to organize data collection and curation. For example, the U.S. Census Bureau organizes its
data collection into a complex hierarchy: https://www2.census.gov/geo/pdfs/reference/geodiagram.pdf?#.
Census definitions include nested definitions such as census tracts, counties, and states, but also include
unusual and potentially overlapping regions such as voting districts, and urban growth areas.

While we wish to be flexible to many definitions of geospatial regions, we must establish some rules
for allowable geospatial definitions to enable data transformations. It is required that all models in a given
simulation using the SIMoN framework operate on the same overall geospatial region called the scope
(e.g. the United States). Any data outputs shared by a model for the consumption of other models in
SIMoN must include data for the entire scope. Each model, however, may have different definitions of
how that scope is subdivided. In particular, any data set can be shared on any finite partitions of the scope.
Elements of the partition are non-overlapping subsets of the scope, where the union of these elements is the
entire scope. Examples of partitions include counties, watersheds, NERC or other power regions, lat/lon
grid overlays, map pixels, etc. For the purpose of initial demonstration, the examples that follow will use
the contiguous United States as their geospatial scope. Many of the region types captured in the Census
Bureau Hierarchy are examples of partitions of this scope. However, Urban Areas are NOT a partition
of the United States, since not every point in the United States is contained in an Urban Area. A model
concerned with Urban Areas would have to be extended (even if that extension is trivial) in order to operate
with other models over the contiguous United States within SIMoN.
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Given multiple partitions of the overall geospatial region, some will be naturally compatible in that
they represent refinements of others. Given two partitions X = {xi}n

i=1 and Y = {y j}m
j=1 of the same scope

S, we say that Y is a refinement of X if ∀y j ∈ Y, ∃ xi ∈ X such that y j ⊆ xi. For example, counties are a
refinement of states, because both partition the contiguous United States and each county is contained in a
single state. Note: There exists two special cases of geospatial definitions that are modified to satisfy the
partition rules - (1) Louisiana uses parishes instead of counties to partition the state and in SIMoN they are
in the same partition definition of counties, and (2) the District of Columbia is considered neither a state
nor county by formal definitions and exists in SIMoN on both “state” and “county” geospatial partitions
without further refinement.

Figure 2 demonstrates the important role that SIMoN can play when modeling the Earth’s systems. In this
example, there are four models and datasets: population projection, rainfall data, water demand, and power
supply. Each model operates according to its own geospatial definition (county, lat/lon grid, watershed,
NERC subregion, respectively). Yet, in the overall system, these models need to share data. SIMoN acts
as a broker between the models, performing necessary transformation to allow model communication.

Figure 2: An example SIMoN output from four integrated models predicting the year 2050. SIMoN
performs aggregation and disaggregation functions to convert data between geospatial definitions when
data are passed between models. The SIMoN Broker is detailed in Section 8.

5 ABSTRACT GEOSPATIAL CONSTRUCTION

Given the heierarchical nature of the data, we construct a sequence of directed graphs of geospatial regions
to create a reference tool for models to communicate through the framework. In particular, a directed graph
has unidirectional arrows, from a geospatial region to another that contains it. These graphs and functions
defined on their edges organize the data transformations between model geospatial regions and are used to
define a global notion of consistency of data as it is transformed between heierarchical levels.

Any set of partitions of the scope S forms a partially ordered set, or poset, where the binary relation
≤ is given by Y ≤ X if and only if Y is a refinement of X . It is straightforward to check that this operation
is reflexive (X ≤ X ), antisymmetric (X ≤Y ; Y 6= X ⇒ X 6≤Y ) , and transitive (X ≤Y ≤ Z⇒ X ≤ Z). This
partially ordered set can be represented uniquely by its Hasse Diagram: a directed acyclic graph (DAG),
or a directed graph with no paths starting and ending at the same vertex that respects the directionality
of the edges, where the vertices represent partitions and an edge Y → X is inserted if Y is a refinement
of X and there are no intermediate partitions (a transitive reduction). We select the convention of always
drawing the finest partitions at the bottom, and the scope (supremum) at the top.
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In general, we will define P to be the partially ordered set of the scope and its partitions of interest,
that is- those partitions of geospatial regions which represent possible data granularities in SIMoN. An
example P is given in Figure 3, represented by the corresponding Hasse Diagram in the form of a directed
acyclic graph GP.

examples.png

Figure 3: (a) An example Hasse Diagram GP with water, power, and political regions represented from
left to right. (b) The corresponding extended diagram GQ with intersection regions and an infimum added.

Given a P representing the scope S and its geospatial definitions of interest from the data/model
perspective, we construct an augmented poset, Q, which includes the meets of all pairs geospatial definitions
in P. An example of such meets in a Q is seen in the light blue vertices in Figure 3(b). Specifically, for
X ,Y ∈ P, X ∧Y is the largest element in Q such that X ∧Y ≤ X and X ∧Y ≤ X . If X and Y are incomparable
in P, i.e. whenever X 6≤ Y and Y 6≤ X , X ∧Y ∈ Q\P. However, if Y ≤ X in the poset P, X ∧Y = Y , i.e. a
new element is not introduced to the poset. We also add a universal meet, or infimum, called INF ∈Q to P.
By construction, the operation of meet is symmetric so ∀X ,Y ∈ P,X ∧Y = Y ∧X . Including the universal
meet, we add at most

(n
2

)
+1 elements to |P| to construct Q. If |P|= n, then |Q| ≤ n+

(n
2

)
+1 =

(n+1
2

)
+1.

The purpose of constructing Q is to define a new geospatial partitions which serve as a bridges between
their parent elements. Each X ∧Y 6∈ P represents a new, unique geospatial partition of the scope which is
the maximal partition that is a refinement of both X and Y . To transform data from geospatial granularity
X to granularity Y , it is necessary to follow the undirected path (X ,Y ∧X)(X ∧Y,Y ), using operations
defined in Section 7. The universal meet, while not directly involved in any data transforms, will be useful
in checking the consistency of geospatial regions and function definitions. Visually, if the boundary lines
of X and Y are overlaid on the same map, all bounded regions are elements of the partition X ∧Y . Because
X and Y are partitions, for each region z ∈ X ∧Y , ∃ unique xi ∈ X ,y j ∈ Y such that z = xi∩ y j. We call
xi and y j the parents of z, just as we call X and Y the parents of X ∧Y . We associate to Q an abstract
DAG, GQ representing its Hasse diagram. The graph GQ is our final definition of the relationships between
geospatial definitions, and is called the Abstract Geospatial Graph, as shown in Figure 3(b).

The advantage of constructing these pairwise and universal meets will be that they provide bridges for
transforming data between the geospatial definitions of different models. A motivating example is provided
in Figure 4.

6 CONSTRUCTING GEOSPATIAL DATA AND INSTANCE GRAPHS

The directed graphs representing abstract definitions of geospatial regions and their relationships in the
previous section have real world instantiations of interest to modelers. We will assume that ∀X ∈ P
representing a model-driven definition of geospatial regions, there is a shapefile SFX that fully defines the
regions of X within the scope S. For example, if X is states in the contiguous United States, then SFX
will be a shapefile with 49 distinct regions. We represent each of these regions as a node in the Instance
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Figure 4: Here we see three geospatial definitions of the state of Delaware(DE). On the left, maps of DE
include (a) 11 HUC8 Regions instersected with DE, (b) 3 DE Counties, and (c) the 17 intersection regions
DE ∧ HUC8 ∧ County, where both sets of lines are considered to bound regions. The corresponding
graphs capturing the relationships between these geospatial regions are shown on the right, where (d) is the
Abstract Graph with a scope of Delaware, and (e) is the Instance Graph with edges representing inclusion.

Geospatial Graph IP. The instance graph has the same general structure as the abstract geospatial graph,
except that every individual vertex in the abstract graph has been replaced by many vertices as in Figure
4(e). When considering our larger example of the continental United States, rather than a single vertex
representing ‘states’ in our political boundary graph, there would be 49 vertices of type ‘state’ representing
the forty-eight contiguous states and the District of Columbia. Each of these states has a directed edge into
the single element of the scope/supremum. Similarly, the node ‘county’ is replaced with 3108 vertices of
type ‘county,’ each with an edge to its unique parent of type ‘state.’

To construct the instance graph IP corresponding to P, a shapefile is provided for every vertex X ∈ P
in each of the shapefiles that correspond to the pairwise meets X ∧Y where X ,Y ∈ P can be accomplished
more efficiently by iterating from top to bottom, and using the graph structure to reduce the intersections
computed. Instance graphs grow large quickly, so computing them up front rather than at run-time can
provide a significant savings to the modeler. For example, the instance graph for a partially ordered set
containing only the elements Nation, State, County, and NERC region consists of 7,502 nodes and 15,727
edges. Example instance graphs and corresponding shapefiles are provided as a service for geospatial
reconciliation on the SIMoN github.

7 AGGREGATION AND DISAGGREGATION DEFINITIONS

Let Y be an vertex of the abstract geospatial graph GQ. Let ~vY be a vector of length |Y | representing a
data value defined for all vertices of type Y in the instance graph IQ. For example, ~vY may represent the
population of each county where Y is the vertex ‘county,’ or the rainfall in each watershed region where
Y represents the vertex ‘HUC8.’

We define an aggregation operator A to be a collection of functions, one for each directed edge (V,W )
in GQ that take data defined on the instances of W to data defined on the instances of V . Write the function
associated to the (V,W ) as A{W :V}, where A{W :V} : R|W |→ R|V |. These functions aggregate data from a
refinement, such as counties, to a higher level, such as states. We will not assume that these functions
can be represented by matrix multiplication, although this is the case for many important examples. The
most common aggregation operator will sum the data over the children of a node in the instance graph IQ.
For example, the population of a state for the power demand model will be calculated by summing the
populations of its child counties which are output by the population model. However, not all aggregations
are sums. For example, to aggregate the maximum power load over a set of child nodes in the instance
graph, the aggregation operator MAX would be used.
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Aggregation Notation: Let Y ≤ X in Q. If ~vY ∈R|Y | is the data associated to Y , then ~vX = A{Y :X}(~vY )
is the data associated to X by aggregation operator A.

Similarly, a disaggregation operator D is a collection of functions, D{V :W}, on edge (V,W ) that takes
data on V to data on W : D{V :W} : R|V |→R|W |. These functions disaggregate from a node to a refinement.
The following are common examples of disaggregation functions on the instance graph IQ:

• The constant map which populates each instance child node with a copy of the data from its parent
• Subdividing a data quantity among children according to a known ratio, such as the area of each

child region

Disaggregation Notation: Let Z ≤ Y in Q. If ~vY ∈ R|Y | is the data associated to Y , then ~vZ = D{Y :Z}(~vY )
is the data associated to Z by disaggregation operator D.

We say that the operators (A,D) form a valid aggregation-disaggregation pair on GQ if and only if
they satisfy the following axioms:

1. Consistency: For Y ≤ X in Q, and any xi = y j, the aggregators and disaggregators are the identity
on the jth and ith components respectively:
∀~vY ∈ R|Y |, ~vX [i] := A{Y :X}(~vY )[ j] =~vY [ j]
∀~vX ∈ R|X |, ~vY [ j] := D{X :Y}(~vX)[i] =~vX [i]

2. Left Inverse: ∀Z ≤ Y,A{Z:Y} ◦D{Y :Z} = idR|Y | .
3. Transitivity: ∀X ≤ Y ≤ Z ∈ Q,D{X :Z} = D{Y :Z} ◦D{X :Y}

The example operators pairs, (MAX, constant) and (SUM, area weighted subdivision) form valid (A,D)
pairs. We show this explicitly for the pair (MAX, const). To check consitency, note that if xi = y j, MAX
sets ~vX [i] = maxy j⊆xi{~vY [ j]}. Since there is only one such y j, ~vY [ j] =~vX [i]. Simlalrly the constant maps
sets~vY [ j] =~vY [ j]. To check left inverse, the constant function assigns a particular value,~vX [i] to all y j ⊆ xi.
Therefore, when the MAX is taken over all y j ⊆ xi, ~vX [i] is again assigned to xi. To see transitivity, note
that the constant map assigs the value ~vX [i] first to all y j ⊆ xi and then to all zk, j ⊆ y j. This is equivalent
to assigning the value ~vX [i] to all zk, j ⊂ y j. The arguments to see that (SUM, area weighted subdivision)
is a valid (A,D) pair are simlar.

These definitions provide a coherent mechanism for transferring a data vector between any two partitions.
Suppose we are given partitions X ,Y ∈ Q and a data value ~vX ∈ R|X | that we want the system to publish
for partition Y . In general, we extend the data ~vX to all of Q using a valid aggregator and disaggregator
pair, (A,D). By construction, GQ also contains X ∧Y . We obtain ~vX∧Y = D{X :X∧Y}(~vX), then apply AX∧Y :Y
get the data vector ~vY ∈ Y . That is, ~vY = A{X∧Y :Y} ◦D{X :X∧Y}(~vX). The axioms ensure consistency on any
region z that is part of X and Y . In particular, if X = Y , then we obtain the original data vector.

A different aggregation-disaggregation pair may be defined by the modeler for each data variable
exchanged over the SIMoN framework. These mappings will be used by the outer wrappers that surround
each model to transform data between geospatial definitions as needed. As more modelers implement
valid transformation pairs, the library of recommended pairs will grow. We further plan to implement
tools to check that potential new operator pairs satisfy the axioms listed here. Algorithmic approaches
to the efficient construction of the data structures and consistency checks proposed are currently under
development.

Returning to the example of regions in Delaware, shown in Figure 4, we can define a number of
aggregation-disaggregation pairs for illustration. For example, if Kent, Sussex, and New Castle counties
have populations of 160k, 200k, and 540k people respectively, then the total population of the state can be
aggregated simply by summing the county populations, resulting in a state total of 900k. Likewise, if we
begin with a state population of 900k, we can estimate county populations using multiple disaggregation
methods. One method would be to weight each of the 3 counties equally, and assign each county one-third
of the state population, or 300k people. Alternatively, we might expect that a county’s population is roughly
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proportional to its area, and assign each county a proportion of the state population that is equal to its
share of the state area. The resulting distribution would be approximately 266k, 417k, and 217k people
for Kent, Sussex, and New Castle, respectively. If more data were available regarding land use or light
levels in Delaware at the county level, that could be leveraged to develop additional disaggregations. Each
disaggregation estimation inherently introduces error, but each of them preserves the sum of population in
the state.

We can also combine variables by using county level population to disaggregate the state power demand
of 11 million(M) megawatt-hours(MWh) into county level power demand. Intuitively, this would be more
reasonable than disaggregating uniformly or by area, and yields a power division of 1.95M MWh, 2.44M
MWh, and 6.6M MWh between the three counties. Using one variable to disaggregate another by defining
necessary ratios in the refinement is a function suitable to many applications. As SIMoN matures, more
aggregation-disaggregation pairs will be implemented based on application.

8 SOFTWARE FRAMEWORK

The SIMoN framework is designed to be modular, extensible, and flexible to a variety of black box models.
A diagram of the system architecture is included in Figure 5. Each model runs in a separate Docker
container enabling different models in the framework to have conflicting dependencies. A universal outer
wrapper operates in each model container to standardize the model interface with the system. This outer
wrapper will also perform the data transformations described in Section 7. A central broker, also in its own
container, orchestrates model runs and initiates the first time step. After each time step, the models publish
their data in JSON format using ZeroMQ. The broker archives these data messages in a backend database
for post processing. New models can be introduced into the framework by building a docker image that can
execute the model. The user must also construct an inner wrapper which translates the model inputs and
outputs into their respective JSON schemas, which include an attribute for geospatial granularity. These
granularities are constructed in Section 5. Current SIMoN data transformations are lightweight and run
very fast relative to model timesteps, although more complex transformations may be defined in the future.
The Docker-based architecture was selected to enable parallel computing and scaling to HPC, although no
extensive scaling experiments have been run to date.

Figure 5: SIMoN framework architecture.

A populated view of four models coupled through SIMoN is contained in Figure 2, where you can
also see the inner and outer wrappers drawn around each model output. Open source code for the SIMoN
framework is available at https://github.com/JHUAPL/SIMoN.
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9 LIMITATIONS AND NEXT STEPS

SIMoN requires that each model run one time step at a time within a Docker container. This assumes
that models can be controlled precisely, and that all models/data have the same fixed-increment time
progression. In the future, SIMoN framework could be extended to temporal transformations, constructing
graphs that capture the interactions of time windows such as days, weeks, months, years, seasons, and
billing cycles. This would enable coupling with heterogeneous fixed-increment time steps, but still would
not accommodate event-driven simulation.

SIMoN presents a new tool for coupling, but the results of a SIMoN run ultimately depend on the
quality of the models/data, the selected coupling architecture, and the amount of error introduced by
granularity transformations. For example, early experiments with the SIMoN models detailed here yielded
unreasonable results due to an elevated rate of population growth. Future work will extend SIMoN to itself
be used as a validation tool, by comparing the results of joint model runs against each other and/or the
output of validated models. More advanced backcasting tools could also be added to the system.

The resource models incorporated into SIMoN for test are relatively simplistic, and were primarily used
to demonstrate our ability to perform geospatial transformation. We plan to expand the SIMoN Domain
Model Library to include more complex fidelic models, additional important components of the FEW nexus
such as land use, international models with larger overlapping scopes, and models with more extensive
computational requirements to test the limits of SIMoN scalability.

10 CONCLUSION

SIMoN provides new, flexible tools to couple models and data with inconsistent geospatial definitions.
We have released a general framework for organizing geospatial interactions, software tools for generating
graphs and shapefiles, and an API for joint model runs. Results are shown that leverage these novel coupling
mechanisms to connect simple models of population, climate, power, and water systems in the continental
United States.

The modular SIMoN framework can be used for a range of experiments comparing models and their
interactions. Model perturbations which represent new policies or technologies can be incorporated into
the framework easily, ultimately allowing decision makers to better understand the long-term impacts of
environmental interventions on resource availability. SIMoN could also be extended to other domains
where geospatial interactions interfere with data and model assimilation.
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