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ABSTRACT 

Hydraulic simulation models are used to improve the energy use of pumps at water distribution networks 
through simulation optimizations by selecting operating policies which reduce energy usage while meeting 
customer water demand. Typical simulated optimizations of complex hydraulic systems have high 
dimensional decision spaces and require significant time to evaluate. This study presents the design of a 
new multi-threaded simulation optimization software platform to determine pump operations for water 
distribution networks. The platform explores rule-based controls for pumps using derivative-free simulation 
optimization methods as independent, parallelized computational tasks. Decision spaces are reduced 
through domain division which produces smaller subproblems to be sequentially optimized. The platform 
is applied to a real urban water distribution system case study to determine energy efficient pump operating 
policies. The performance of several optimization techniques are compared, indicating that domain division 
approaches may improve consistency of optimization but are not necessarily beneficial for all optimization 
techniques. 

1 INTRODUCTION 

The optimal management of controls within large-scale water distribution systems is a long-standing 
problem inside the field of hydraulic engineering (Sterling et al. 1975). Optimally controlling pumps has 
been demonstrated to have large impacts on overall costs, energy use, and environmental impact of a water 
system (Makaremi et al. 2017). However, given variable water demands, interdependent system elements, 
and differing energy costs, it can be difficult it determine optimized pump controls to improve system 
performance (Mala-Jetmarova et al. 2017). This paper presents the design of a new, efficient multi-threaded 
simulation optimization software platform for determining pump operating policies to improve the energy 
usage of a water distribution network (WDN).  

WDN operators develop pump operating policies to match observed water demand while maintaining 
water storage levels required for system resiliency (Klise et al. 2015). This decision requires integrating 
implicit or explicit forecasts of customer water demand with operator intuition to design pump and valve 
management strategies. Operators determine pump operating policies, usually in the form of conditional 
rules, which turn pumps “on” or “off” or assign pumps a high or low setting based on water storage levels 
or the time-of-day. To model scenarios, engineers may use hydraulic simulation software to observe the 
impact of a given pump operation policy on the system’s energy usage or hydraulic performance.  
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 This paper expands on previous research into pump schedule optimization within WDNs (Kang 2014; 
Bonvin et al. 2019; Fantozzi et al. 2014). Typically, optimization models have focused on finding optimal 
pump settings defined across specific time periods to minimize the operational cost or energy consumption 
of a WDN (Mala-Jetmarova et al. 2017). Methods have included linear programming (Jowitt and 
Germanopoulos 1992), non-linear and dynamic programming (Ormsbee and Reddy 1995), and simulated 
annealing (Goldman and Mays 2005), among others. Recent contributions to WDN optimization have also 
expanded the available methodology to Bayesian optimization and random forests with decision trees to 
model correct pump settings (Candelieri et al. 2018). 
 Some research has leveraged optimization approaches to select optimal rule-based pump controls 
dependent on system parameters such as flow, pressure and tank levels, to develop pump control strategies 
more resilient to uncertain demands (Mala-Jetmarova et al. 2017; Van Zyl et al. 2004). Researchers have 
used genetic algorithms to determine pump controls at WDNs based on fixed tank level triggers (Paschke 
et al. 2001), as well as variable tank level triggers where the control condition changes over time (Quintiliani 
and Creaco 2019; Van Zyl et al. 2004). Later work has explored using a genetic algorithm for optimizing 
multiple layers of rules which incorporate both system conditions and time-based conditions (Marchi et al. 
2017; Blinco et al. 2016). Typically, these studies have limited their optimization methods to genetic 
algorithms. Additionally, optimization approaches may struggle with high-dimensional decision spaces in 
large-scale WDNs that contain many interacting pumps. 
 To address these computational challenges which arise from determining pump operating policies in 
large, complex WDNs, this paper introduces the design of a new multi-threaded optimization platform for 
the exploration of optimal operation policy of pumps. In the platform, different simulation optimization 
approaches are combined with a domain division (“divide-and-conquer scheme”) to break the larger 
optimization problem into sub-problems which prioritize optimizing interconnected pumps sequentially. 
The platform uses several global search methods formatted to a multi-threaded system to runs hydraulic 
simulations in parallel to maximize computational resources available to a user in a server or single user 
environment. As a case study this paper explores the application of the platform to a hydraulic model of 
single region of a real WDN. Results for each global search method are examined and opportunities to 
improve the discovery of optimal decision points for practical pump operations are discussed. 

2 PROBLEM MODEL AND SIMULATION OPTIMIZATION FORMULATION 

The simulation optimization platform searches for a set of rule-based pump controls to minimize simulated 
hydraulic outputs such as energy use. To model the relationship between pump controls and hydraulic 
outputs, the platform makes uses of a hydraulic simulation toolkit. Based on the outputs of the hydraulic 
simulation, the platform applies derivative-free optimization methods to determine a set of pump control 
rules for reducing energy use.  

To perform the hydraulic simulation of WDNs the platform leverages the EPANET toolkit (Rossman 
2000). EPANET simulates WDN operations through a series of demand-driven steady-state calculations to 
ensure mass and energy balances throughout all network assets (Rossman 2000). Results of the simulation 
include time-series data of hydraulic head and flow throughout the network, as well as pump energy use 
and storage levels of local water reservoirs, herein referred to as tanks. The operation of pumps is controlled 
through sets of logical rules. These rules use the value of a particular system variable as a threshold for 
assigning a setting.  Since the EPANET simulations are driven by customer water demand, EPANET 
contains hardcoded demand patterns that represent the demand at a given set of nodes for a particular time. 
A successful policy for pump operation will require a minimum amount of energy while meeting customer 
water demand and ensuring adequate tank levels.` 

This paper defines a policy as a set of values which completely define rule-based pump logic inside a 
simulation. Within a given hydraulic model, the problem formulation uses a set of pumps (indexed u ∈ 
(1...U)) along with a set of tanks (indexed r ∈ (1...R)). Each pump is operated based on a set of rules that 
determine the on/off status as a function of tank levels or the time-of-day of the simulation. Each policy is 
written as a decision vector 𝑥𝑥� which represents the pump status and threshold values across a set of pump 
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rules. Vector 𝑥𝑥� is used to write new rules to govern pump operation inside the simulation of a WDN. For 
example, a basic set of three rules to control operations for pumps written in EPANET would be: 

 
LINK PUMP1 Open If TANK1 Below 17.00 

LINK PUMP1 Closed If TANK1 Above 22.00 
LINK PUMP1 Open AT TIME 10.68 HOURS 

 
and could then be represented with the numeric decision vector: 
 

𝑥𝑥� = [𝑥𝑥1 = 1, 𝑥𝑥2 = 0, 𝑥𝑥3 = 1, 𝑥𝑥4 = 17, 𝑥𝑥5 = 22,𝑥𝑥6 = 10.68]. 
 
In this case each variable (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4, 𝑥𝑥5,𝑥𝑥6) represents a value that defines the set of rules; 𝑥𝑥1 for the 
pump setting on the first rule, 𝑥𝑥2 for the pump setting on the second rule, 𝑥𝑥3 for the pump setting on the 
third rule, 𝑥𝑥4 for the threshold level for the first rule, 𝑥𝑥5 for the threshold level for the second rule, 𝑥𝑥6 for 
the threshold level for the third rule. Therefore, based on EPANET simulations, 𝑆𝑆𝑆𝑆𝑆𝑆() , the relevant 
hydraulic quantities can be modeled as a deterministic function of policy vector 𝑥𝑥�  and timeframe 𝑇𝑇 . 
Observable hydraulic outputs 𝛼𝛼 are formulated as: 
 

𝛼𝛼 =  𝑆𝑆𝑆𝑆𝑆𝑆𝛼𝛼(𝑥𝑥�,𝑇𝑇).            
 
A central requirement of WDNs is to always meet water customer demands. Since EPANET is demand-
driven and requires pump operations and tank storage to mass-balance with water demand, demands can be 
met by imposing minimum storage requirements for tanks that are within hydraulic zones that serve water 
demand directly. Therefore, optimal rule-based management can be expressed as a simulation optimization 
problem with an imposed tank-level constraint. The full formulation of the optimization problem can be 
written as: 
 

𝑆𝑆𝑆𝑆𝑚𝑚𝑥𝑥�𝑌𝑌(𝑥𝑥�) =  𝑆𝑆𝑆𝑆𝑚𝑚𝑥𝑥��∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑢𝑢(𝑥𝑥�,𝑇𝑇)𝑈𝑈
𝑃𝑃=1 �        

    such that: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑙𝑙𝑟𝑟(𝑥𝑥�,𝑇𝑇) > 𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑃𝑃𝑚𝑚𝑃𝑃         
 

𝑥𝑥�𝜖𝜖𝜖𝜖             
 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑙𝑙𝑟𝑟  (𝑥𝑥�,𝑇𝑇) and 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑢𝑢 are the simulated pump energy uses and tank levels over 
time period 𝑇𝑇 for tank 𝑟𝑟 and pump 𝑢𝑢, respectively. The constraint constant 𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑃𝑃𝑚𝑚𝑃𝑃 ensures that the tank 
maintains minimum water storage for hydraulic stability under shifting customer water demands. The 
domain 𝜖𝜖 is the policy search space defined as upper and lower bounds for each rule-settings decision 
value. 
 Through the artificial penalty value added to the objective function if the tank level drops below 
𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑙𝑙𝑚𝑚𝑃𝑃𝑚𝑚𝑙𝑙 , the constrained optimization problem is transformed into an unconstrained simulation 
optimization problem inside a set of multi-dimensional box-constraints. Using this formulation of the 
problem, the platform applies modifications of existing simulation optimization methods to determine 
pump operating policies that reduce energy usage in a WDN. 
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3 SIMULATION OPTIMIZATION METHODS  

A multi-threaded simulation optimization platform was programmed in C++ to explore pump operating 
policies while performing EPANET simulations. The platform includes several alternative derivative-free 
global optimization methods that can be applied to the hydraulic simulation results. The platform also 
allows the user to specify a “divide-and-conquer” domain division scheme to improve the optimization 
efficiency for high dimensional decision spaces (𝜖𝜖) where decomposing the system into smaller 
optimization problems may improve the computational efficiency of the optimization. The platform is 
designed to leverage multi-threading to run simulations and optimization algorithms in parallel to maximize 
performance with modern hardware on servers or individual computers (see Figure 1).  

Figure 1: The optimization platform and its interaction with the EPANET simulation framework with 
multiple threads. Figure 1.a shows the platform first transforming the domain (domain division), point 
sampling via the optimization methods, and the beginning of the multi-threaded component of the platform. 
Figure 1.b shows the activity inside a single thread, first performing a domain transformation by combining 
the sampled point with the best previously sampled point, running the simulation, and then computing the 
objective value before terminating the thread.  

 Throughout the optimization, the platform maintains a central data repository, the “optimization 
database”, that houses policy vectors, hydraulic simulation results and other intermediate results required 
to perform the optimization and is safely accessible to all parallelized tasks simultaneously utilizing 
mutexes for each data collection within the database. At a given iteration k the optimization process 
decomposes the problem to search on a smaller domain 𝜖𝜖′. Using the previous policies (𝑥𝑥𝑇𝑇′

1 … 𝑥𝑥𝑇𝑇′
𝑃𝑃) and 

previous objective values (𝑦𝑦𝑇𝑇′
1 …𝑦𝑦𝑇𝑇′

𝑃𝑃), a selected optimization algorithm generates a batch of P new policy 
inputs, 𝑥𝑥𝑇𝑇+1′ 1 … 𝑥𝑥𝑇𝑇+1′ 𝑃𝑃. For each policy p, a task (𝜏𝜏𝑃𝑃) is submitted into a multi-threaded queue to perform 
the hydraulic simulation. Then on each thread, a domain transformation 𝜖𝜖’ 𝑡𝑡𝑡𝑡 𝜖𝜖 is performed by combining 
the partial policy (𝑥𝑥′𝑇𝑇+1 𝑃𝑃) with the best current policy to set a form a full policy (𝑥𝑥𝑇𝑇+1 𝑃𝑃). Each full policy 
is used to write the controls for an EPANET simulation which runs on the thread  𝜏𝜏𝑃𝑃 to generate a set of 
hydraulic values (𝑆𝑆𝑆𝑆𝑆𝑆𝛼𝛼( 𝑥𝑥𝑇𝑇+1 𝑃𝑃,𝑇𝑇)). Finally, the objective values are computed from the hydraulic values, 
and then the objective values (𝑦𝑦𝑇𝑇+1′ 1 … 𝑦𝑦𝑇𝑇+1′ 𝑃𝑃) are updated to the optimization database for the next 
iteration and the threaded task 𝜏𝜏𝑃𝑃 terminates. Optimization iterations continue until the maximum number 
of function evaluations are exceeded or the performance does not improve over a given number of iterations.  
 Three common optimization algorithms were implemented in the platform which perform the domain 
transformations, batching and policy computations including Particle Swarm Optimization (PSO) 
(Kennedy and Eberhart 1995), Hookes-Jeeves Pattern Search (HJ) (Hooke and Jeeves 1961), and a simple 
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Genetic Algorithm (GA) (Eiben et al. 1994). The format of each method is briefly discussed along with 
modifications used inside the simulation optimization platform to make the algorithms compatible with the 
multi-threaded design.  
 PSO is a popular population-based search algorithm that searches a domain based on moving a set of 
sampled policies (particles P). Each particle’s movement is characterized as a proportion (ω) of a random 
velocity and bias (𝜑𝜑1) towards the best policy observed by a single particle and a bias (φ2) towards the best 
policy observed by the entire system of particles. To enable batching of the simulation optimization tasks, 
at the start of every iteration all potential moves are determined simultaneously with updated values and 
used to generate the numerous simulation optimization tasks.  
 The HJ optimization method is a common pattern-search algorithm where new solutions are located by 
moving a starting policy in a random direction within a given domain with a fixed step size (δ). After a 
direction no longer improves the objective function observed, the algorithm selects a new random direction 
and moves with a step size reduced by a ratio (ρ) until the objective function no longer improves. The 
method was formatted to increase its efficiency through the inclusion of multiple starting points (P). 
Additionally, each non-improving point will only check one random direction before attempting to move. 
The algorithm batches one new policy for each point, which represents either an improving direction or a 
test direction. Particle locations are updated at the beginning of each iteration and individually batched as 
tasks for computation.  
 Lastly, the basic GA focuses on an evolutionary approach to exploring new potential policies based on 
the recombination and variation of already discovered policies with promising objective values. Starting 
with a given population of sampled policies (P), a designated number of well-performing “elites” are copied 
over to the next batch (𝑐𝑐𝑃𝑃𝑙𝑙𝑚𝑚𝑙𝑙𝑃𝑃), the best points from the current population are then recombined randomly to 
create a proportion (ρ recombine) of the new potential polices for the next iteration. Finally, the remaining 
percentage of poorly performing policies are “mutated” by re-selecting them uniformly across the bounds 
of the domain. After recombination and mutation, updated policies are batched and run on multiple threads. 
 WDN operators and engineers seeking to improve pump operations themselves will typically explore 
pump or pump station controls one at a time or based on geographic or network grouping. Improvements 
are often iterative, starting from an initial, trusted set of pump controls and changing certain thresholds to 
measure the overall impact on the system performance. Since pumps at different locations may have 
independent operation, optimizing geographically distinct or hydraulically distant pump groups may more 
efficiently determine promising pump control policies. Incorporating the concept of this approach, the 
platform allows users to specify a “divide-and-conquer” scheme dividing the optimization problem into 
sub-problems. In each sub-problem, the optimization focuses on limited pump variables while keeping the 
remaining variables set at the best currently known values. The division creates a new search space (𝜖𝜖′ ⊂
𝜖𝜖) as subset of the total domain and can potentially reform an intractable high-dimension optimization 
problem into a series of easier to solve lower-dimension sub-problems.  

Altogether, the simulation optimization platform provides a variety of options for exploring optimal 
pump settings. First, the platform uses three provided simulation optimization methods. Second, the 
platform offers the option of a “divide-and-conquer” scheme to separate a larger pump control problem in 
a series of smaller pump control problems. Based on each one of these selections, a variety of different 
optimization approaches are available to a user. To illustrate the available methods for pump policy 
determination, the paper explores a case study and compares the relative efficiency of the various methods 
for determining energy-efficient pump policy recommendations. 

4 CASE STUDY AND NUMERICAL RESULTS 

To test the performance and features of the simulation optimization platform with a case study, a hydraulic 
simulation model was optimized using all three optimization methods, PSO, HJ and GA, for a non-divided 
domain and two distinct “divide-and-conquer” schemes.  

The case study explores the optimization of the pump operations in a single pressure zone, or 
hydraulically independent region, of the potable water distribution system managed by the Moulton Niguel 
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Water District (MNWD) in southern California. The hydraulic model used in the case study is a component 
of a larger hydraulic model built and calibrated by the Center for Water-Energy Efficiency at the University 
of California, Davis for the MNWD in 2018-2019 for the purpose of operational planning and system 
analysis (see Figure 2 for a simplified diagram). The simulation length is 168 hours with a resolution of 60 
seconds and represents typical operation in a single hot-weather week. All locational and identifiable data 
have been stripped from the hydraulic model. 

Figure 2: Presented is a simplified illustration of the case study hydraulic model. Here two sets of operating 
pumps lift water from lower reservoirs to a central water tank and water customer demand nodes.  

The case study model includes over 700 demand nodes and contains two pump stations, one with four 
pumps and the other with five pumps. Both pump stations draw water from connected pressure zones and 
supply an above ground storage tank with a capacity of 3.9 million gallons. The connected pressure zones 
are modeled as water sources for the simulation with variable hydraulic head and infinite volume. Four 
pumps in this zone have static operations, one pump continually operates and three pumps are turned off, 
and were therefore not included in the optimization procedure. The remaining four pumps, two at each 
pump station, were selected as the subject of this optimization problem. Each of these pumps are controlled 
by two sets of rules: one that turns the pump on when the tank reaches a low level and one that turns the 
pump off when the tank is full. Using original controls, the total pump energy use is 29.9 megawatt-hours 
for the simulation period.  
 For this case study, the platform is used to optimize the controls in the hydraulic model by modifying 
the values of the conditional thresholds based on the level of the zone’s water storage tank. The settings for 
the pump statuses were not modified in the decision vector. As such, this optimization-simulation problem 
optimizes eight continuous variables that describe the threshold tank levels for turning the pump settings 
on or off.  

 To maintain system resiliency, the constraint on the level of the zone’s single water storage tank 
(𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑃𝑃𝑚𝑚𝑃𝑃) was set to 10 % above the minimum tank level specified in the hydraulic model. The upper and 
lower bounds (box constraints), which determine the search domain of the problem (X) are defined as 5% 
above the minimum tank level and below the maximum tank level respectively. Additionally, the original 
control settings were used as the default feasible value for pump status triggers to assist the optimization in 
finding feasible results. 
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 For each of the optimization methods described in Section 3, the simulation optimizations used a 
standard set of method parameters. The PSO method uses 𝑃𝑃 =  5 particles with an initial velocity 
coefficient 𝜔𝜔 =  0.5 and with the local and global velocity components set at (𝜑𝜑1 = 0.5 ) and (𝜑𝜑2 = 0.5 ), 
respectively. The HJ algorithm uses 𝑃𝑃 =  5 particles, a starting step of (𝛿𝛿 =  0.3) multiplied by the length 
of the respective box dimension, and a step-size reduction ratio of ρ = 0.5. Finally, the GA uses a population 
of 𝑝𝑝 =  5, with a single elite (𝑐𝑐𝑃𝑃𝑙𝑙𝑚𝑚𝑙𝑙𝑃𝑃  =  1) , and recombining 60% of the policy points with the remainder 
of the policy points being randomly mutated. 
 For the divide-and-conquer scheme, two methodologies were examined for dividing the optimization 
problem into smaller sub-problems. The first domain division scheme divides the variables associated with 
each of the four pumps by location (“divide-and-conquer scheme 1”), with the pumps from group 1 being 
optimized over the first half of an algorithm’s iterations and the remaining iterations dedicated to optimizing 
the threshold setting variables of the other two pumps in the second pump grouping. For comparison, this 
paper examines a second domain division scheme which groups one pump from each geographic region 
together, dedicating the first half of the method’s iterations to optimizing the first group of variables and 
the second half of the method’s iterations to the second (see Figure 3 for result distributions). 

Figure 3: The box plots present a comparison of the energy usage (kWh) of policies found by each method 
applied to the case study optimization problem. Each box plot represents the distribution of final objective 
values for the best determined pump policy across each of the ten replications. 
 

To limit the optimization’s computational budget, the maximum number of function evaluations was 
set to 50 for each experiment. Using each optimization method paired with a divide-and-conquer scheme, 
including using no division of the domain, required nine optimization experiments with ten replications of 
each experiment. Each of the nine experiments were characterized by a range of objective values, or total 
energy consumption in kilowatt-hours (kWh), through the repeated discovery of improved operating 
policies.  

Each of the optimization methods generates a policy that improves on the initial default policy, where 
each pump is active for fewer hours while still meeting demand and maintaining the tank’s lower limit. The 
relative effectiveness for each optimization approach used for this case study is compared based on the 
observed medians across each of the replications for each experimental method (see Table 1). All methods 
made improvements from the baseline energy demand of 29,919.39 kWh by approximately 2-5%.  
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Table 1: The median values generated by each of the various optimization methods paired with different 
domain division schemes. 

Optimization 
Method 

Divide-and-Conquer 
Scheme 1 (kWh) 

Divide-and-Conquer 
Scheme 2 (kWh) 

Standard Optimization 
(kWh) 

GA 29,007.63 29,185.46 29,452.66 
HJ 28,677.19 29,167.42 29,051.59 

PSO 28,462.77 28,936.60 28,356.68 
 

The descent profiles of the replications from each experimental method (see Figure 4) show the relative 
effect of function evaluations on optimizer performance in terms of objective value. Generally, the policies 
with the lowest, or most optimum, objective values are achieved by the PSO method. The lowest median 
objective value is generated by PSO without division of the domain, followed by the PSO with the 
geographic division strategy “Divide-and-Conquer Scheme 1”. The GA generated the least optimum 
median objective values out of the various optimization methods except under the ordering division strategy 
“Divide-and-Conquer Scheme 2” where it performs similarly to HJ. 

Figure 4: Descent profiles for each of the nine experiments show the objective value (total energy use in 
kilowatt-hours (kWh)) versus the number of function evaluations. Each replication’s descent profiles are 
illustrated in grey. The descent profile of the replication with the median final value is highlighted in red.  

 
 The “Divide-and-Conquer Scheme 1” improved the performance of the optimizations under HJ and 

GA, while the “Divide-and-Conquer Scheme 2” generally reduced optimization performance in terms of 
median objective value with the exception of GA.  
 A general tendency of the GA and HJ descent profiles indicate shallower objective value decreases, 
with more consistent decreases in objective value from the PSO approach. Furthermore, the full domain 
optimization and the first divide-and-conquer scheme show much more variance across the slope of descent 
for each of the optimization methods. The results suggest that simulation optimizations using the GA and 
HJ algorithm or using the “Divide-and-Conquer Scheme 2” are more affected by the selection of an initial 
starting policy for each of the particles. Moreover, the descent profiles suggest that poorly performing 
optimization methods are not sufficiently exploring the domain and are unable to escape local optima. 
Further changes in parameter selection may allow the evaluated methods to overcome this hurdle and spend 
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more of the computational budget exploring the domain. While all optimization methods reduce the initial 
pump policy’s energy usage within the constraints of the problem, the PSO is overall the most effective 
optimizer for this case study, with the most effective approach being the application of the PSO solver 
without any division of the domain. While showing benefits when paired with some optimization methods, 
the domain division schemes do not uniformly improve the efficiency of the optimization and, as in the 
case of the “Divide-and-Conquer Scheme 2”, may decrease the efficiency of the optimization. These results 
may be the consequence of the limited number of decision variables, and that both sets of pumps connect 
to a common storage tank within a single hydraulic zone. 

5 CONCLUSIONS AND FUTURE RESEARCH 

This paper presents the design of a new, multi-threaded simulation optimization platform for the efficient 
optimization of water distribution network operations. The platform searches for pump operating policy 
improvements using any of a series of derivative-free optimization methods. Domain division of pumps 
into sub-problems for sequential optimization has been implemented in the platform to improve 
performance of optimizations for large, complex water distribution networks. The platform design is 
generalized to support custom division schemes, optimization methods, and simulation strategies while 
enabling performance scalability on individual computers or server environments. 

The optimization platform is leveraged in a case study exploring pump policy solutions for the hydraulic 
model of a single hydraulic zone from the potable water network of the Moulton Niguel Water District. 
Among the simulation optimization methods, PSO was the most efficient approach to discovering optimal 
pump policies. The performance of domain division in improving optimization was dependent on the 
selected simulation optimization method and precise domain division strategy. In the context of optimizing 
the policies of pumps serving a single hydraulic zone, the domain division strategy did not uniformly 
improve optimization performance. 

Generally, the multi-threaded simulation optimization platform would be useful for water distribution 
systems and engineers seeking to evaluate opportunities for improved pump control policies to reduce the 
energy consumption within a distribution system. The availability of different optimization methods that 
are integrated into the multi-threaded design will enable the determination of optimized pump operations 
on a limited computational budget where decision support requires rapid response on modest hardware. 
Commercial and academic research communities in hydraulic modeling would benefit from the platform 
through the ability to generate customizable optimizations for user-driven hydraulic objectives that can be 
performed utilizing background threads without requiring users to pause other hydraulic modeling 
activities.  

This research was limited by both the scope and complexity of the case study and the computational 
budget. In larger case studies, there is an opportunity to observe improved application of the domain 
division schemes by leveraging partial independence in the operation of pumps within different hydraulic 
zones. An increased number of function evaluations may also lead to improved solutions across all domain 
division schemes. Further research will apply the platform to optimize the operations of hydraulic networks 
with several, complex hydraulic zones and explore the impact of additional function evaluations. 
Additionally, the independence of simulation and optimization tasks presents the opportunity to seamlessly 
combine optimization approaches at different iterations or within different sub-problems through a robust 
optimization management strategy. Future research should investigate the benefit of using exploration-
focused algorithms at early iterations paired with methods that exploit local solutions at later iterations. 
Future research should also expand to include stochastic customer demands to improve simulation 
accuracy. Expansions to the algorithms to support stochastic simulation optimizations will be necessary for 
the platform to accommodate these stochastic demands.  
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