
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

DYNAMIC OPTIMIZATION OF DRONE DISPATCH FOR SUBSTANCE OVERDOSE RESCUE

Xiaoquan Gao Nan Kong

School of Industrial Engineering Weldon School of Biomedical Engineering
Purdue University Purdue University

315 Grant St 2 206 S Martin Jischke Dr
West Lafayette, IN 47907, USA West Lafayette, IN 47907, USA

Paul M. Griffin

Harold and Inge Marcus Department of Industrial and Manufacturing Engineering
Pennsylvania State University

310 Leonhard Building
University Park, PA 16802, USA

ABSTRACT

Opioid overdose rescue is very time-sensitive. Hence, drone-delivered naloxone has the potential to be
a transformative innovation due to its easily deployable and flexible nature. We formulate a Markov
Decision Process (MDP) model to dispatch the appropriate drone after an overdose request arrives and to
relocate the drone to its next waiting location after having completed its current task. Since the underlying
optimization problem is subject to the curse of dimensionality, we solve it using ad-hoc state aggregation
and evaluate it through a simulation with higher granularity. Our simulation-based comparative study is
based on emergency medical service data from the state of Indiana. We compare the optimal policy resulting
from the scaled-down MDP model with a myopic policy as the baseline. We consider the impact of drone
type and service area type on outcomes, which offers insights into the performance of the MDP suboptimal
policy under various settings.

1 INTRODUCTION

Over the past three decades, drug overdose deaths in the US have tripled (Warner et al. 2011). More than
72,000 Americans died from a drug overdose with opioids making up the majority of these deaths. This is
more than the number of lives lost in car accidents or gun-related homicides (Scholl et al. 2019). Naloxone
is a medication commonly used for respiratory failure from opioid overdose. It is included as part of an
emergency overdose response kit distributed to opioid drug users and emergency responders. The efficacy
of naloxone depends on how quickly it can be delivered. Death from overdose typically occurs within 1
to 3 hours. It is therefore important to reduce the time it takes to administer naloxone by getting it into
the hands of those best positioned to respond rapidly (Kim et al. 2009). However, due to insufficient
emergency medical services (EMS) resources and traffic congestion, many opioid overdosed people miss
the best time to receive naloxone. Unmanned aerial vehicles (UAVs) can be easily deployed to augment
the current logistic system and potentially cost-effective for not staffing additional EMS personnel and
independent of road conditions. To reduce the response time by a minute traditionally requires staffing
more ambulances, which can cost $200,000. However, a $10,000 drone can reduce the response time
by two minutes. Furthermore, NARCAN Nasal Spray is now available, which allows for naloxone to be
sprayed into the nose. If an overdosed person is unconscious, a bystander can come to help. Therefore, it
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is practical and efficient for UAVs to use the spray on the overdosed person. Introducing UAVs to EMS
makes timely treatment practical, and consequently, increases the chance of survival.

Once a 9-1-1 call for opioid overdose is received, the administrator needs to decide which UAV to
dispatch. The most common and natural dispatch strategy is to send the UAV closest to the overdosed
person, since the objective, in general, is to minimize the response time, thus maximizing the chance of
survival. Unfortunately, this strategy tends to be myopic (Carter et al. 1972). Consider the case where
two UAVs are in areas A and B, and area A has a higher call volume than area B. In this case, the mean
response time will decrease if the UAV stationed in area B is allowed to respond to some of the calls from
area A. Further complicating the EMS operations is that a UAV can be relocated after completing its EMS
mission, i.e., choosing its site to wait for the next request. This is different from ambulance, which we are
not able to relocate frequently for the sake of its medical staff. In summary, UAVs bring greater flexibility
and uncertainty in EMS delivery, and thus present bigger challenges on making logistic operation decisions.

In this paper, we optimize sequential dispatch and relocation decisions jointly for UAVs in an EMS
delivery logistics context. Our contribution is threefold.

1. We propose a novel stochastic dynamic model for sequential dispatch and relocation joint optimization
problem, which incorporates practical relevance of UAVs (e.g., energy consumption).

2. We design an action disaggregation and adjustment theme based on a sub-optimal policy (or strategy)
from solving a scaled-down version of the MDP problem which is induced by state aggregation.

3. We identify the settings with respect to the UAV type and service area type, under which a
computationally attainable MDP suboptimal policy outperforms a commonly used myopic policy.

The rest of this paper is structured as follows. Section 2 provides a literature review on related work.
In Section 3, we describe the problem in detail and present our MDP model, followed by a solution based
on state aggregation. We use a discrete-event simulation to assess the performance of our MDP-based
policy under various settings in Section 4. We draw conclusions and outline future work in Section 5.

2 LITERATURE REVIEW

This paper contributes to the literature in three areas: (1) EMS supply chain and logistics, (2) dynamic
EMS vehicle dispatch/assignment, and (3) state aggregation based MDP numerical solution. We briefly
describe each of these below.

According to the scope and time scale that such decisions are made, the EMS planning problems can be
divided into three different categories (Reuter-Oppermann et al. 2017): (1) strategic level where decisions
are made for several years, e.g., facility location problems; (2) tactical level where decisions often hold
for several months, e.g., staff scheduling; and (3) operational level where decisions are made on a daily
basis or even in real time, e.g., patient transport scheduling. Our work falls into the third category. For
each of these three levels, different planning problems arise, including demand and workload foresting ,
call-handling strategy design, and ambulance planning (Zarkeshzadeh et al. 2016).

Dynamic assignment models have been applied extensively to EMS dispatch problems focusing on
ambulance operations. One stream of these studies aims to develop decision support tools for ambulance
dispatch and relocation decisions through threshold policies. For example, Andersson and Värbrand (2007)
proposed a “preparedness” measure to evaluate the ability of an EMS system serving potential patients at
present and in the future. However, to deploy a preparedness threshold-based policy requires the pre-tuning
of a set of parameters, which is highly dependent on the situation of each distinct area. Aringhieri et al.
(2017) and Belanger et al. (2019) provided a comprehensive reviews of optimization models in location,
relocation and dispatching of emergency medical vehicles. To deal with the complexity of the EMS system,
Lanzarone et al. (2018) and Belanger et al. (2020) proposed a recursive simulation-optimization framework
which encompasses a mathematical formulation and a discrete-event simulation model that produces both
empirical estimations of the ambulance availability and system performances.
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In addition to the simulation-optimization approaches, many researchers applied Markov decision
processes (MDPs) for system modeling and optimization. For example, Grannan (2014) formulated an
infinite-horizon, average-cost MDP model to solve a medical asset dispatching and casualty transport
problem. His MDP model contains only 12 states and 16 actions. Our MDP model is, instead, more
similar to those presented in McLay and Mayorga (2013) and Jagtenberg et al. (2017). These models are
discrete-time MDP models, which include the status of EMS request times and vehicle locations in the
state space, and make dispatch and relocation decisions. To avoid the curse of dimensionality, the authors
on both papers assumed that the service time is exponential so that they could employ the standard value
iteration algorithm. To make the model more realistic, we relax the above exponential assumption and
incorporate the remaining service time in our state space to capture energy consumption. Note that medical
UAVs for their agility and low cost need to be battery powered which can last many hours (or multiple
EMS missions) with the current battery technology. The consideration of energy consumption drastically
increases the size of the state space, which makes the real-world MDP problem we deal with intractable
with standard solution methods such as value iteration and policy iteration.

To address the computational challenges, we apply a straightforward but effective version of state
aggregation to reduce the problem size so it is solvable in a reasonable amount of time through a standard
implementation of the value iteration method. In addition, choosing state aggregation helps to identify
managerial insights in our studied context. Much of the existing literature on state aggregation falls into
two categories: (1) assuming a fixed aggregation and evaluating various bounds on the performance loss
, and (2) designing algorithms on the basis of state aggregation to solve large-scale MDPs (Mendelssohn
1982) . However, the question of finding an appropriate method for state aggregation to minimize the
performance loss that remains open. By assuming the availability of the value function or a reasonably good
estimate on it, Jia (2010) shed insights on how to find simple aggregation policies with good performance.
Nevertheless, assumptions on the necessary derivation required in the above literature, are not realistic for
our problem. We instead choose to aggregate the states based on simplistic geographic partitioning and
compare it with a myopic policy via simulation.

3 METHODOLOGY

We solve the sequential UAV dispatch and relocation joint decision optimization problem with an infinite-
horizon discrete-time MDP model. In each state s (Section 3.1), we check the status of UAVs and emergency
calls and then choose an action from the allowable actions: As ⊆ A (Section 3.2). This process evolves
over time according to the transition probabilities (Section 3.4), which depend on the current state and
the chosen action. Our goals in this problem are (1) maximizing the discounted total service rate and (2)
minimizing the unsatisfied requests (Section 3.3). We describe our solution approach in Section 3.5.

Table 1: Notation.

I set of demand nodes, |I|= M
J set of UAV charging stations, |J|= N

K = I∪ J set of candidate relocation destinations of UAVs
(di j)(M+N)×(M+N) distance matrix between demand nodes and charging stations

L total number of UAVs
R an upper bound on service time
Z maximum level of UAV’s battery power
λ expected number of requests that arrive per unit of time (Poisson parameter)
Pi conditional probability that a request arrives at demand node i, given that

a request arrives, i = 1, · · · ,N, such that ∑
N
i=1 Pi = 1
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3.1 States

We define the states of the system at time t as s(t) := (s1(t), · · · ,sL(t)). More specifically, we define

s(t) := {D1(t),s1(t),E1(t), · · · ,DL(t),sL(t),EL(t),ε1(t), · · · ,εN(t)}.

The state space comprises two sections. The first section indicates the status of each UAV, which further
involves three features: Dl(t) = k, l = 1, · · · ,L, k ∈ K, if at time t, UAV l’s destination is k; El(t) = e,
e ∈ [0,1], if at time t, the battery power level of UAV l is e; and

sl(t) =
{

r if UAV l’s remaining service time is r at time t,r ∈ {1, · · · ,R},
0 otherwise (i.e., UAV l is idle).

The other part implies the status of the requests: εεε(t) = {ε1(t), · · · ,εN(t)}, where εi(t) = ε , representing
the number of requests that occur at node i in decision epoch (t−1, t], ε ≥ 0, i = 1, · · · ,N. In our model,
we assume that at most one request occurs at each demand node within a decision epoch, i.e., ε ∈ {0,1},
with the number of occurrence following a Poisson process. Hence the smaller the decision epoch is, the
more accurate our model is. However, there is a tradeoff because smaller decision epochs lead to heavier
computational burden. Throughout this paper, we consider the length of each decision epoch to be five
minutes, which we believe balances the solution accuracy and computation time.

3.2 Decisions

We next define the actions as u(t) = u(s(t)) := (u1(t), · · · ,uL(t)), where

ul(t) =
{

k if UAV l is dispatched or relocated to location k, k ∈ K;
0 otherwise,

for l = 1, · · · ,L. Note that for some states, not all actions are necessarily permissible. Denote the set of
feasible actions in state s as As ∈A. Feasible actions should meet the following requirements:

1. If sl(t)> 0, ul(t) = 0, i.e., dispatch and relocation decisions can only be made on idle UAVs;
2. If min j∈J 2e(dDl(t), j)> el(t), ul(t) ∈ J, i.e., the UAV must go to a charging station for recharge if

its battery power is lower than twice of the battery needed to fly to the nearest charging station.

3.3 Rewards

We consider a reward dependent upon the service time, which is a combination of travel time and on-scene
time (see Figure 1). The on-scene time is assumed to be constant and the travel time is assumed to only
dependend on the distance. In EMS practice, a typical goal is to minimize the fraction of late arrivals with
respect to some cut-off time. However, this type of objective penalizes solutions that lead to many missions
with service times just above the cut-off. Hence we choose survival rate as the performance measure, which
is a function of the service time. Dietze et al. (2019) estimate the Kaplan-Meier survival curve for opioid
overdose. To approximate the survival rate, we define the reward as a step function of the service time:

R
(
s(t),u(t)

)
= ∑

L
l=11{0<ul(t)≤N} f

(
dul(t),Dl(t)

)
where

f
(
dul(t),Dl(t)

)
=

H

∑
h=1

αh1{dul (t),Dl (t)
<ph}.

Parameters αh, ph,h = 1,2, ...,H, and H are estimated from the Kaplan-Meier curve and 1{·} is the indicator
function.
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Figure 1: An illustration of UAV-based EMS process timeline.

Note that if a request arrives when there is no idle UAV, it is deemed as an unsatisfied request, and no
UAV will be dispatched. Since UAVs are not the only way to deliver naloxone and the opioid overdose
rescue is time-sensitive, we consider it unreasonable to hold the request to the next decision epoch. This
kind of request can be referred to ambulances or other first responders. Given the difficulty of modeling
the number of unsatisfied requests with a functional form, we do not incorporate it as part of the reward
in the MDP model. Instead, we evaluate this outcome through a high-fidelity simulation (Section 4).

3.4 Transition Probabilities

Two events drive the state transitions: (1) the decision maker makes a dispatch or relocation decision, and
(2) UAV’s remaining service time and its battery power decrease with time. Accordingly, we can write out
the system dynamics, i.e., (s(t),u(t)) 7−→ s(t +1). For each UAV l = 1, · · · ,L,

Dl(t +1) =
{

ul(t +1) if ul(t +1) 6= 0;
Dl(t) otherwise.

(1)

If sl(t) = 0,

sl(t +1) =
{

τul(t),Dl(t) if ul(t +1) 6= 0;
0 otherwise.

(2)

If sl(t)> 0,
sl(t +1) = [sl(t)−1]+. (3)

el(t +1) =


el(t) if ul(t +1) = 0;

el(t)− e(dul(t),Dl(t)) If ul(t +1) ∈ {1,2, ...,N};
emax If ul(t +1) ∈ {N +1, ...,N +M}.

(4)

Equation (1) shows the dynamics of the states: unless a new dispatch or relocation decision is made,
the destination of the UAV will remain the same. Equations (2) and (3) indicate the transitions of remaining
service time. Whenever a dispatch or relocation decision is made, the remaining service time is set as a
function of the distance between the UAV’s current location and its destination. We assume constant payload
and flight speed. Equation (4) shows the energy consumption of the UAV for one flight e(dul(t),Dl(t)), which
depends on the flight distance.

We now present the stochastic dynamic optimization problem as:

max
π

E[
∞

∑
t=1

α
tR(s(t),u(t))]

where α is the discounting factor and π : S→As denotes the policy to be optimized.

3.5 Solution Methods

Standard discounted infinite-horizon MDP problems can be solved by value iteration, policy iteration,
or linear programming. To solve a problem, all the above algorithms need to first parameterize the
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associated transition matrix (S×A× S→ R) and reward matrix (S×A→ R). In our MDP model,
the transition matrix has dimension of |S|2×|A| = (((N +M + 1)(R+ 1)(Z + 1))L · 2N)2(N +M + 1)L =
22N(N +M + 1)3L(R+ 1)2L(Z + 1)2L. Even for a toy instance with 4 demand nodes and 2 UAVs with
minimally distinguishable remaining service time and battery power, the value iteration algorithm will
terminate prematurely on a standard personal computer for exhausting its computing resource. Furthermore,
for a real instance with 64 demand nodes and 2 UAVs, the dimension of the policy lookup table is about
3.1×1027. Finally, even if we could solve such a problem in a reasonable amount of time, it would have
been impractical to store the resultant policy lookup table and query it for every service logistic operation.

To address the above challenges, We first apply an ad-hoc state aggregation technique to deal with
the inherent curse of dimensionality. We then disaggregate each action in the resultant policy lookup
table to each original state. We term the MDP model induced by state aggregation the scaled-down
MDP model. Recall for our MDP model the state variable includes: (1) destination of each UAV, i.e.,
Dl(t) ∈ I, l = 1, ...,L, (2) number of requests from each demand node, i.e. εi(t), i ∈ I, (3) remaining service
time of each UAV, i.e., sl(t) ∈ {0,1, ...,R}, l = 1, ...,L, and (4) remaining battery power of each UAV, i.e.,
El(t) ∈ {0,1, ...,Z}, l = 1, ...,L. The first two components are pertaining to the set of demand nodes. We
thus aggregate the demand nodes in the scaled-down MDP model based on some notion of geographical
similarity, since adjacent demand nodes imply comparable flight time, and in general, request intensity as
well. Thus, we aggregate the first two components of the state set. In addition, the levels of the remaining
service time build on the total number of demand nodes, through which the flight time between different
nodes can be distinguished. While keeping the idle state sl(t) = 0 unchanged, we cluster positive remaining
service times uniformly. Given the computational burden and the importance of each component to the
model, we ignore the component of energy consumption in the scaled-down MDP model but recover it
in the ensuing simulation-based comparative study. With state aggregation, we can efficiently construct a
lookup table to represent the MDP suboptimal policy from state aggregation for real instances.

4 PERFORMANCE EVALUATION

In this section, we present a simulation-based comparative study, which is based on real EMS data from the
state of Indiana. We use the practical strategy that always dispatches the closest idle UAV as the baseline.
We construct a number of real instances (i.e., with 2 UAVs and 64 demand nodes) with respect to the types
of UAV and service area, and offer insights into the performance of the MDP suboptimal policy under
these settings.

4.1 Simulation-based Evaluation Procedure

The dimension of any policy lookup table is the same as that of the state set, so it is impractical to store
and use a lookup table policy with respect to the original state set. Instead, we evaluate the optimal
policy obtained from solving the scaled-down MDP model with a self-developed discrete-event stochastic
simulation. To evaluate the policy derived from the scaled-down MDP model, we propose a scheme to
disaggregate actions mapped from the aggregated states for the scaled-down MDP. Further, we consider
the geographic distribution of the requests and energy consumption of the UAVs as additional features in
the simulation. We present the simulation-based evaluation procedure as follows.

1. Generate a stream of requests as a Poisson process with parameter λ and request distribution Pi,
i = 1, ...,N. Divide the requests into time intervals of equal length.

2. Aggregate states s∈ Sk into s′k of the scale-down MDP. Specifically, aggregate the remaining service
time uniformly as 0→ 0, {1,2, ..., R

R′ }→ 1,..., { (R
′−1)R
R′ +1, ....,R}→ R′. The demand nodes i ∈ Ii′

are aggregated into area i′ according to the partition I =
⋃

i′ Ii′ . Note that if there are more than one
requests in areas i ∈ Ii′ , we still have εi′ = 1 in the aggregated model.
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3. Get the optimal action for the aggregated state from the input policy lookup table resulted from
solving the scaled-down MDP.

4. Disaggregate the action based on the following theme. If u′l = 0, ul = 0. If u′l = i′ and ∑i∈Ii′
εi = 0,

then u′l is a relocation decision with ul = argmaxi∈Ii′ Pi. If u′l = i′ and ∑i∈Ii′
εi = 1, then u′l is a

dispatch decision with ul = ∑i∈Ii′
εi · i. If u′l = i′ and ∑i∈Ii′

εi > 1, then u′l is a dispatch decision with
ul = argmini∈Ii′ dDl(t),i−Mεi, where M is a large enough constant.

5. Add recharge actions. If min j∈J 2e(dDl(t), j)> el(t), ul(t) ∈ J, then change ul to argmin j∈J dDl(t), j.
6. Simulate the system dynamics and calculate the rewards following the model described in Section

3.3 and 3.4. Furthermore, we label the request if it is unsatisfied and tally all the unsatisfied requests
as the additional outcome.

In Step 4 of the above procedure, we explain how we translate actions resulted from the scaled-down
MDP into relocation operations with the following two points. First, with any resultant relocation action,
we dispatch the closest UAV to the request in the simulation and assign it to the demand area with the
highest request frequency since the relocation is intended to better prepare for future requests (Andersson
and Värbrand 2007). In addition, with aggregation, the policy lookup table cannot deal with multiple
requests that arrive within the current time interval. Thus, in the simulation, we select the UAV closest to
a request and have it to fly to the area of that request. To address the concern on energy consumption, we,
as described in Step 5, assign a UAV to the closest charging station when the UAV’s battery power is lower
than twice of the battery power needed to fly to the nearest charging station. To make a fair comparison,
we specify the myopic baseline policy as follows. With the baseline policy, we always dispatch the idle
UAV closest to the request and take the same operation as before to recharge the UAVs.

In practice, we offline compute the optimal MDP policy and set up the aggregation and disaggregation
strategies, as stated above. At each decision epoch, we collect requests’ locations and UAVs’ statuses and
aggregate them for the state space of the scale-down MDP. Then we compute the optimal action for the
aggregated state from the input policy lookup-table, resulting from solving the scale-down MDP. Afterward,
we disaggregate the action based on the given strategy and add recharging actions.

4.2 Experimental Setup

We consider three different types of UAVs (Table 2), namely consumer drones, top-of-range drones, and
ideal drones. The consumer drones are what can typically be found in the market, which does not allow
relocation without a recharge after one mission. We consider ideal drones to be those that have infinite
cruise range. In other words, they can continuously carry out missions without a recharge. We consider
top-of-range drones to be those between consumer drones and ideal drones in terms of their cruise range.
We assess their respective service system performances based on the optimal strategy from solving the
scaled-down MDP (i.e., without energy consumption consideration).

Table 2: Features of different types of UAVs.

Type of UAVs Engineering features Eligibility for dispatch and relocation
consumer drone able to fly for up to one hour with

an average speed of 70km/h
need to fly back to a charging station after each
mission for recharge and supply replenishment

top-of-range drone able to fly for up to four hours
with an average speed of 70km/h

can continuously execute three to four mis-
sions (dependent on the flight distance) with-
out needing recharge or resupply

ideal drone have an infinite cruise range and
with an average speed of 70km/h

can execute missions in a nonstop fashion for
a long period of time

For our case studies, we extracted real-world data from the naloxone administration heatmap in the
state of Indiana. This heatmap provides information of suspected opioid overdose incidence locations from
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2014 to 2019. Their encounters (demands) were initially requested by patients themselves and bystanders.
The geographic distribution of these request incidences (measured by the centrality of the distribution) is
consistent with the rural-urban area delineation (Figure 2). We thus considered three types of catchment
areas in terms of their geographic area delineation, namely urban, semiurban, and rural. The three catchment
areas selected are Marion county, Tippecanoe county, and Plymouth county, respectively. We thus simulated
geographic-specific demand arrivals based on the heatmaps of the three counties above.

The pattern of the demand differed not only by its geographic distribution but also its overall arrival
(Table 3). For each of the three catchment area types, we simulated different overall demand arrival rates
for the likely time-varying nature of the arrival process. When we solved for the MDP-based optimal
policy, we set the request arrival rate to be 1 (i.e., λ = 1) without knowing the real-world overall arrival
rate. Then through preliminary experiments, we identified the possible range of λ . We found that when
λ = 0.5, both strategies can satisfy over 80% requests and when λ = 4, both strategies can satisfy only 20%
requests. We argue such a service quality guarantee is reasonable with the 2-UAV capacity configuration.
Further, in our ensuing simulation-based comparative studies, we specified four overall arrival rates to be
λ = 0.5,1,2,4, which represent low, medium-low, medium-high, and high demand scenarios, respectively.
These four rates are representative for capturing the time-varying demand intensity over a day based on
historical events that occurred in the state of Indiana.

(a) Urban county: Marion (b) Semiurban county: Tippecanoe (c) Rural county: Plymouth

Figure 2: Distributions of request incidences.

Table 3: Features of different incidences distribution.

Country type Heatmap used Overall arrival rate Distribution centrality
urban county Marion high yes

semiurban county Tippecanoe medium yes
rural county Plymouth low no

We partitioned each county into an 8×8 grid and extracted the geographic distribution of the request
arrivals through analyzing the RGB features of the corresponding heatmap. With the state aggregation
approach, we constructed the scaled-down MDP model based on an orthogonal 2×2 aggregate grid. Taking
the rural county (Plymouth county) as an example, we show the geographic distribution of the arrivals as
an input to our simulation and scale-down MDP models in Figure 3.

The time horizon for the simulation was one day, which was divided evenly into 288 5-minute decision
epochs. This specification balances the requirement of setting up the MDP as an infinite-horizon problem
and the requirement of making realistic UAV logistic operations. Taking the semiurban county (Tippecanoe
county) under the medium overall arrival rate as an example, we show in Figure 4 that the simulation
duration is long enough to stabilize the average reward over time for both strategies and all types of drones,
which leads to meaningful comparison. Finally, we simulated each setting (i.e., one service area type, one
UAV type, and one overall arrival rate level) for 1000 replications to ensure statistical confidence in the
comparisons.
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Figure 3: Request distribution extraction and the state aggregation.
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Figure 4: The trend of average reward (i.e.,
∑

t
τ=1 R
(

s(τ),u(τ)
)

t vs. t). Policy A refers to the MDP suboptimal
policy with state aggregation. Policy M refers to the nearest dispatch based myopic policy.

4.3 Simulation Results and Analysis

We compared the two strategies for UAV logistic operations in terms of two performance measures: (1)
rewards, i.e., the survival rate based on the Kaplan-Meier curve approximation; (2) costs, i.e., the number
of unsatisfied requests. Figure 5 shows the performance comparisons.

First, the figure suggests the consistency of strategy superiority between the rewards and costs. In other
words, whenever a strategy achieves higher rewards in Figures 5(a), 5(c) and 5(e), the policy incurs lower
costs in Figures 5(b), 5(d) and 5(f). This alleviates the concern that the action disaggregation step in the
simulation could distort the tradeoff between the rewards and the costs.

Our results suggest that Policy A (or state aggregation policy; MDP suboptimal policy) performs better
than Policy M (or nearest dispatch policy; myopic policy) in high-demand scenarios. It is the nature of an
MDP model that its solution takes future opportunity rewards/costs into consideration. When the demand
is high, there are more requests emerging continuously, and thus Policy A shows its advantage in better
preparing for future requests. Note that this advantage is not offset by the inferiority brought in by the state
aggregation. On the other hand, our results suggest that Policy M outperforms Policy A in low-demand
cases. When the demand is low, the decision process is close to the combination of multiple segments
of one-shot decisions in that there is a long inter-arrival time between two consecutive requests. Thus, it
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(b) Consumer drone: costs.
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(c) Top-of-range drone: rewards.
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(d) Top-of-range drone: costs.
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Figure 5: Performance comparison. For each UAV type, 12 settings are simulated for the overall arrival
rate λ = 0.5,1,2,4 and for the catchment area type being urban, semiurban, and rural (from left to right)
and the results are presented in the two subfigures in each row.

makes more sense to capture the present reward and avoid the present cost as this myopic view is likely
still better than considering an MDP solution with the stage aggregation.

Regarding the geographic distribution of the requests, our results suggest Policy A performs the best
for a semiurban county and the worst in a rural county, regardless of the overall arrival rate and drone type.
Table 3 and Figure 3 suggest that the request is centralized in a semiurban county while more scattered
in a rural county. Intuitively, it is less beneficial to make relocation decisions with consideration of future
demand when the demand is more scattered, as relocation decisions would likely bring little benefit for
the location randomness of the next request. The limited benefit increment would then be offset by the
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suboptimality of the MDP solution with the state aggregation. On the other hand, in a semiurban county,
Policy A tends to relocate the UAV in anticipation of next requests emerging at locations closer to the
center of the service area with high probability. As a result, the relocation operation would likely create a
large enough benefit. The cases with an urban service area are likely between the above two types as the
request distribution is centralized but the area of high arrival rate is relatively large. So the performance
superiority between Policy A and Policy M is highly dependent on the overall arrival rate.

For consumer drones and ideal drones, Policy A outperforms Policy M mostly in cases with a semiurban
county and with high overall arrival rates, as concluded above. However, for top-of-range drones, Policy
A becomes less likely to outperform Policy M under the same circumstances. This is likely because the
superiority between the two policies is now related to the state of battery usage. Note that due to the
computation burden, we ignore the energy level in the state space when solving the MDP. Thus, the MDP
model with the state aggregation becomes a system model of even lower fidelity relative to the simulation
model in cases with top-of-range drones than in cases with other two types of drones.

To summarize, Policy A gains relative superiority when the request distribution is centralized and the
overall request intensity is high due to the tendency of dispatching and relocating UAVs for the sake of
future rewards/costs with the MDP-based policy. On the other hand, Policy M performs well in service
areas with low overall intensity and uniformly distributed requests since in these cases, the decision process
resembles a series of multiple one-shot decisions as the locations of future requests are hard to predict.

5 CONCLUSIONS AND FUTURE WORK

We studied a joint optimization problem of dynamic dispatch relocation decisions in the context of deploying
UAVs for emergency medical services. We formulated a discounted, infinite-horizon total-cost MDP model.
This model relaxes the common but unrealistic assumption of exponential service time in the EMS dispatch
decision optimization literature by incorporating the remaining service time into the state space. In addition,
our model incorporates specific and significant features of drones such as energy consumption and cruise
speed. To deal with the curse of dimensionality from a realistic model, we applied a state aggregation
technique to obtain a policy lookup table while ensuring the balance between solution quality and tractability.

Extensive full-fledged simulation-based comparative studies with real-world data have shown that the
state aggregation idea can lead to high-quality solutions within a reasonable amount of time and outperform
a myopic policy currently used in practice. In the comparative studies, we selected three counties of Indiana
representing three distinct types of service areas. We also considered three different types of drones, which
leads to their ability of being operated without recharging. We simulated four levels of the overall request
intensity, referring to the peak hours and off-hours in a day. The simulation results demonstrate that the
MDP based policy gains superiority when the request distribution is more centralized and the overall request
intensity is higher.

Although the state aggregation based strictly on the grid partition brings favorable results, we believe
there exist flexible aggregation methods with anticipated better performance. However, it is hard to obtain a
good estimate of the value function as shown in many previous studies utilizing state aggregation; otherwise,
we can simply extract the policy from the approximate value function. In the future, we will adaptively
aggregate the state space to avoid request losses from the service area aggregation. For example, we can
construct a scaled-down MDP where each decision epoch corresponds to the locations and intensity of
emergent requests. We also plan to try alternative approximate dynamic programming (ADP) approaches,
such as using a neural network to approximate the value function. Furthermore, flexible state aggregation
and other ADP methods are able to provide higher-quality solutions to our problem under the assumption
that the request distribution is temporarily steady. However, real-world requests present time-varying nature.
One way to address it in the future is to combine the request prediction with the MDP solution. Specifically,
we periodically predict the distribution of future requests based on the historical data and solve the MDP
model based on the predicted request distribution. The other way is reinforcement learning where we keep
updating our policy through real-time policy evaluation.

840



Gao, Kong, and Griffin

ACKNOWLEDGMENTS

This work was supported by National Science Foundation under Grant No.1761022.

REFERENCES
Andersson, T., and P. Värbrand. 2007. “Decision Support Tools for Ambulance Dispatch and Relocation”. Journal of the

Operational Research Society 58(2):195–201.
Aringhieri, R., M. E. Bruni, S. Khodaparasti, and J. T. van Essen. 2017. “Emergency Medical Services and Beyond: Addressing

New Challenges through A Wide Literature Review”. Computers & Operations Research 78:349–368.
Bélanger, V., E. Lanzarone, V. Nicoletta, A. Ruiz, and P. Soriano. 2020. “A Recursive Simulation-Optimization Framework for

the Ambulance Location and Dispatching Problem”. European Journal of Operational Research 286(2):713–725.
Bélanger, V., A. Ruiz, and P. Soriano. 2019. “Recent Optimization Models and Trends in Location, Relocation, and Dispatching

of Emergency Medical Vehicles”. European Journal of Operational Research 272(1):1–23.
Carter, G. M., J. M. Chaiken, and E. Ignall. 1972. “Response Areas for Two Emergency Units”. Operations Research 20(3):571–

594.
Dietze, P., M. Jauncey, A. Salmon, M. Mohebbi, J. Latimer, I. van Beek, C. McGrath, and D. Kerr. 2019. “Effect of Intranasal

vs Intramuscular Naloxone on Opioid Overdose: A Randomized Clinical Trial”. JAMA Network Open 2(11):e1914977–
e1914977.

Grannan, B. 2014. Dispatch, Delivery, and Location Logistics for the Aeromedical Evacuation of Time-Sensitive Military
Casualties under Uncertainty. Ph.D. thesis, Department of Systems Modeling and Analysis, Virginia Commonwealth
University, Richmond, Virginia. https://scholarscompass.vcu.edu/etd/3536/.

Jagtenberg, C. J., S. Bhulai, and R. D. van der Mei. 2017. “Dynamic Ambulance Dispatching: Is the Closest-Idle Policy Always
Optimal?”. Health Care Management Science 20(4):517–531.

Jia, Q.-S. 2010. “On State Aggregation to Approximate Complex Value Functions in Large-Scale Markov Decision Processes”.
IEEE Transactions on Automatic Control 56(2):333–344.

Kim, D., K. S. Irwin, and K. Khoshnood. 2009. “Expanded Access to Naloxone: Options for Critical Response to the Epidemic
of Opioid Overdose Mortality”. American Journal of Public Health 99(3):402–407.

Lanzarone, E., E. Galluccio, V. Bélanger, V. Nicoletta, and A. Ruiz. 2018. “A Recursive Optimization-Simulation Approach
for the Ambulance Location and Dispatching Problem”. In Proceedings of the 2018 Winter Simulation Conference, edited
by M. Rabe, A. A. Juan, N. Mustafee, and A. Skoogh, 2530–2541. Gothenburg, Sweden: Institute of Electrical and
Electronics Engineers, Inc.

McLay, L. A., and M. E. Mayorga. 2013. “A Model for Optimally Dispatching Ambulances to Emergency Calls with Classification
Errors in Patient Priorities”. IIE Transactions 45(1):1–24.

Mendelssohn, R. 1982. “An Iterative Aggregation Procedure for Markov Decision Processes”. Operations Research 30(1):62–73.
Reuter-Oppermann, M., P. L. van den Berg, and J. L. Vile. 2017. “Logistics for Emergency Medical Service Systems”. Health

Systems 6(3):187–208.
Scholl, L., P. Seth, M. Kariisa, N. Wilson, and G. Baldwin. 2019. “Drug and Opioid-Involved Overdose Deaths—United States,

2013–2017”. Morbidity and Mortality Weekly Report 67(5152):1419–1427.
Warner, M., L. H. Chen, D. M. Makuc, R. N. Anderson, and A. M. Miniño. 2011. “Drug Poisoning Deaths in the United

States, 1980-2008”. NCHS Data Brief 81(81):1–8.
Zarkeshzadeh, M., H. Zare, Z. Heshmati, and M. Teimouri. 2016. “A Novel Hybrid Method for Improving Ambulance

Dispatching Response Time through A Simulation Study”. Simulation Modelling Practice and Theory 60:170–184.

AUTHOR BIOGRAPHIES
XIAOQUAN GAO is a current Ph.D. student in the School of Industrial Engineering at Purdue University. She received
her B.S. in Theoretical and Applied Mechanics from Peking University in 2019. Her research interest is predictive analytics,
stochastic modeling, and decision optimization under uncertainty in healthcare systems. Her e-mail address is gao568@purdue.edu.

NAN KONG received his PhD in industrial engineering from the University of Pittsburgh in 2006. His research focuses on
applying operations engineering techniques (especially stochastic optimization) to improving healthcare delivery outcomes. He
is the corresponding author and his e-mail address is nkong@purdue.edu.

PAUL M. GRIFFIN received his PhD in industrial engineering from Texas AM University. His research focuses on health
systems engineering, health analytics, and cost-effectiveness analysis. His email address is pmg14@psu.edu.

841

https://scholarscompass.vcu.edu/etd/3536/
mailto://gao568@purdue.edu
mailto://nkong@purdue.edu
mailto://pmg14@psu.edu

	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	States
	Decisions
	Rewards
	Transition Probabilities
	Solution Methods

	PERFORMANCE EVALUATION
	Simulation-based Evaluation Procedure
	Experimental Setup
	Simulation Results and Analysis

	CONCLUSIONS AND FUTURE WORK

