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ABSTRACT

In the aftermath of a Mass Casualty Incident (MCI) many patients require lifesaving treatments and surgeries.
Due to the sudden surge in demand, the resources of the hospital are overwhelmed, making proper planning
and use of the available resources crucial in minimizing mortality and morbidity. To help with planning,
patients are triaged into four levels based on the clinical assessment of the criticality of their conditions.
The triage decisions are however subject to error and a patient may be under or overtriaged. Mistriages
can be identified by performing imaging, e.g., a Computed Tomography (CT) scan, but imaging also takes
non-negligible time and has limited capacity. We propose a queueing network model of patient flow during
an MCI and use simulation experiments to quantify the value of identifying mistriaged patients. Our results
demonstrate the value of performing imaging, but also point out to the importance of accounting for its
limited capacity.

1 INTRODUCTION

A Mass Casualty Incident (MCI) is an event that results in a surge of demand for emergency and health
services, overwhelms the available resources, and disrupts the normal operations. In the aftermath of an
MCI, many patients require immediate lifesaving treatments and surgeries. As such, since treating all
patients with a standard level of care in a timely manner is no longer feasible, the care paradigm shifts to
minimizing the overall mortality.

After the MCI occurs, patients are often triaged at the scene of the incident and the local hospitals
are informed to prepare for the influx of a large number of patients. Some victims may be able to walk
to the hospital whereas others need to be transported. Upon arrival to the Emergency Department (ED)
patients undergo clinical triage at the ED. Emergency triage protocol assigns incoming patients to four
categories: T1 (urgent), T2 (urgent, able to wait), T3 (walking wounded, i.e., patients who can make their
own way to the hospital) and T4 (unlikely to survive) (Berger et al. 2016). These triage codes greatly
impact prioritization decisions within the hospital. The triage process is subject to error and can lead to
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undertriage (falsely assigning a patient to a lower-acuity level) or overtriage (falsely assigning a patient to
a higher-acuity level).

Medical imaging tools such as Computerized Tomography (CT) scans and ultrasound scans can provide
crucial information and identify mistriaged patients. As indicated in Berger et al. (2016), the role of
imaging can be summarized as increasing the accuracy of triage and thereby allowing for better allocation
of resources and reducing mortality. Identifying overtriaged patients can free up resources for more critical
patients, and identifying undertriaged patients would allow the medical team to provide the appropriate level
of care, and hence increase their probability of survival. Despite these benefits, the imaging department
resources (equipment, technologists, and radiologists) can also be overwhelmed during an MCI and hence
the limited capacity needs to be carefully managed and allocated so as to minimize the mortality.

This work was initiated as part of a collaboration with the American Society of Emergency Radiology
(ASER). In the 2018 annual meeting of the society, we organized a simulation workshop to introduce
practicing radiologists to simulation modeling and illustrate how it can be used in planning for an MCI by
examining various scenarios related to staffing and scheduling decisions, in particular those pertinent to the
role of the imaging department. One set of experiments that particularly led to stimulating discussion, was
quantifying the benefits of imaging (in terms of reduction in mortality) under various policies indicating
how the available capacity should be used. In this paper, we examine this question more closely.

To quantify and study the value of imaging, we propose a stylized queueing network model of the
patient flow in part of the ED during a MCI. In particular, we focus on the congestion of the surgery rooms
which provide life-saving operations for patients in need. Upon arrival, patients are triaged into one of
the 3 possible categories, but the triage decisions are subject to miss-specification errors. (Note that we
exclude T4 (expectant) patients from our model.) The triage level is used to determine whether patients
need surgery and if so what is their priority level. Patients who are triaged as T2 can be sent to imaging to
conduct a CT scan prior to surgery. Upon performing a CT scan the true triage level of patients is identified
which can in turn be used to either adjust the priority level of the patient for receiving surgery, or deem
surgery unnecessary altogether. Similar to the surgery rooms, the capacity of imaging is however limited.
In addition to the regular time required to perform and interpret a CT scan, patients may also need to wait
before imaging can be performed. Our queueing model captures this information-delay trade-off faced by
the clinical decision makers in deciding whether to utilize imaging or not. Indeed, identifying the true
triage level is beneficial in reducing mortality, but it can result in an increased length-of-stay for patients
who may die without receiving surgery in time.

We calibrate our model using data from the medical literature and in consultation with radiologists.
Using simulation experiments, we investigate the following questions: (1) What is the value of information
gained through imaging? We quantify the reduction in expected mortality by identifying the mistriaged
patients as a function of over and undertriage probabilities and show that it could be significant in parameter
regimes relevant to real MCIs. (2) How should the congestion and available capacity of the system be
taken into account, when deciding whether a patient should be sent to imaging? We show that in cases
where imaging capacity is scarce, one should be cautious with respect to when patients are sent to imaging
in order to avoid creating idleness at the surgery rooms. We propose a simple threshold policy - that only
uses information on the current number of patients in surgery - which determines whether a patient should
be routed to imaging or not. We show that even when capacity of the imaging is scarce, by carefully
allocating the available capacity one can still achieve a considerable reduction in the expected mortality
compared to the case of performing no imaging.

2 RELATED LITERATURE

Queueing and simulation models have been previously proposed and studied in the Operations Re-
search/Management literature to provide insights into various decision making problems related to MCls.
Here we discuss a few of the most relevant papers to our work.
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Cohen et al. (2014) propose a queueing network model to study the dynamic allocation of surgeons to
surgery and shock rooms during an MCI. They use a fluid approximation of the system to obtain insights
and approximately optimal policies. Fluid models are useful as they capture the transient dynamics of
the system well. For our problem derivation of fluid approximations is more complicated due to the
existence of mistriaged patients (see also the discussion in Section 5). Yom-Tov and Mandelbaum (2014)
study a queueing network with returns and illustrate its applications to various healthcare staffing problems
including planning for an MCI. Motivated by the problem of prioritizing patients during an MCI, Argon
et al. (2008) studies how jobs with different waiting costs and random remaining lifetimes should be
scheduled in a clearing queueing system (i.e., starting with a positive number in queue but receiving no
future arrivals). In a related study, Sun et al. (2018) study patient triage and prioritization during a MCI
in battlefields. They study a single-server queueing model where the customer types are unknown but
can be identified through triage and at the expense of additional delay. They show, in a simplified setting
assuming infinite lifetimes, that the server should start performing triage when there are sufficiently many
patients and stop when there are few patients. Our queueing model is different in that we assume that all
patients are triaged but the triage decisions may be inaccurate. Similar to Sun et al. (2018), we assume
that obtaining the additional information (i.e., identifying mistriages) requires additional time. In addition,
we consider a finite dedicated capacity for identifying the mistriages. Inaccuracy or uncertainty in patient
types has also been considered in Argon and Ziya (2009) who investigate prioritization of patients with
imperfect information on their priority levels. For a more detailed discussion of the related literature in
this area see Sun et al. (2018).

Hupert et al. (2007) uses simulation to study the relationship between overtriage and mortality. They
find that the relationship is not necessarily monotone increasing and depends on other system characteristics
such the the relative number of critical patients to available capacity. In contrast, in this work we examine
the value of identifying overtriaged patients (in terms of relative reduction in mortality) as the overtriage
probability increases.

Finally, we note that other papers in the literature have studied related tradeoffs to the information-delay
tradeoff considered in this paper, although in different settings; see for example Levi et al. (2019) and
Alizamir et al. (2013).

3 MODEL DESCRIPTION

3.1 The Model

We consider a queueing network with two server pools, one corresponding to the operating rooms and
the other to imaging. Patients arrive to the system according to a non-stationary Poisson process with rate
{A(t);t > 0} where we assume that there exists a #p such that A(z) = 0 for r > 1y and define,

1o
A:—/ A(s)ds,
fo Jo

to be the average arrival rate during [0,7y]. Upon arrival, patients are triaged and assigned to class i € {1,2,3}
(representing triage level Ti) with probability p;. Patients may be over- or under-triaged. Denote by g; and
q, the over- and under-triage probability for class i patients, respectively, that is,

g; = P[Triaged as class i| class (i+1)], i€ {l,2},
g, = P[Triaged as class i| class (i—1)], i€{2,3}.

Class 1 and 2 patients have a random remaining lifetime following a continuous distribution with cdf
denoted by G;(-) and mean 1/7; for class i € 1,2 patients. Class 3 patients have an infinite remaining
lifetime. Patients who are triaged as class 3 do not enter the system as they do not require emergency
surgery. Patients who are triaged as class 1 directly proceed to surgery upon arrival, whereas patients
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triaged as class 2 can be sent to imaging node of the networks before the surgery. Imaging fully recovers
the true triage class of patients. If a patient is found to be overtriaged he/she exits the system, whereas a
patient found to be undertriaged proceeds to the surgery with the true triage type known. Class 1 patients
are prioritized for surgery according to a non-preemptive priority policy. Among patients of each class,
the queueing discipline is assumed to be First-Come, First-Served (with respect to the arrival time to the
surgery node). A schematic representation of the proposed queueing network under the assumption that
all class 2 patients are routed to imaging is presented in Figure 1.

There are ng servers (surgery rooms) at the surgery node and n; servers in the imaging node of the
network. Processing times are assumed to be identically distributed for all patients and follow a continuous
distribution with cdf Fg(+) in the operating room and Fj(-) in imaging. The average surgery times and scan
times are 1/us and 1/, respectively.

Triaged as T1

> I
)\(t) Triaged as T2 ﬁ @ /Tl' - @

»

(Imaging) lTS\ I I I I I (Operating Rooms)

(Triage) J To

Triaged as T3

Figure 1: A schematic representation of the proposed queueing network under the assumption that all
patients triaged as class 2 (T2) are routed to imaging prior to surgery.

For i € {1,2,3} denote by {X;(¢);t > 0} and {Y;(z);t > 0} stochastic processes that keep track of the
number of (actual) class i patients in the surgery node and imaging node, respectively. Note that class 3
patients may enter the system, only if mistriaged as class 2. Denote by {X;(¢);# > 0} and {¥;(¢);z > 0} the
processes that keep track of the number of patients triaged as class i € {1,2} in the surgery and imaging
nodes, respectively. (Patients triaged as T3 do not enter the system.) Note that X; and ¥; are observable for
all i. Denote by {D;(t);t > 0} for i € {1,2} the number of class i deaths occurred by time 7. Our main
performance measure of interest is the expected mortality in the system during the interval [0, 7], that is,

E[Di(7) +Da(7)],

where T = inf{t > to; Y, (X;(¢) + Y;(t)) = 0} is the time at which the system is empty after the arrivals
stop. In all experiments, we assume that the system starts empty.

3.2 The Information-Delay Tradeoff and the Proposed Control Policy

Routing a class 2 patient to imaging identifies the true triage level of the patient and possibly uncovers one
of the two possible mistriages: if a patient is overtriaged (i.e., is truly a class 3 patient) he/she no longer
requires surgery. Hence, uncovering overtriaged patients reduces the demand for surgery, which in turn
decreases the mortality for other patients by reducing the congestion. If on the other hand an undertriaged
patient is identified (i.e., the patient is truly a class 1) the patient is prioritized for surgery, improving
his/her chance of survival.

Despite these benefits, performing imaging requires time and resources. Since the imaging capacity is
also limited, congestion can also occur at the imaging node of the network. If too many patients are routed
to imaging, this might lead to idleness at the surgery rooms, and further delay patients who are correctly
triaged and require surgery, possibly increasing mortality.

To better manage the utilization of the imaging and avoid idleness at the surgery rooms, here we propose
a simple and intuitive control policy. According to this threshold-based policy, a class 2 patient is only
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sent to imaging if the number of patients waiting for surgery exceeds a fixed threshold value. Formally,
under a routing policy with threshold T, a patient arriving at time ¢ > 0 is routed to the imaging node if
and only if],

Xi(t)+X(t) > T,

and otherwise directly proceeds to surgery. Note that the policy only uses information on the number of
patients currently waiting for or receiving surgery. Intuitively, the policy aims to send patients to imaging
if the congestion at the surgery node is large enough so that with high probability the waiting time of the
patient before receiving surgery exceeds the time required for the patient to receive imaging. We note that
this policy is not the “optimal” policy with respect to minimizing mortality. Characterizing the structure
of the optimal policy is beyond the scope of this paper and is left for future work. Our goal here is to use
a simple and practical policy to illustrate the benefits and importance of carefully managing the imaging
capacity and utilization during an MCIL.

4 SIMULATION EXPERIMENTS
4.1 Choice of Model Parameters

In this section we discuss the calibration of the model input for the simulation experiments. We calibrate
the model using information reported in the literature and in consultation with expert radiologists.

Patient types and mistriage probabilities. We set the triage probabilities to p; = 0.15, p = 0.33, and
p3 = 0.52. These values are relevant to a realistic MCI, although we note that the probabilities could vary
for different MClIs. For simplicity, we assume that only class 2 patients can be mistriaged and vary the
mistriage probabilities in our experiments. We note that this is a reasonable assumption since the majority of
mistriages occur for T2 triage level (Berger et al. 2016). According to Frykberg (2002) although undertriage
rarely happens, overtriage probability is typically high, e.g., ranged between 8% — 80% (average 53%) in
10 bombing incidents. Hence, in our experiments we vary the overtriage probability in g, € [0, 1] and the
undertriage probability in ¢, € [0,0.5].

Arrival process. We consider a bi-modal arrival rate that occurs over #y = 210 minutes. Specifically,
we use the arrival rate,

—ax 1074% +9a x 1073, 0<t<090,
A1) =10, 90 < 1 < 120,
—bx 107*(t —120)2 +9b x 1073(t — 120), 120 <t <210,

where a and b are parameters which we will vary in our experiments to get different average arrival rates
given by,

1 (243a 243D
_210< 20 20 >

The shape of arrival functions captures two waves of arrivals caused by the emergency transportation
services going back to the scene of the incident as exemplified in Cohen et al. (2014) for a real MCL
Note that for 30 minutes, the arrival rate is equal to O before the second wave of arrivals begin to arrive.
This structure of the arrival rate will allow us to demonstrate the drawbacks of over-utilizing the imaging
when capacity is scarce. We consider two values for the average arrival rates in our experiments, both
corresponding to an event that last for hours and lead to overloaded servers at both the imaging and surgery
nodes.

Surgery and imaging times. As reported in Huber-Wagner et al. (2009) the duration of emergency
surgical operations could vary significantly depending on the type of the surgery. We assumed surgery
times are Log-Normal. In consultation with our collaborators, we considered an average surgery time of
60 minutes and to capture the high-variability set the standard deviation to 60 minutes as well. Further,
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we assumed that service times in the imaging node are Normally distributed with mean 20 minutes and
standard deviation 3 minutes using the data reported in Mueck et al. (2016) from a mid-scale exercise in
preparation for MCls.

Remaining lifetimes. We assumed that remaining lifetimes of class 1 and 2 patients follow a Weibull
distribution with cdf G;(1) = 1 —e /)" and class-dependent parameters. Similar to Sun et al. (2018),
we set the shape parameter 6; = 1.5 for both classes and set §; = (1/7)/I'(1+1/6;) where 1/7; is the
mean remaining lifetime for class i € {1,2}. In consultation with our collaborators, we assume 1/y; = 400
minutes and consider two cases for 1/7, € {800,1200} in our experiments.

4.2 Design of Simulation Experiments

In all experiments, we obtain the estimates by generating sample paths of the processes introduced in
Section 3.1 using discrete-event simulation. In our experiments, we gradually increase the number of
replications until the approximate absolute error of the estimated mortality is smaller than 0.2% (see, e.g.,
Nelson (2013) Chapter 8) or a maximum of 25,000 replications is reached. As such, the error bars in our
figures (corresponding to 95% confidence intervals) are hardly visible. Finally, to reduce the simulation
error, we use Common Random Numbers (CRNSs) in our experiments when comparing difference scenarios.

4.3 Value of Information

In this section, we conduct a set of simulation experiments to quantify the maximum value of information
obtained by performing imaging. More specifically, we consider the queueing network without an imaging
node (or equivalently under the policy of sending all patients triaged as class 2 directly to surgery) and
compare the mortality under the following two cases: one with full information on patient types (i.e.,
with mistriage probabilities equal to zero) and another with fixed (non-zero) mistriage probabilities. We
vary the undertriage and overtriage probabilities and estimate the expected relative reduction in mortality
achieved under the case with full information. In doing so, we aim to understand the maximum value of
using imaging in the absence of congestion and imaging times and identify parameter regimes where the
benefits are high.

In Figure 2 we plot the estimated values of information for varying mistriage probabilities. In the
experiments, we set ns =9, 1/ug =60, 1/u; =20, 1/9; =400, and consider two cases for the average
arrival rate A € {0.69,1.39} and mean class 2 remaining lifetimes 1/, € {800, 1200}. In the left plot (a)
we fix the undertriage probability at q, = 0 and vary the overtriage probability in g, € [0,1]. In the right
plot, we fix the overtriage probability at g, =0 and vary the undertriage probability g, € [0,0.5].

As expected, the value of information is increasing in both mistriage probabilities. Note that the
value could be very significant even for moderate mistriage probabilities. Further, observe that identifying
overtriages leads to a higher relative reduction in mortality when compared to undertriages. This implies
that the value of reducing the arrival rate to the surgery node (by identifying patients who do not need
surgery) dominates that of better prioritization for the set of parameters considered in our experiments.

Further, observe that the relative value of information is higher in the case of the smaller average arrival
rate. This is because the baseline mortality rate (no mistriage) is smaller in this case, leading to a higher
relative reduction in mortality. More interestingly, we observe that the value of identifying undertriage
probabilities could be considerably higher for the case with the higher average remaining lifetime of class
2 patients. This can be explained noting that prioritizing class 2 patients has a larger impact on class 1
mortality when the remaining lifetime of class 2 patients is longer.

In Figure 2, we only vary one of the mistriage probabilities and keep the other at zero. We observe
however that the observations are consistent when we jointly vary both mistriage probabilities, suggesting
that there is little interaction between the two effects. To illustrate this, we plot the estimates in Figure 3
for varying under and overtriage probabilities and arrival rate A = 0.69. We keep the other parameters the
same as in Figure 2. A lighter color corresponds to higher value of information.
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Figure 2: Estimated expected relative reduction in mortality achieved under the full information case for
varying overtriage (a) and undertriage (b) probabilities while keeping the other at zero; average arrival rates
A €{0.69,1.39}; and mean class 2 remaining lifetimes 1/7 € {800,1200}. Other parameters are set to
ns =9, 1/us =60, 1/u; =20, 1/1 = 400.
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Figure 3: Heatmaps of estimated expected relative reduction in mortality achieved under the full information
case for mean class 2 remaining lifetimes 1/9, = 800 in (a) and 1/% = 1200 in (b). Other parameters are
set to A=0.69,n5 =9, 1/us =060, 1/u; =20, 1/ = 400.

The reductions of mortality observed in the above experiments are obtained assuming zero service
times at the imaging node and hence provide upperbounds for the actual benefits obtained in the case of
limited imaging capacity and non-zero processing times. In the following section, we investigate the value
of imaging with finite imaging capacity and positive and uncertain processing times.

4.4 Managing the Information-delay trade-off

In this section we assume that the imaging node has a finite capacity n; and that the processing times are
random variables following the distribution specified in Section 4.1. In particular, the average imaging
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time is assumed to be 20 minutes t; = 1/20 which is relatively shorter than average surgery time of 60
minutes pg = 1/60. In addition, imaging times are also less variable compared to surgery duration. This
is reasonable to assume, since during an MCI imaging is done according to specific protocols aiming to
standardize the process and minimize the duration (Mueck et al. 2016).

We use simulation experiments to estimate the expected mortality for different levels of imaging
capacity. To this end, we fix the surgery capacity at ng =9 and consider three cases for the imaging
capacity n; € {2,3,4}. Note that since u;/us = 3, the three cases correspond to imaging capacity (i.e.,
maximum throughput) being less, equal, and above the surgery capacity, respectively. Other parameters
are set to g, = 0.4, q,=0.1, A= 0.69, 1/, = 800. Note that from the results of Section 4.3, the mistriage
probabilities correspond to a regime with high value of information.

The routing decision - whether to send class 2 patients to imaging - is made according to the policy
described in Section 3.2. We vary the threshold value in the experiments. Note that when the threshold
is equal to the surgery capacity, the policy is equivalent to routing class 2 patients to imaging whenever
the surgery is at full capacity (i.e., all servers are busy). As the threshold increases, the utilization of the
imaging node decreases and eventually converges to zero.

Figure 4 presents the results. In addition to the estimates, the plots also show the expected mortality
for the full information case (green line) and no imaging (red line). We observe that when the imaging
capacity is large (n; = 4) mortality is minimized at the smallest threshold value, whereby almost all patients
are routed to imaging. When the imaging capacity is smaller, however, routing a smaller fraction of class 2
patients to imaging (i.e., higher threshold value) could lead to lower mortality. In the case of only 2 servers
in the imaging node (n; = 2), routing all patients to imaging leads to higher mortality even compared to
the scenario of performing no imaging at all. Nevertheless, using a large enough threshold value - which
only sends patients to imaging when the surgery node is congested enough - leads to a significant reduction
of mortality (from 18% to 15%) compared to no imaging.
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Figure 4: Estimated expected mortality under different imaging capacity levels and varying threshold values.
Other parameters are set to g, =0.4, g, =0.1, A=10.69, 1 /7> = 800, and ng = 9. The horizontal lines
correspond to estimates of the expected mortality under full information (green) and no imaging (red).

The above observation can be explained noting that with limited CT capacity, routing too many class
2 patients to imaging may turn the imaging into the bottleneck capacity, leading to idleness at the surgery
node. This can in particular occur with a time-varying arrival rate with periods of time when arrival rates
are decreasing or are equal to zero as in our experiments.

To further illustrate the above observation, in Figure 5 we plot the average sample paths of the total
number of patients in the surgery and imaging nodes of the network for the case with n; =2. More
specifically, the plots are estimates of E[X;(¢) +Xa(¢) +X3(¢)] and E[Y; (r) + Y2(¢) + Y3(¢)] in time for two
cases; (a) the case with threshold equal to 9 and (b) the case with threshold equal to 30 which results in the
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lowest mortality rate. Observe that in case (a) the imaging (CT) queue can be very long whereas the surgery
(OR) queue remains low. In addition, as the arrival rates start going down (before the arrival of the second
wave, and at the end of the horizon) idleness is incurred in the surgery node (i.e., patients are waiting in
CT whereas surgery capacity is idle). In this case, many patients who do need surgery are delayed in the
imaging node overall leading to higher mortality than performing no imaging at all. In contrast, in case (b)
no idleness is incurred as the arrival rate goes down. In this case, both the imaging and surgery maintain
full utilization and incur no idleness, except the end of the horizon as the system starts emptying.

50 50
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ol > CT Queue
230 £ 301 = OR Headcount
m m
30 G _— == CT Headcount

rass ns
101 M 10 1 e . e Yy
— AL
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
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(a) Threshold =9 (b) Threshold = 30

Figure 5: Estimated expected number of patients in the surgery (OR) and imaging (CT) nodes in time (for
the first 350 time units) for a system with g, = 0.4, 9, = 0.1, A=0.69, 1/ =800, ng =9, n;y =2, and
two threshold values.

S DISCUSSION AND FUTURE WORK

We propose a queueing network model of the ED during an MCI and use simulation experiments to quantify
the value of identifying mistriaged patients through imaging. Imaging can correctly identify the triage level
but takes a non-negligible time and the imaging capacity is also limited. Our main observations are as
follows: (1) identifying mistriaged patients can significantly reduce the mortality rate, even for moderate
(realistic) mistriage probabilities. In particular, identifying overtriaged patients can significantly reduce
the surgery waiting time for real class 2 patients (and hence their mortality rates) by eliminating the need
for surgery for patients who do not need it. (2) When the capacity of imaging is scarce, one needs to
carefully manage the information-delay tradeoff that arises when deciding whether to send a patient to
imaging before surgery or not. In particular, over-utilization of imaging can lead to idleness in the surgery
and inflate the waiting time of patients who actually do need surgery. When this tradeoff is properly taken
into account, using imaging can significantly reduce the mortality rate compared to the case of performing
no imaging at all.

Our model clearly stylizes the operations of the ED during an MCI and we make certain modeling
assumptions that may not hold in reality. For example, we assume that only T2 patients are subject to
mistriage, whereas other types of mistriages do occur in reality. We assumed surgery times do not depend
on the triage level and assumed fixed capacity (in time) for both imaging and surgery. Nevertheless,
our experiments using other parametric assumptions, inputs and more detailed modeling of the processes
confirm that the high-level observations from the model are fairly robust, although the quantitative values
can change. Our proposed control policy assumes a strict rule for routing patients to imaging based on
the congestion in the system. While this may not be practical in a real MCI setting, we believe that the
qualitative message is still relevant: when routing a patient to imaging one should take its limited capacity
into account and be cautious of possible idleness in the surgery rooms.
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Our work can be extended in various practical and technical directions in the future. One important
direction is to quantify and compare the value of other imaging procedures (e.g., X-ray) in the presence of
congestion effects. Different imaging procedures provide different levels of information and vary in terms
of the required resources and duration. Further, here we focus on a simple threshold policy to illustrate the
importance of managing imaging capacity. As discussed, this policy is sub-optimal and can be improved
by taking other state and arrival information into account. In doing so, however, one needs to take the
practicality of the policy in mind, which is paramount in a MCI setting. Finally, in this work we rely on
simulation experiments to obtain our results. Fluid models, which capture the transient dynamics of the
system well, can provide accurate approximations as well as additional insights as in Cohen et al. (2014).
In our model, the presence of mistriaged patients complicates the dynamics of the system and requires
carrying more information. Developing tractable fluid approximations for our model is left for future work.
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