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ABSTRACT 

With the global warming crisis and its correlation to levels of energy consumption, it is paramount to find 

ways to reduce energy consumption in closed spaces with minimal disruption to occupants’ comfort. Thus, 

researchers are working to improve methodologies for occupant-based demand-control heating, ventilation, 

and air conditioning. Sensor usage for occupancy detection is among the methodologies researched for 

controlling consumption. Carbon dioxide sensors proved to be effective but overly sensitive to 

configuration. Research also proved that there is an undetermined latency period between the changes of 

the number of occupants and the carbon dioxide sensors detection of that change. We present a work in 

progress method to determine the best placement of carbon dioxide sensors for the accurate occupants’ 

detection and calculation of latency using the Cellular Discrete-Event Specifications formalism. We present 

several case studies showing resemblance between physical closed spaces and the models and how the 

simulation replicates real-life scenarios.  

1 INTRODUCTION 

Limiting global warming requires maintaining a substantive decrease in carbon dioxide CO2 emission 
(Rogelj et al. 2018), to which energy consumption is closely related. A recent Energy Technology 

Perspective (ETP) report stated that three-quarters of global electricity demand can be saved by using high-
efficiency lighting, cooling, and appliances (IEA 2017). This perspective is one of the several reasons why 
researchers investigate ways to optimize energy consumption in buildings. One of the most expensive 
energy-consuming functions in buildings is heating, ventilation, and air conditioning (HVAC). One way 
that has been proposed to achieve high-efficiency energy consumption of HVAC is the demand-driven 
HVAC control, where the use of the HVAC system depends on accurate occupancy information and 

measurement (Huang and Mao 2016). Occupants with energy-conscious behavior can contribute to saving 
up to one-third of a building’s energy (Nguyen and Aiello 2013). However, trusting occupant’s behavior 
for better energy consumption is unrealistic, especially in commercial buildings where occupants are not 
directly affected by the cost of energy consumption. Therefore, demand-driven control of lighting and 
HVAC systems are often chosen as a solution to reduce the consumption in buildings. Many studies have 
been conducted to develop demand-driven control of lighting and HVAC systems. The objective in most 

cases is that the total energy consumed is kept at the minimum possible value without disturbing the comfort 
conditions of the occupants of the building (Labeodan et al. 2015). Demand-driven control systems depend 
on sensors data for indoor occupancy detection. Many kinds of sensors are used in such systems either 
individually or in combination with other types of sensors. Among those sensors are CO2 sensors.  
 CO2 sensors have advantages and disadvantages in terms of occupants’ detection when compared to 
other sensors. In addition to not being non-intrusive, they do not require motion or any special action, and 

they do not have extra cost as they are installed as part of the building code in many cases. However, there 
are a few concerns with CO2 sensors as a means for detecting occupants. First, the demand-driven control 
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systems should account for the latency needed for the sensor to detect an increase or decrease in CO2 levels 
in the closed space. Second, although CO2 sensors achieve up to 91% accuracy in detecting the existence 
of occupants in closed spaces, they are not very accurate in detecting the precise number of occupants in 
the space (Arief-Ang et al. 2018) because they are highly sensitive to the configuration (Labeodan et al. 
2015; Hobson et al 2019). With the variability of configuration parameters and the impracticality of 
collecting ground truth data for each space, there is a great motivation for simulation models for occupants’ 

detection (Arief-Ang et al. 2018). Models are also the only solution at the design stage when the buildings 
are yet to exist when it is impossible to collect ground truth data using the physical space. In this research, 
we use modeling and simulation (M&S) to achieve two major objectives: (1) Based on the room 
dimensions, and other parameters of the occupied space, determine the best placement of CO2 sensors for 
the most accurate occupancy detection and (2) based on the placement and the room, calculate the latency 
between the arrival/departure of an occupant and the detection of an increase/decrease in CO2 levels. We 

propose using the Cellular Discrete-Event Specifications (Cell-DEVS) formalism (Wainer 2009) as a way 
of modeling and studying the relation between configuration parameters (e.g. room dimensions and window 
locations) and the ability of CO2 sensors to detect occupants and how this relationship can be used to 
determine the best placement of CO2 sensors. In section 2, we explain the necessary background to put our 
research into context. In section 3, we define the research problem. Then, we explain the current 
experimental setup including the scope and the model specifications in section 4. The preliminary 

simulation results of our work in progress research are presented in section 5 and discussed in section 6. 
Finally, we conclude and list the future steps in section 7. 

2 BACKGROUND 

In this section, we provide the necessary background needed to contextualize our research. We start by 
describing several types of sensor-based occupancy detection, we explain the theoretical concepts for the 
modeling techniques we are using in this research and discuss a brief literature review. 

2.1 Sensor-Based Occupancy Detection 

There are two possible outcomes of sensor-based occupancy detection: binary detection and the estimate 
of the number of occupants. Binary occupants’ detection determines the presence of any occupant. For 
example, passive infrared (PIR) sensors detect only binary information to indicate whether a room is 
occupied or not, which makes it useful only for non-individualized demand-control systems (e.g. light 
switching) (Li et al. 2012). On the other hand, the use of such types of sensors for demand-control HVAC 

systems is limited since it does not give an estimate of the number of people occupying the space (Labeodan 
et al. 2015). Binary occupant detection versus occupants count estimate is only one criterion for classifying 
sensor-based occupancy detection systems. Labeodan et al. (2015) categorize sensor-based occupancy 
detecting systems based on (1) method: the need for a device attached to the occupant, (2) function: the 
ability to individualize occupants, and (3) infrastructure: this differentiates between sensors that are part of 
the infrastructure and sensors that must be installed just for occupants detection. 

 Listing all the types of sensors-based systems in all categories is out of the context of this paper. Instead, 
we list a few examples in comparison to CO2 sensors that are the focus of our paper. For example, unlike 
detection systems such as electromagnetic (EM) signals that require the occupant to carry a device for the 
system to detect the presence of that occupant, CO2 sensors and PIR sensors do not. For the function 
criterion, cameras, for example, can detect individual occupants, and consequently, the demand-driven 
control system can adjust the comfort level based on the preference of the detected individual. However, 

the privacy of the occupants is compromised in this case. On the other hand, CO2 sensors are non-intrusive 
as they preserve the privacy of the occupant. Also, CO2 sensors are part of the infrastructure in many cases. 
For example, in the province of Ontario, Canada, CO2 sensors installation has been part of the building 
codes since 2014 (Carbon Monoxide Questions and Answers 2019).  
 Based on the advantages of CO2 sensors, they are one of the best types of sensors to measure indoor 
occupancy, but most indoor occupancy papers using CO2 provide binary occupancy analysis, not real people 
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counting analysis (Arief-Ang 2018). Although CO2 levels in the room change based on the number of 
occupants present in that room and hence, they are not binary by nature, their sensitivity to room 
configuration limits their accuracy ( Labeodan 2015; Hobson et al. 2019). Many configuration parameters 
may affect CO2 levels in closed spaces. Among those parameters are the room size (Arief-Ang 2018), and 
sensor location. For example, temperature differences in surfaces affect airflow especially close to windows 
which in turn affect the uniformity of CO2 distribution in the whole space (Batog and Badura 2013).  

2.2 DEVS and Cell-DEVS 

We chose for our modeling of CO2 dynamics DEVS and Cell-DEVS. DEVS is a mathematical formalization 
of the system and therefore it is independent of any tool or programming language. DEVS formalizes the 
definition of systems using the hierarchical composition of behavioral (atomic) and structural (coupled) 
models (Wainer 2009). An atomic model consists of input/output ports to communicate with other models, 
internal/external transitions, and a time-advance function. Each atomic model has a set of state variables 

that represent the current state of the model. After the time-advance (ta) has elapsed, the output function 
(𝜆) is triggered which sends an output to the output port (y) based on the current state. Then, the internal 
transition function (𝛿𝑖𝑛𝑡) which updates the next state of the atomic model based on its current state gets 
fired. The external transition function (𝛿𝑒𝑥𝑡) updates the state of the model based on inputs received from 
other models and collected through the input ports. Atomic models can be combined in a hierarchy to form 
a coupled model. Cell-DEVS is an extension of the DEVS formalism that combines Cellular Automata 

(CA) and DEVS. A Cell-DEVS model is composed of multiple atomic models where each atomic model is 
represented in a cell in an n-dimensional lattice of cells. The complete cell space is a coupled DEVS model 
formed by combining the individual atomic models (Wainer 2009). An atomic model in a Cell-DEVS space 
is formally defined as TDC=< X, Y, S, N, delay, δint, δext, t, λ, D > where X is the input events set, Y is the 
output events set, S is the set of states, N is the set of input values, delay is the type of delay, δint is the 
internal transition function; δext is the external transition function, t is the local computing function, λ is the 

output function, and D is the state’s duration function (Wainer 2002). The local computing function t 
calculates the next state of the cell (s  S). Each cell is associated with a delay that can either be transport 
or inertial. Transport delay defines the duration after which, the output values are transmitted. The inertial 
delay d is used as a preemptive mechanism; it prevents any scheduled change from taking place upon 
receiving an external event from a neighbor cell before the scheduled time. A complete Cell-DEVS space 
is defined as GCC=< Xlist, Ylist, I, X, Y, η, {t1,…,tn}, N, C, B, Z> where Xlist is the list of external input 

coupling, Ylist is the list of external output coupling, I is the set of states, X is the set of external input events 
set, Y is the set of external output events set, η ∈ N is the neighborhood size, {t1,…,tn}is the number of cells 
in each dimension, N is the neighborhood set, C is the cell space, B is the set of border cells, and Z is the 
translation function. The border cells B can have different behavior than the rest of the cell space (e.g., 
borders can be wrapped). The translation function Z defines the internal and external coupling of the model 
(Wainer 2002). Figure 1 illustrates the basic behavior of a Cell-DEVS model.  

 

Figure 1: Basic Cell-DEVS model. 
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 There are many advantages to using Cell-DEVS to model CO2 dispersion. Cell-DEVS is proven to be 
suitable for modeling systems like what we are trying to model in our research. For example, unlike agent-
based models that are not adaptable to different environmental settings such as diverse types of room (Arief-
Ang et al. 2018), Cell-DEVS can easily incorporate the different environmental settings in the model. Also, 
in comparison to cellular automata (CS) modeling, Cell-DEVS has several advantages (e.g. CellDEVS 
provides asynchronous execution, which results in better execution time). Examples Cell-DEVS 

environmental and social models are available through ARSLab (2020) and in the literature (Wainer 2006; 
Khalil and Wainer 2020). The discrete nature of the modeling formalism allows for skipping periods of 
inactivity in simulation and hence achieves better performance. This formality is simpler to verify and 
validate. Besides, Cell-DEVS and its tools provide a complete modeling and simulation solution that 
includes formal model specification, simulation by independent tools, and visualization (Wainer and 
Giambiasi 2005). 

2.3 Literature Review 

Labeodan et al. (2015) provide a review of different occupancy detection systems and claim that obtaining 
information for use in building control can be challenging due to different environmental factors and 
stochastic human behavior. To compensate for this, the authors install chair sensors in the form of micro 
switches wired to a transmitter. The system is assessed in a conference room for eight hours and the 100% 
accuracy is recorded. The drawbacks of the proposed method are failure to detect standing occupants, the 

change of sensors’ states due to occupants’ frequent adjustments in their seats, and occupants’ resistance. 
Cali et al. (2015) present an algorithm to detect occupants based on CO2 levels in indoor environments. The 
algorithm was validated against ground truth data in five different environments: an office with no 
mechanical ventilation, two offices with mechanical ventilation, a residential living room, and a kitchen 
without mechanical ventilation. The algorithm scored 95% and 80.6% success for detecting the presence 
of occupants, and the number of occupants, respectively. The authors conclude that to maximize the 

precision of their algorithm, detailed knowledge about the value for air change rate through windows, doors, 
and the outdoor CO2 concentration is important. Ryu and Moon (2016) use a statistical decision tree model 
and Hidden Markov Model to detect occupancy based on indoor climate sensors. The authors conclude that 
CO2 sensors while considering the ratio of indoor and outdoor CO2 concentrations, provide the highest level 
of information. The study presented by Pedersen et al. (2017) offers a binary occupant detection plug-and-
play method. The proposed method uses PIR, noise, CO2, temperature, humidity, and volatile organic 

compound (VOC) measurements to detect the presence of occupants. The study uses a simple test room 
and a three-room apartment to validate the method. The maximum detection accuracy is 98% for the former 
and 78% for the latte. Huang and Mao (2016) combined CO2 and light sensors with a wireless sensor 
platform to estimate the number of occupants in an office building. The authors suggest that the integration 
of the different sensors can compensate for the fluctuation of CO2 levels due to environmental factors (e.g. 
location of CO2 sensor and HVAC operations).  

 Batog and Badura (2013) present a model that corresponds to a simplified version of a real bedroom 
containing only big solid surfaces (e.g. bed and wardrobe). The authors consider the different CO2 
production rates during sleep from one sleeping object along the course of eight hours. Two simulations 
are performed; a simulation without fresh air inlets and a simulation where airflow gaps around windows 
and doors are considered. The simulations show that the proper placement of CO2 sensors is essential for 
accurate measures. The authors suggest the CO2 sensors should not be in corners, below bed level, nor near 

doors and windows. The authors observe that CO2 concentration may differ significantly in a room between 
consecutive nights and this is caused by outdoor air that flows through minor gaps around windows. 
Pantazaras et al. (2016) suggest a method to create models tailored for specific spaces. The model designed 
for a specific room, CO2 concentration, ventilation, and some occupants can then be used to predict the CO2 
concentration level in that room. The possibility of predicting future CO2 levels allows for further 
operational efficiency as opposed to using reactive energy systems. The predictive model is proven effective 

for short term predictions. The author warns that the location of CO2 sensors must be carefully chosen for 
the method to be effective. To the best of our knowledge, there is no significant work that models and 
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simulates indoor CO2 dynamics in closed spaces using cellular automata neither there is modeling and 
simulation research work that takes into consideration sensor placement and room configuration, and this 
is the focus of the research we present the initial phase of. 

3 PROBLEM DEFINITION 

The fact that CO2 sensors are an effective, affordable, and non-intrusive means of accurately detecting 
occupants on one hand, and that they are very sensitive to the environment on the other hand (section 2) 

motivates our research. In our work, we aim at utilizing the advantages of CO2 occupant detection, while 
overcoming the concerns associated with those sensors. First, we use M&S to overcome the problem of 
lack of and difficulty in collecting ground truth data for different indoor environments. For this objective, 
we make use of Cell-DEVS advantages and its applicability for the objectives of our work (section 2). 
Second, we aim at incorporating factors that affect the accuracy of occupants’ estimation using CO2 sensors 
such as locations of sensors, window and door locations, and volume of the occupied space. Third, we aim 

at finding a way to calculate the latency required for CO2 sensors to pick up the change in the number of 
occupants. To achieve this, we propose the following two research questions (RQs). RQ1: Is it possible to 
determine the best CO2 sensors location for most accurate occupancy detection based on room configuration 
using M&S? RQ2: What is the latency between the arrival/departure of an occupant and the detection of 
the change in the CO2 concentration level? 

4 CURRENT STATUS EXPERIMENTAL FRAME  

In this paper, we present the initial version of our work where we limit our scope to (1) closed spaces of 
size 3.5m × 5.75m × 2.5m (width × length × height), (2) one to two occupants, (3) presence of means for 
CO2 to escape (an open door, a window or a ventilation port), and (4) the placement of one or two CO2 
sensors in constant locations.  
 The hypotheses that we are trying to prove at this stage to allow us to proceed with our research to 
answer the RQs introduced in section 3 are (1) Cell-DEVS M&S complies with ground truth data in the 

sense that CO2 levels are sensitive to configuration and hence Cell-DEVS can be used to answer the RQs 
in section 3, (2) CO2 sensors placement in the models affect the occupants’ detection, and (3) sensors’ 
locations affect the latency between introducing an occupant and detecting the presence of that occupant.  

4.1 Conceptual Model 

In this section, we describe the conceptual model for our scope. Figure 2 illustrates the elements that could 

be present in the model. Parameters that we consider at this stage are the dimensions of the room, the 

locations of window/door and ventilation ports, the CO2 sensor placement, and the presence of occupants.  

 

Figure 2: Conceptual model. 

We represent the closed space as a set of neighboring cells in a 2-dimensional Cell-DEVS model with 

different CO2 levels. We note here that we base our calculations on the facts that normal background CO2 
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levels measured in particle per million (ppm) range from 300 to 400, while CO2 levels in an occupied space 

with normal ventilation range from 400 to 1,000 ppm (Teleszewski and Gładyszewska-Fiedoruk 2019), and 

the average person produces 0.5l of air per breath of which 3.8% (or 38,000 ppm) is CO2 (Jung et al. 2017). 

Most people breathe once every 5 seconds corresponding to an output of 228 mL of carbon dioxide every 

minute. Hence, we have in the model six types of spaces where the gas diffuses according to different rules: 

(1) open-air spaces with constant 500 ppm CO2 level, (2) walls that are impermeable and do not allow CO2 

to diffuse through them, (3) CO2 sources with a fixed level of CO2 added at an interval to mimic breathing, 

(4) open doors that diffuse CO2 to the rest of the building with a fixed indoor background CO2 level of 500 

ppm, (5) open windows that are also CO2 sinks with a fixed outdoor background CO2 of 400 ppm, and (6) 

vents that diffuses gas through HVAC system with a reduced CO2 background level <300 ppm. 

CO2 sinks in our model maintain constant CO2 levels based on their type and are unaffected 

by the concentration of CO2 in the closed space represented by our model. This approximation is 

very reasonable since outside (such as the rest of the building or outside a window) is large 

compared to the volume of air inside the confined spaces. Thus, diffusion of gas from inside the 

spaces into such large spaces should not significantly change the levels of CO2. Determining the 

amount of CO2 that is added to source cells from breathing requires some basic calculations. Each 

in the model represents 25 cm × 25 cm × 25 cm spaces and therefore has a 15.625 L volume of 

air. The average person produces 0.5 l of air with every breath at a concentration of 3.8% resulting 

in 19 mL of CO2 being added to the surrounding air volume with each breath. The increase in CO2 

percentage for a standard cell volume is, therefore (0.019 l/15.635 l) = 0.001216% (note that the 

conversion between percentage and ppm is a factor of 10,000). Therefore, every 5 seconds (the 

average time between exhalations), approximately 12.16 ppm of CO2 should be added to the 

current concentration in source cells. This rate of respiration reflects a single occupant who is not 

exercising. For our preliminary model, we average CO2 levels of all cells in the local neighborhood 

including the center cell. The rate of diffusion is then controlled explicitly by the delay between 

each averaging event. In the future, more robust diffusion laws could be added, or the delay times 

adjusted to reflect the rate of diffusion in real life. For this stage of the research, diffusion averaging 

delays have been arbitrarily set to 1 second. The cell space should reflect the size of an average 

small office space or room. For a room measuring 3.5 m × 5.75 m and 2.5 m in height, which 

translates to a cell space of 14 × 23 × 10 cells in 3D. 

4.2 Formal Model Specification 

The two-dimensional Cell-DEVS space of the CO2 model is: CO2 = < Xlist, Ylist, S, X, Y, η, N, {t1, t2}, C, 
B, Z >, where Xlist = Ylist = {Ø}; S = type: {0, 1, 2, 3, 4, 5} and conc: {double}; X = Y = Ø; η = 5; N = 
{(0,0), (-1, 0), (0, -1), (0, 1), (1, 0)}; t1 = 14; t2 = 20; C = {Cij | i ∈ [0, 14[ ˄ j ∈ [0, 23[}; and B = {Ø} 
(unwrapped cell space. The local computing function  of the atomic model of each cell and the duration 

function D are shown in Table 1 and Table 2 respectively. We use the Von Neumann neighborhood; we 
consider only the North (N), East (E), West (W), and South (S) neighbors. The cells have 2 distinct state 
variables: type and conc. Type has six possible numeric values which represent the type of cell: 0 for open-
air, 1 for CO2 sources, 2 for walls/impermeable objects, 3 for open doors, 4 for open windows, and 5 for 
ventilation. Conc is a double value that represents the CO2 concentration in ppm within a cell. If a cell is 
impermeable, its conc variable is assigned a value of -10. All cells have a default delay of 1,000 ms except 

for CO2 sources which represent human breathing; these cells have an additional 12.16 ppm of CO2 added 
every 5,000 ms to mimic normal exhalation. Type 0 (open-air) and type 1 cells (CO2 sources) are the only 
cells that undergo concentration changes due to diffusion. In the implementation of the formal specification, 
type 2 cells (walls/impermeable objects) are excluded from the averaging calculation. To reduce the 
complexity of the model rules, it can be reasonably assumed that source cells (type 1) are always separated 
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from walls by at least 1 cell buffer, which is a reasonable assumption since it is not common for a person 
to be breathing directly against a wall. 
 

Table 1: Values of  (N). 

(N)  N  

conc = average of neighbors  type = 0  

conc = neighbors average + 12.16 
ppm  

type = 1  

conc = −10  type = 2  

conc = 500 ppm  type = 3  

conc = 400 ppm  type = 4  

conc = 300 ppm  type = 5  

Table 2: Values of D(S). 

D(S)  S  

𝑅0 += 1,000  type = 0  

𝑅0 += 5,000  type = 1  

𝑅0 += 1,000  type = 2  

𝑅0 += 1,000  type = 3  

𝑅0 += 1,000  type = 4  

𝑅0 += 1,000  type = 5  

4.3 Experimental Setup  

After the formal specification is defined, we implement our model using CD++ (López and Wainer 2004); 

a toolkit that implements DEVS and Cell-DEVS theoretical concepts. In CD++, Cell-DEVS models are 

specified using a specification language provided by the tool. The simulator version of CD++ we use to 

execute the cellular models in this research features the ability for a cell to store multiple state variables 

and uses RESTful Interoperability Simulation Environment (RISE) middleware that allows for the remote 

execution of models over a distributed computing platform (Al-Zoubi and Wainer 2015). For visualizing, 

we use ARSLab Simulation Viewer (St-Aubin et al. 2018).  

5 SIMULATION RESULTS 

We present in this section variations of the model we introduced in section 4. Videos of the simulations can 
be viewed through ARSLab (2020). Diffusion rules for open-air and source cells are performed by 
averaging the conc values of the center cell with the four neighboring cells. Open-air cells need to check 

the local neighborhood in case one or more wall/impermeable cells are present. If this is the case, the 
diffusion computation is adjusted to exclude the unwanted cells from the average calculation. There are 8 
cases to consider for an open-air cell: 4 cases when the cell is directly against a wall and not in a corner, 
and 4 cases of being in a corner where walls meet. To check if a given neighbor cell is a wall, its conc value 
is compared in the rule’s conditions: if the concentration is negative, it must be a wall or other solid object 
(recall that type 2 cells have a fixed conc value of -10). As stated previously, CO2 sources are assumed to 

have a 1 cell buffer from walls or other solid objects so only a single rule is needed. One key change in the 
rule for source cells is that in addition to averaging the concentration of neighbor cells, an additional 12.16 
ppm of CO2 is added every 5 seconds. Remaining cells including walls, open doors, open windows, and 
vents all have fixed values throughout the simulation. Note that for the model presented in this paper, 
HVAC is turned on, windows are open to the outdoor space, and doors are open to the rest of the building 
throughout the simulation. These simple rules are combined with varying initial conditions to observe the 

effect of multiple occupants and varying room configurations. With many different possibilities for initial 
configurations, a variety of complex behavior is expected to emerge. 

5.1 Model Variations 

In this section, we present several variations of the model described in section 4.2, and we show the 
simulation outcome of the presented models. All the simulations presented are run for a 30-minute duration. 
In all the simulation figures (Figure 4 to Figure 7(a)), we present four snapshots for each model variation 

(M1 to M10). The snapshots are at 7.5, 15, 22.5, and 30 minutes ordered clockwise in each figure. Figure 
3 is the legend that summarizes the color scheme used in the simulations (Figure 4 to Figure 7(a)) to 
represent CO2 concentration levels. 
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Figure 3: Color legend for CO2 levels shown in the simulation (ppm). 

 The initial model (M1) is a closed space with no structures/walls other than the four enclosing walls 
and a single occupant placed in the center of the room. As shown in Figure 4(a), CO2 diffusion occurs 

isotopically in all directions, spreading out from the central source cell. CO2 levels continue to steadily rise 
over time due to the lack of outlets. The source cell is closer to the bottom wall than the top wall by a single 
cell and consequently, CO2 levels south of the occupant rise slightly faster than in the cells north of it. The 
next model variation (M2) adds partitions to subdivide the space into two cubicle type areas. A single 
occupant is present close to the center of the right cubical with no CO2 outlets. The simulation of Figure 
4(b) shows how CO2 begins to build up in the right cubicle and diffuses around the dividing wall since the 

model defines the zones that represent the walls as impermeable to the gas. At the end of the simulation, 
concentrations are much higher near the source than on the far side of the room; wall configuration, 
therefore, plays a key role even with the existence of open space. Model M3 adds a second occupant to M2 
in the left cubicle. As shown in Figure 4(c), CO2 levels rise very quickly compared to M2 where only one 
occupant is present. The concentration of CO2 is symmetric due to the symmetry of the walls and occupant 
positions. The lack of outlets (sink cells) causes high buildups of CO2 in a brief period.  

 

(a) M1-an occupant in a closed 
space. 

 

(b) M2-an occupant in a two 
cubical room. 

 

(c) M3-two occupants in a two 
cubical room.

Figure 4: Simulation results for M1, M2, and M3. 

 In model variation M4, we add to M3 a sink zone to the center north wall to represent an open door (3 

cells = 75 cm wide). Figure 5(a) shows how the ventilation from the open door reduces the overall 
concentrations compared to the simulation of M3. The rise of CO2 levels still reflects poor air quality 
indicating that additional ventilation sources may be needed. 

 

(a) M4-two occupants in an open-

door room. 

 

(b) M5-two occupants in a room 

with a window. 

 

(c) M6-two occupants in a room 

with a vent.

Figure 5: Simulation results for M4, M5, and M6. 
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 In the variation model M5, we simulate the effect of multiple CO2 sink zones by adding an open window 
to M3 to the south wall around the center of the left cubical (see Figure 5(b)). The open window initially 
lowers the CO2 concentrations in the left cubicle despite its occupant adding to the CO2 levels with each 
breath. As time progresses, the levels in the right cubicle increase due to lack of ventilation and CO2 begins 
diffusing around the walls from the right cubicle to the left. Figure 5(c) shows M6 that varies M3 by adding 
a 25 cm wide ventilation port to the north of the eastern wall. The port (one cell) maintains a constant CO2 

level at 300 ppm but reduces the CO2 level around it. In models M7 and M8 (Figure 6(a) and Figure 6(b) 
respectively), we investigate the effect of having two sink zones in the closed room. The increased number 
of CO2 outlets and their location in the simulation shown in Figure 6(a) keep concentrations low in the left 
cubicle making it difficult to detect the occupant. Levels in the right cubicle rise steadily making it a better 
location for a potential sensor. However, further investigation is required to differentiate between the 
increase in CO2 levels due to the longer presence of occupants and the increase in CO2 levels that is due to 

a larger number of occupants. M8 of Figure 6(b) combines the M4 and M6. Having a door and a ventilation 
port reduces the CO2 levels in one of the cubicles like M7 simulation. However, the location of the vent in 
M8 is different from the window in M7 and the two sinks have different sizes and different background 
concentration levels (one cell for the vent/25cm and two cells/50cm for the window) which results in a net 
increase in CO2 levels for both cubicles in M8 as opposed to M7 which makes placing a sensor in either 
cubical in the latter case possible. M9 of Figure 6(c) is a closed room with two cubical areas, a ventilation 

port, and a window. With an open window and an active ventilation port, the decrease rate of CO2 from the 
environment is significant despite the presence of 2 occupants which makes finding an acceptable position 
for the CO2 sensors more challenging. 

 

(a) M7-two occupant, window, and 

a door. 

 

(b) M8-two occupants, ventilation 

port, and a door. 

 

(c) M9-two occupants, window, 

and ventilation port.

Figure 6: Simulation results for M7, M8, and M9. 

 M10 of Figure 7(a) adds an open door to the center of the north wall of the room. In this model, we 
have three possible outlets for CO2. Interestingly, the open door which has normal indoor background CO2 
levels acts as a source drawing fresh CO2 into the room in the presence of decreased concentrations due to 
the window and vent. There are slightly higher CO2 levels in all parts of the room when compared to M9.  

5.2 Sensor Placement 

We placed a sensor on the right wall (RW) and another on the left wall (LW) of the room with a single 
occupant in the right cubicle and an open door is the only CO2 outlet (Figure 7(b)). Plots of the concentration 
levels over time are shown in Figure 8(a) for the two sensors. The RW sensor nearest to the only occupant 
detects CO2 levels that rise very quickly before eventually stabilizing, while the LW sensor detects only 
minor CO2 increases and has difficulty detecting the occupant. This is due to the ventilation provided from 

the open door in the only pathway connecting the two halves of the room. Over 30 minutes, the LW sensor 
detects a rise of only 10 ppm compared to a rise of 117 ppm in the RW sensor. In Figure 7(c), we show the 
same model used in the simulation of Figure 7(a), with an additional occupant. Due to the symmetry of the 
room configuration, CO2 levels for both sensors rise in unison. The results are plotted in Figure 8(b).
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(a) M10- 2 occupants, window,  
vent, and a door. 

 

(b) One occupant, a door, and two 
CO2 sensors. 

  

(c) Two occupants, a door, and two 
sensors.

Figure 7: Simulation results for M10 and sensors locations. 

 

(a) CO2 Vs. Time plot for Figure 7(b)  

 

(b) CO2 Vs. Time plot for Figure 7(c)

Figure 8: Time plot of CO2 levels for sensors in two locations. 

6 DISCUSSION  

In this section, we discuss the simulation results and the threats to the validity of the performed simulation.  

6.1 Results Analysis 

From the simulation results, we observe that from a basic set of rules, complex behavior emerges. The 

emerging behavior is dependent on the initial configuration of the room and its occupants. Placing CO2 

outlets in one location versus another drastically affects the ability of the gas to diffuse throughout the room. 

Additionally, impermeable walls affect the rate at which CO2 can spread throughout the room. Dividing the 

open rectangular room into cubicles results in the gas building up on one side of the wall and having 

difficulty reaching the opposite side. One general conclusion is that simulating the exact layout of a 

confined space is important for determining how CO2 will spread and build up. This shows how the models 

comply with the ground truth experience that CO2 sensors are indeed sensitive to room configuration 

(Labeodan et al. 2015; Hobson et al. 2019). Even minor changes in the configuration result in widely 

varying distributions of CO2. This confirms that the exact distribution of changing gas levels in confined 

spaces is indeed a non-linear complex process that needs to be investigated on a case-by-case basis.  

Determining the latency for a sensor to detect significant CO2 changes is also heavily dependent on the 

layout of the room. The plot of Figure 8(a) illustrates how one of the sensors can quickly determine the 

presence of the occupant while the sensor on the opposite side barely detects any noticeable change. 

Additionally, having two occupants versus a single occupant may not make significant changes in the CO2 

levels detected by a sensor if there is a source of air shifts. One consistent outcome of all simulations is that 
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placing a CO2 sensor near a CO2 sink zone introduces a notable change in concentration. Thus, to determine 

the ideal location of a sensor, the specific conditions present in the real world must be simulated. 

6.2 Threats to Validity 

Although simplifying a 3-dimensional space in the form of the 2-dimensional model is a common practice 

in M&S, in a situation where the third dimension may change the results this can be considered a construct 

validity threat. In our case, the CO2 concentration and best placement may differ based on the height of the 

closed space. Thus, adding a third dimension to our model is a step that is included in our research plan. 

Another construct validity threat is that we do not use precise fluid dynamics methods. In our next step, this 

threat can easily be corrected by adjusting the time step used between diffusion calculations and by updating 

the diffusion calculation to reflect fluid dynamics equations. However, the calculations we use are 

reasonable at this stage of proving the concept as discussed in section 4.1. For example, the assumption of 

modeling CO2 outlets/sinks as constant concentrations may not be a precise representation of reality, but 

the simplicity of this assumption facilitates implementing rules that mimic real behavior. In M10 (Figure 

7(a)), the open door acted as a CO2 source due to the low levels of CO2 surrounding it due to an open 

window and a vent which reflects reality in the sense that a door should operate in two ways: drawing CO2 

from high concentration to low concentration areas. Also, an external validity threat is that the number of 

models and configurations we assessed so far are not representative of all the possible configurations for 

closed spaces and offices. Therefore, we also plan to experiment with several types of spaces to enable the 

analytical generalization of the results. Finally, although the initial results of our preliminary work conform 

with previous research results, the models presented here are not validated against ground truth data which 

is considered a reliability threat to our results. To overcome this, we plan to model real spaces that we have 

ground-truth data collected from to validate our models. For external validity, in the modeling environment, 

we introduce here where all the variables are controlled, we do not see an external validity threat that is 

worthy of reporting. Other parameters that we are considering for our research to enhance the construct 

validity of our experiments are the effects of air shifts and the effect of variable temperature. 

7 CONCLUSION AND FUTURE WORK 

In conclusion, although this CO2 model is basic, it provides insights into the basic pattern for the diffusion 
of the gas within a room and the feasibility of continuing our study through M&S to answer the proposed 
RQs (section 3). The simulations we executed showed compliance with the real-life situations that proved 
the sensitivity of CO2 to rooms configuration. For every unique room configuration, minor changes may 
result in a significant difference in the resulting CO2 levels and extra care should be taken when choosing 
a location for a potential sensor. Additionally, the latency for the detection of CO2 can vary greatly based 

on room layout and sensor configuration. The next stage in our research is to incorporate more precise fluid 
dynamics calculations, consider other configuration parameters, consider CO2 concentration reduction 
when occupants leave the space and run a variety of model configurations (e.g. lack of HVAC) with a larger 
number of occupants, and validate the models. Then, the collected results can be used to automatically 
determine the best sensor locations depending on the configuration and number of occupants. A second 
stage of the research would feature using statistical analysis to calculate the correlation between the latency 

of detecting occupants’ presence and sensor location.  
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