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ABSTRACT 

Diabetic retinopathy (DR) is the leading cause of blindness for working age Americans. Early detection, 
timely treatment, and appropriate follow-up care reduce the risk of severe vision loss from DR by 95%, yet, 
less than 50% of people with diabetes adhere to the recommended screening guidelines. Diabetes is a 
complicated disease for patients and their physicians to manage. We developed a microsimulation 
integrating the natural history model of DR with a patient’s interaction with the care system. We introduced 
a DR screening device in primary care, with and without care coordination by a medical professional, in 
two interventions to the current care path. We found the interventions increased adherence of patients with 
vision-threatening DR (VTDR) to follow-up eye care, decreased the number of ‘unnecessary’ visits in 
specialty eye care from patients without VTDR, and decreased the total years spent blind.  

1 INTRODUCTION 

Diabetic retinopathy (DR) is the leading cause of blindness for working-age Americans and, in 2010, DR 
was responsible for moderate and severe vision impairment (20/60 - 20/400) in 3.7 million people 
worldwide (Leasher et al. 2016). In the United States, of the over 30 million people with diabetes, 28.5% 
will develop some stage of DR in their lifetime (Zhang et al. 2010). Early detection, timely treatment, and 
appropriate follow-up care reduce the risk of severe vision loss from DR by 95%. Yet, less than 50% of 
people with diabetes adhere to the recommended screening guidelines (Brechner et al. 1993; Kuo et al. 
2005). Early detection is difficult without regular screening due to varying progression rates and a lack of 
symptoms, even in advanced stages. Regular and early screening and subsequent timely treatment are vital 
to preventing blindness. However, increasing numbers of patients with diabetes coupled with inequitable 
access to retinal specialists (Pandit et al. 2020), results in a large burden on the care system.    

Diabetes is a complicated disease for patients and their physicians to manage. A comprehensive review 
by Piyasena et al. (2019) identified access to care, reluctance to change behavior, aversion to screening 
method, poor physician-patient communication, fear of laser treatment, and patient’s DR knowledge as 
barriers preventing patients from DR screening and follow-up care. Barriers from the care perspective, 
including a lack of coordination between primary care and eye care, long waiting times due to a large 
number of patients per physician, and failure to refer patients to eye care from primary care, can also impede 
adherence to DR screening. Pandit et al. (2020) found that the number of retinal specialists was significantly 
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lower in poorer, sicker, and older communities. In this work, we tested two interventions to the current care 
process that aim to increase access to screening and reduce the number of low-risk patients utilizing primary 
eye care and retinal specialty resources unnecessarily. 

One approach to solving this problem is to increase screening access with a simple hand-held DR 
screening device that is practical for a primary care office. One such device, RETeval (LKC Technologies, 
Inc., Gaithersburg, MD), can complete screening of both eyes in approximately five minutes without 
dilating the patient’s eyes (Al-Otaibi et al. 2017; Maa et al. 2016). Due to its portability and ease of use, 
RETeval DR screening could take place at care points patients already visit such as primary care physician 
offices, pharmacies, or mobile clinics. The current care guidelines from the CDC (2018) and the American 
Academy of Ophthalmology (2019) recommend that all patients with diabetes annually visit a primary care 
provider and a primary eye care provider (an optometrist or an ophthalmologist) for DR screening. If 
identified as at increased-risk for vision-threatening diabetic retinopathy (VTDR), patients should also visit 
a retinal specialist for follow-up care. We introduce a DR screening device in primary care, with and without 
care coordination by a medical professional, in two interventions to the current care path. 

We developed a microsimulation model of DR progression in patients with diabetes and patient’s 
interaction with the care system. Markov models for type 1 and type 2 diabetes track the underlying disease 
progression in each patient built with data from large multi-center diabetes clinical trials (DCCT/EDIC 
Research Group 2017; Hayes et al. 2013; ACCORD Study Group 2007). We defined patient interaction 
with the care system and subsequent health outcomes from literature, expert opinion, and the PROTECT2 
clinical trial (ClinicalTrials.gov, NCT03094819).  

The purpose of this work is to make evidence-based comparisons between two proposed interventions 
and the current care guidelines. We use patient health outcomes, adherence behavior, and cumulative totals 
of visits to conclusions about the impact of moving DR screening to primary care and utilizing care 
coordination for patients at risk of the most severe outcomes of DR.   

1.1 Relevant Literature 

Markov and simulation models are extensively used to study the effects of chronic diseases and care 
interventions on patients and the care system. Markov chains model disease incidence and progression with 
examples including breast cancer (Tan et al. 2013), colorectal cancer (Frazier et al. 2000) and HIV/AIDS 
(Lee et al. 2014), and diabetes (Srikanth 2015). Discrete event simulations (DES) have been established as 
effective, safe ways to study care interventions such reducing appointment lead time in a rheumatology 
clinic (Swan et al. 2018) and improving efficiencies in emergency departments (Swan et al. 2019). In 
addition, population-level simulations can be used estimate the costs of interventions on chronic diseases 
such as colorectal cancer (Lich et al. 2019; Nambiar et al. 2018).  
       Utilizing both Markov and agent-based simulation models are especially useful for experimenting with 
care interventions for patients with non-communicable diseases (Currie and Monks 2019; Day et al. 2013). 
Work by Chalk et al. (2012) showed the necessity of modeling both underlying disease states and delivery 
of care for DR. Nambiar et al. (2018) and Lich et al. (2019) used a microsimulation model for population-
level colorectal cancer screening and interventions. Specifically related to DR, simulation models have been 
used to compare screening strategies as a function of screening interval and modality and the type of health 
system (Brailsford et al. 2007; Davies et al. 2002). Interestingly, Davies et al. (2000) found referring 
patients for mild versus only severe DR stages did not affect the population-level years of sight saved.  

The microsimulation model we developed in this work resembles models created in health economics 
literature (Standfield 2017) and uses a DES framework to model the individual interaction of patients with 
the care system; focusing on adherence and health outcomes rather than economic impact. We construct 
our disease progression model similar to Davies et al. (2000) and Brailsford et al. (2007) but allow for 
differing behavior of DR in patients with type 1 (T1DM) and type 2 (T2DM) diabetes. This microsimulation 
framework gives us the ability to analyze two screening interventions and their effects on both patients with 
diabetes and the care system.  
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2  MICROSIMULATION MODEL DESCRIPTION 

The North Carolina Diabetic Retinopathy Simulation (NCDRS) model (Figure 1) was built at North 
Carolina State University in AnyLogic Personal Learning Edition 8.5.1 software. The model simulates a 
representative population of US adults with diabetes (Section 2.1). DR progresses each year for each patient 
over a 10-year period (Section 2.2). Patients annually interact with the care system according to the 
recommended DR care process (Section 2.3). The NCDRS model allows changes to the existing care 
process which we then evaluate via relevant patient-level and population-level metrics (Section 3).  

Figure 1: Overview of the three primary components (light blue) in the model (NCDRS) and associated 
data (grey) where i: (DCCT/EDIC Research Group 2017), ii: (Senthilvel et al. 2012; Srikanth 2015), iii: 
(Beckles et al. 1998; Keenum et al. 2016). 

2.1 Population 

NCDRS models a representative population of 10,000 US adults with diabetes using health and 
demographic information from the National Health Interview Survey and the National Health and Nutrition 
Examination Survey (Cowie and Eberhardt 1994). Diabetes type, age, gender, race, ethnicity, and duration 
of diabetes were assigned to each patient to reflect the demographics of US adults in 2009-2010 by type of 
diabetes. The presence of DR was assigned to the generated population based on diabetes type and duration 
using the global prevalence of DR (Yau et al. 2012). The initial stage of DR was assigned according to the 
patient population and DR progression in the DCCT/EDIC Clinical Trial (2017) and the ACCORD clinical 
trial (ACCORD Study Group 2007) given a patient’s type and duration of diabetes (see Section 2.2).  

2.2 Disease Progression 

The progression of DR is characterized using a T1DM or T2DM Markov chain, assigned to each patient 
at the start of the simulation. Each Markov chain has six different DR states: no DR, mild non-
proliferative DR (NPDR), moderate NPDR, severe NPDR, proliferative DR (PDR), and Blindness. The 
time to transition between states is distributed exponentially, with rates derived from literature sources 
depending on diabetes type. Figure 2 displays the relationship of each DR state and transition rates.  

For both T1DM and T2DM, we derived the transition rate from one state to another for the Markov 
chain as the product of (1) the probability of transition between the two states given that a subject leaves 
the origin state and (2) the inverse of the average sojourn time within the origin state. We obtained both 
data elements for T1DM directly from the DCCT/EDIC Research Group (2017). We computed the two 
data elements for T2DM using the one-step (annual) probability transition matrix between DR states 
provided by Srikanth (2015). The authors did not include data for transitions out of the state no DR thus 
this value was obtained from Senthilvel (2012).  

To reduce the number of patients ending in the blind state, we need to identify those patients at 
increased-risk of the vision-threatening stage of DR (VTDR) which includes severe NPDR and PDR.  

946



Swan, Nambiar, Koutouan, Mayorga, Ivy, and Fransen 
 

 

Figure 2: DR transitions rate diagram (month) for patients with type 1 (black) and type 2 (blue) diabetes.  

2.3 Care Process 

The recommended annual screening and treatment care process is shown in Figure 3 in which interactions 
occur between patients (blue) and providers (green). The two points at which our interventions impact 
patients are shown in yellow. If patients adhere to recommended screenings by attending the dark-blue 
events annually and adhering to recommended follow-up care and treatment (light-blue), they can avoid 
progression of DR (in red).  
 

Figure 3: Typical DR care path with annual care recommendations (dark blue), follow-up care and treatment 
for patients identified at increased-risk for VTDR (light blue) and patient interactions with care providers 
(green). The dashed line indicates potential consequences of non-adherence to recommended DR care with 
our two Interventions in yellow (see Section 3).  

In NCDRS, patients are modeled independently where each year they choose to visit primary care and 
primary eye care. The probabilities of adhering to the annual care guidelines are modeled as uniform 
distributions for primary care (0.701, 0.753) (Beckles et al. 1998) and primary eye care (0.33, 0.6) (Keenum 
et al. 2016; Lee et al. 2015; Murchison et al. 2017). While a primary care visit is not explicitly in care 
guidelines for DR, it is recommended for all patients with diabetes and, if they adhere to their primary care 
visit, patients are modeled as 50% more likely to visit an eye care provider (Storey and Haller 2016). In 
primary eye care, patients are screened for DR with a dilated eye exam and diagnosed as low-risk or 
increased-risk for VTDR. Patients at low risk of VTDR do not continue with eye care and resume the annual 
screening process. Patients at increased risk of VTDR are referred to a retinal specialist, with 90% 
adherence probability, for diagnosis confirmation and treatment.  

Errors can occur throughout the care process. Patients with VTDR can remain undetected and untreated 
due to false-negative DR screening results and non-adherence to care guidelines. On the other hand, false-
positive screening results can overload the system by sending patients without VTDR to retinal specialists, 
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filling appointments that should be available for patients with VTDR. The two interventions (in yellow, 
Figure 3) aim to reduce both false-positive and false-negative errors. Intervention 1 introduces primary care 
DR screening which we hypothesize will reduce the number of low-risk patients unnecessarily seeking 
specialty and primary eye care. Intervention 2 introduces both primary care DR screening and care 
coordination by a medical professional for patients with screening results indicating they have an increased-
risk of VTDR. We hypothesize Intervention 2 will increase the number of patients who truly have VTDR 
adhering to follow-up care and treatment recommendations.  

3 SIMULATED INTERVENTIONS 

In the NCDRS model, patients interact annually with the care system as their DR progresses. We compared 
two interventions to the current DR care process (described in Section 2.3) while performing sensitivity 
analysis on the effectiveness of the interventions. Between replications, random number seeds for DR 
progression and for care engagement were held constant for each patient so we can isolate the effect of each 
intervention. In each of 50 replications, every patient was simulated for 10 years of their life. The number 
of replications chosen such that the half-width of annual number of patients in absorbing states (blind or 
treated) was less than 6. We chose to model 10 years to focus on the short-term results of our interventions. 
In addition, we did not trust the projection of disease progression and patient behavior beyond 10 years.   

3.1 Intervention 1: DR Screening Device in Primary Care 

Intervention 1 shifts DR screening to primary care where patients are diagnosed at low or increased risk for 
VTDR. Patients with an increased risk of VTDR are referred to primary eye care for a confirmation 
diagnosis while those with a low risk return for screening at primary care in one year. 

For the patient, Intervention 1 reduces the number of required care visits for annual diabetes 
management from both primary care and primary eye care to just primary care. This intervention can also 
affect adherence behavior such that patients informed of increased risk of disease have a slight increase in 
adherence to follow-up care (Murchison et al. 2017).  From the care-system perspective, Intervention 1 
filters patients by risk of VTDR one step earlier in the care path, consequently reducing downstream 
appointments in specialty eye care.  

NCDRS models primary care DR screening using RETeval, a handheld electroretinography and 
pupillography device with a five-minute test protocol. RETeval was selected due to data availability and 
established care paths through two clinical trials: Maa et al. (2016) and PROTECT2 
(ClinicalTrials.gov, NCT03094819).  Our model could be adapted to test any screening device; others in 
the market include IDx-DR (IDx Technologies Inc., Coralville, IA), IRIS (Intelligent Retinal Imaging 
Systems, Pensacola, FL), and smartphone applications (Savoy 2020; Naik et al. 2018). RETeval detects 
VTDR with 87% sensitivity and 78% specificity with a negative result indicating a patient is at low-risk for 
VTDR and a positive result indicating a patient is at increased-risk for VTDR. 

3.2 Intervention 2: Care Coordination 

Intervention 2 builds upon Intervention 1 to include both primary care DR screening and care coordination 
for patients diagnosed at increased risk of VTDR. In care coordination, a medical professional works with 
patients to help them understand their diagnosis, find a primary eye care provider, and make appointments.  

The PROTECT2 clinical trial compared primary care RETeval screening and care coordination 
interventions to the current DR care system in a study of 500 participants.  Information collected included 
screening results, primary care visits, care coordination (e.g., phone calls), and follow-up and treatment 
compliance. Care coordination was performed via phone calls which, after 90 days, resulted in an exam by 
an eye care provider for 80% of the increased risk population; most patients required more than five phone 
calls before adhering. In Intervention 2, primary care DR screening follows the same process as Intervention 
1. Then, any patient identified as increased-risk for VTDR by the RETeval screening device receives care 
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coordination, represented by a number of calls. Each patient receives a randomly assigned number of calls 
based on data from PROTECT2 (Table 1, Row 1), then, conditional on the number of calls a patient 
receives, there is a probability the patient goes to the primary eye care provider (Table 1, Row 2). 

Table 1: PROTECT2 data defining the distribution of calls per patient identified at increased-risk for VTDR 
by RETeval and, given a number of calls, the proportion of patients that adhere to follow-up care.  

Number of Calls <3 3 4 5 6 7 8 9 10+ 

Number of Patients 33 33 50 29 14 11 9 3 9 
Adherence given Number of Calls 0.57 0.74 0.88 0.92 0.69 0.78 0.78 1 1 

3.3 Sensitivity Analysis  

Uncertainty in human behavior and screening accuracy can have an effect on adherence to DR current care 
guidelines. As such, we analyzed the sensitivity of our model to the accuracy of the primary care DR 
screening device by varying both sensitivity and specificity between 0.6 and 1, in increments of 0.01. In 
addition, while results are not included in this paper, we explored the sensitivity of our model to the 
underlying adherence assumptions and, as expected, the effect of Interventions 1 and 2 diminished when 
the underlying assumption of adherence to primary care and to primary eye care decreases. 

3.4 Model Verification  

Model outputs of proportions of patients adhering to each step of the care process and DR progression 
under current care guidelines were verified against data (Section 2). The number of calls a patient 
receives and subsequent probability of adherence in the model was verified against Table 1. For example, 
we verified the DR progression followed the trend in Day et al. (2013) in which patients overwhelmingly 
end in mild NPDR at the end of a 10-year simulation. Figure 4 confirms this by displaying the number of 
patients who start in healthstate x and end in healthstate y after the 10-year simulation; with the largest 
number of patients ending in mild NPDR.  

Figure 4: Number of patients progressing from a DR healthstate in Year 1 (x-axis) to a DR healthstate in 
Year 10 (y-axis), under the current care guidelines. The size of each circle corresponds to the number of 
patients in that path while the color signifies the starting healthstate.  
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4 RESULTS 

The three DR care processes simulated are Intervention 0: the current care process, Intervention 1: 
primary care DR screening, and Intervention 2: primary care screening with care coordination. Each care 
process is compared using metrics from both the patient perspective, adherence, screening results, and 
health outcomes, and the provider perspective, the number of care visits. Each metric is filtered by the 
true underlying health state of the patient (no VTDR or VTDR) and by the step in the care process 
(primary care, primary eye care, and retinal specialty care). Statistically significant results are highlighted 
in each with result and assumptions of normality have been confirmed. 

4.1 Screening and Adherence  

We first analyze the effects of Interventions 1 and 2 on patient care visits and adherence, separated by true 
VTDR state. Table 2 shows the screening results and adherence averages over 10 years for primary care 
and primary eye care. The number and proportion of visits (Rows 1 and 2) represents those patients who 
adhere to their annual primary care and primary eye care visits. The number and proportion adhered (Rows 
5 and 6) are the patients who received a positive DR screening result and moved on to the next step in the 
care process. We assume only those patients with positive screening results would be referred for follow-
up care with a primary eye care provider (indicated by (+)). In the case of Intervention 0, this assumption 
changes such that all patients who go to primary care are referred to a primary eye care provider.   

In separating by the true underlying VTDR state, we highlight the false positives and false negatives 
from screenings. Reduction of false positives lowers the number of ‘unnecessary’ eye care visits, or those 
patients without VTDR moving on to primary eye care. The bolded values in Table 2, Row 5, indicate 
that both Intervention 1 and 2 reduce false positives as compared to the current care system and, overall, 
reduce the number of patients without VTDR referred for follow-up care with a retinal specialist.  

We also see that Interventions 1 and 2 increase the proportion of patients with VTDR adhering to 
follow-up eye care. Under the current care guidelines, we estimate only 55% of patients with VTDR see a 
primary eye care provider while over 74% of patients with VTDR went to a primary eye care provider in 
Intervention 2. This effect is further explored in the sensitivity analysis of Section 4.4.  

Table 2: Adherence and screening results by true VTDR state with (-) and (+) representing a negative and 
positive screening result, respectively. The (+)(+) symbol in Row 7 represents those patients who received 
a positive screening result in both primary care and primary eye care. The (+) indicates the denominator are 
both patients with a positive primary care screening result and patients who did not visit primary care.  

 
 No VTDR VTDR  

Care Provider Primary Care Primary Eye Care Primary Care Primary Eye Care 
Intervention 0 1 2 0 1 2 0 1 2 0 1 2 

1 Number Visits 6,248 6,339 6,339 5,462 2,408 2,292 370 364 345 285 278 293 
2 % Visits 0.73 0.73 0.73 0.64 0.65+ 0.62+ 0.71 0.71 0.71 0.55 0.67+ 0.75+ 
3 (-) Screening Result - 4,992 4,996 5,116 2,124 2,229 - 98 97 87.5 64 65 
4 (+) Screening Result - 1,347 1,343 347 169 178 - 248 266 197 214 228 
5 Num Adhere Follow-up 4,373 1,198 1,312 313 151 159 227 223 239 162 175 187 
6 % Adhere Follow-up 0.70 0.89 0.98 0.90 0.89 0.89 0.62 0.84 0.96 0.82 0.82 0.82 
7 (+) (+) Results   - - - - 92 99 - - - - 143 156 

 

4.2 Reducing the Burden of DR Screening 

Building on Table 2, we highlight how Interventions 1 and 2 reduce the number of visits by patients 
without VTDR and increase the number of visits by patients with VTDR in primary eye care and retinal 
specialty care. The cumulative total visits in primary care, primary eye care, and retinal specialty care in 
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years 1, 5, and 10 are displayed in Figure 5, with stacked bars indicating visits by patients with VTDR 
(bottom) and patients without VTDR (top). As expected, the number of visits in primary care does not 
change between interventions, yet, we see a shift in the burden of DR screening from primary eye care to 
primary care in Interventions 1 and 2.  

Interventions 1 and 2 result in fewer unnecessary visits by patients without VTDR in primary eye care 
and specialty retinal care in Interventions 1 and 2 compared to the current care process. The cumulative 
total of visits by patients without VTDR in primary eye care decreases between Intervention 0 and 
Intervention 1 (2) by 3,349 (3,223), 15,988 (15,399), and 27,251 (26,223)) total visits in years 1, 5, and 10, 
respectively. There is a slight increase between Interventions 1 and 2 due to care coordination increasing 
the adherence to recommended follow-up care among patients without VTDR receiving a false-positive 
DR screening result in primary care.  

Figure 5 shows the increase in the proportion of patients with VTDR (compared to no VTDR) that 
make visits in primary eye care and retinal specialty care over a 1-, 5-, and 10-year period under both 
interventions. In addition, Interventions 1 and 2 increase the cumulative total visits by patients with VTDR 
in retinal specialty care. Comparing Intervention 0 and Intervention 1 (2), there is an increase of 28 (62), 
91 (174), and 146 (277) cumulative visits by patients with VTDR for years 1, 5, and 10, respectively. Each 
difference is statistically significantly different (paired t-test, p-values < 1E-15).   
 

Figure 5: Total primary care, primary eye care, and retinal specialist visits for years one, five, and ten as 
the intervention changes (x-axis). Total visits are separated by the true VTDR state of patients (color). 95% 
confidence intervals are not visible due to their small size; ranging from 2 to 21 visits. 

While Figure 5 shows us that both interventions enable a shift in the burden of DR screening towards 
primary care, Table 3 indicates that this shift is accompanied by improved patient health outcomes. Table 
3 shows the total patient-years spent in each health state of no VTDR, VTDR, treated, or blind, with colors 
to match those categories displayed in Figure 5. The total patient-years is found by summing the number 
of patients in each health state over all 10 years and all 10,000 patients. For example, if one patient spent 
six years without VTDR and three years with VTDR while another patient spent seven years at with VTDR 
and was treated in year 8, the totals would be six “no VTDR” patient-years, ten VTDR patient-years, and 
two treated patient-years.  

The number of patients who go blind decreases by about 3% under both interventions over the 10-year 
time horizon. Though not shown here, the population-level difference in cumulative years spent blind is 
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statistically significantly lower in Intervention 1 and 2, compared to Intervention 0, starting in Year 4 
(paired t-test, p-values < 0.05). There is no statistically significant difference in the total patient-years spent 
blind between Interventions 1 and 2. In addition, the number of patients treated increases by 8% and 6% in 
5 and 10 years, respectively, under Intervention 2 indicating that most patients are treated in a shorter time 
period due to enhanced screening guidelines under the Intervention 2. 

Table 3: Cumulative Total Patient-Years in each health state. The (*) indicates the difference from 
Intervention 0 is statistically significant (p-value < 0.05).  

 Intervention 0 Intervention 1 Intervention 2 
Year 1 Year 5 Year 10 Year 1 Year 5 Year 10 Year 1 Year 5 Year 10 

No VTDR 9,152 43,596 74,565 9,155 43,619 74,622 9,155 43,621 74,627 
VTDR 560 2,482 4,381 542 2,381 4,169 523 2,260 3,946 

Treated 209 2,798 7,789 226 2,914 8,039 245 3,033 8,256 
Blind 78 1,124 3,265 77 1,086* 3,169* 77 1,087* 3,171* 

4.3 Sensitivity Analysis: Most Severe Outcomes 

We next analyze the effects of interventions on the most severe DR outcomes of blindness and treatment 
by exploring the sensitivity of our results to the accuracy of a primary care DR screening test. We vary two 
accuracy measures to capture this effect; specificity (the proportion of negative results out of all screened 
patients who truly do not have VTDR) and sensitivity (the proportion of positive results out of all screened 
patients who truly have VTDR). Table 4 displays the average number of patients ending in the blind or 
treated state over a selected range of sensitivity and specificity values in Interventions 1 and 2.  

As the sensitivity of a primary care screening test increases, a higher proportion of patients with VTDR 
are referred for follow-up eye care and treatment. As expected, a screening test with high sensitivity lowers 
the number of patients who go blind and increases the number of patients treated, as seen in green in Table 
4. Intervention 2 adds care coordination for patients with positive screening results thus amplifying the 
effects of increased screening sensitivity; resulting in fewer blind and more treated patients. While not 
displayed as a color in Table 4, the addition of care coordination in Intervention 2 leads to a statistically 
significant decrease (p-value < 0.05) in the number of patients who go blind and increase in the number of 
patients who are treated as compared to Intervention 1 over all values of sensitivity and specificity. 

Table 4: Average number of patients ending in the health states blind or treated over a selected range of 
sensitivity and specificity values. Orange (green) cells are those that are statistically significantly less 
(more) than the current state (p-value < 0.05 for a paired t-test) while grey cells are those experiments which 
result in statistically the same number as the current state. 

The grey-green boundary in Table 4 show the cutoff at which the introduction of a primary care DR 
screening test statistically significantly treats more patients and prevents more patients from going blind 
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than the current state. In order to significantly improve identification of patients with VTDR, these results 
suggest a ‘lower bound’ exists on the sensitivity of a primary care DR screening device. Without care 
coordination, the sensitivity of a DR screening device should be at least 0.77 and with care coordination, 
the sensitivity should be around 0.74. We note, this analysis should be expanded upon provide a 
recommendation of higher accuracy.   

5 DISCUSSION AND CONCLUSION 

We successfully built a microsimulation model of DR progression in patients with diabetes and patients’ 
interaction with the healthcare system. With this model, we can use metrics on patient health outcomes, 
adherence behavior, and cumulative totals of visits to make evidence-based conclusions about the impact 
of two interventions to the current DR care guidelines.  

We found Interventions 1 and 2 are effective at reducing the number of ‘unnecessary’ retinal specialist 
visits by patients without VTDR, increasing the proportion of patients with VTDR being seen by primary 
eye and retinal specialists, and decreasing the number of blind patients while increasing the number of 
treated patients over a 10-year period. We also found a primary care DR screening test needs a sensitivity 
of at least 0.8 in order for there to be a significant increase in the number of patients treated. Portable DR 
screening devices, like the RETeval device which has a sensitivity of 87% for the detection of VTDR, 
reduce the complexity of diabetes management for patients and for providers. Both interventions enable a 
shift in the burden of care towards primary care; a shift that is accompanied by improved patient health 
outcomes.  

Intervention 2 is being evaluated at several primary care clinical sites. Preliminary results demonstrate 
the RETeval screening device and care coordination reduces the number of eye care visits by 65% without 
decreasing VTDR sensitivity. This microsimulation model establishes a framework for testing interventions 
to alleviate barriers to screening and treatment of DR for patients in many environments. For example, 
sensitivity analysis on adherence assumptions would give insight into how robust interventions are when 
adherence and access to the primary care, primary eye care and a retinal specialty care changes from one 
region to the other. Furthermore, incorporating patient attributes such as age, race, gender, and ethnicity 
along with information related to patient behavior, barriers, and communication preferences may eliminate 
the need for separate clinical trials in population subgroups. Multiple interventions can be simulated on 
different segments of a population as the most effective intervention for two different population groups 
may be different. Finally, the effort associated with implementing interventions can be simulated by 
explicitly incorporating costs associated with provider visits, diagnosis and treatment of DR, intervention 
implementation, and other effort parameters within the simulation model.  

Our work highlights how improvement to the DR care process such as shifting DR screening to primary 
care and adding care coordination has the potential to reduce the most severe outcomes of DR.  

ACKNOWLEDGEMENTS 

The authors would like to thank the NIH STTR grant program for partial funding of this work 
(1R41EY029917-01) and Dr. Kyle Hovey for his significant contributions.  

REFERENCES 

ACCORD Study Group. 2007. “Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial: Design and Methods”. The 
American Journal of Cardiology 99(12):21–33. 

Al-Otaibi, H., M. D. Al-Otaibi, R. Khandekar, C. Souru, A. A. Al-Abdullah, H. Al-Dhibi, D. U. Stone and I. Kozak. 2017. “Validity, 
Usefulness and Cost of RETeval System for Diabetic Retinopathy Screening”. Translational Vision Science & 
Technology 6(3):1-8.  

Beckles, G. L. A., M. M. Engelgau, K. M. V. Narayan, W. H. Herman, R. E. Aubert, and D. F. Williamson. 1998. “Population-
Based Assessment of the Level of Care Among Adults with Diabetes in the U.S.”. Diabetes Care 21(9):1432–1438.  

Brailsford, S. C., W. J. Gutjahr, M. S. Rauner, and W. Zeppelzauer. 2007. “Combined Discrete-Event Simulation and Ant Colony 
Optimisation Approach for Selecting Optimal Screening Policies for Diabetic Retinopathy”. Computational Management 

953



Swan, Nambiar, Koutouan, Mayorga, Ivy, and Fransen 
 

 

Science 4(1):59-83. 
Brechner, R. J., C. C. Cowie, L. J. Howie, W. H. Herman, J. C. Will, and M. I. Harris. 1993. “Ophthalmic Examination Among 

Adults with Diagnosed Diabetes Mellitus”. Journal of the American Medical Association 270(14):1714–1718. 
CDC. 2018. “Watch Out for Diabetic Retinopathy”, Centers for Disease Control and Protection. 

https://www.cdc.gov/features/diabetic-retinopathy/index.html, accessed 1st May 2020. 
Chalk, D., M. Pitt, B. Vaidya, and K. Stein. 2012. “Can the Retinal Screening Interval Be Safely Increased to 2 Years for Type 2 

Diabetic Patients Without Retinopathy?”. Diabetes Care 35(8):1663–1668. 
Cowie, C.C., M. I. Harris, and M. S. Eberhardt. 1994. “Frequency and Determinants of Screening for Diabetes in the US”. Diabetes 

Care 17(10):1158–1163. 
Currie, C. S., and T. Monks. 2018. “Modeling Diseases: Prevention, Cure and Management”. In Proceedings of the 2018 Winter 

Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. J. Johansson, 440–454. 
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Davies, R., P. Roderick, C. Canning, and S. Brailsford. 2002. “The Evaluation of Screening Policies for Diabetic Retinopathy 
Using Simulation”. Diabetic Medicine 19(9):762–770.  

Davies, R., S. Brailsford, P. Roderick, C. Canning, and D. Crabbe. 2000. “Using Simulation Modelling for Evaluating Screening 
Services for Diabetic Retinopathy”. Journal of the Operational Research Society 51(4):476–484.  

Day, T. E., N. Ravi, H. Xian, and A. Brugh. 2013. “An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic 
Retinopathy”. PloS One 8(6):e66812. 

DCCT/EDIC Research Group. 2017. “Frequency of Evidence-Based Screening for Retinopathy in Type 1 Diabetes”. New England 
Journal of Medicine 376(16):1507–1516.  

Frazier, A. L., G. A. Colditz, C. A. Fuchs, and K. M. Kuntz. 2000. “Cost-effectiveness of Screening for Colorectal Cancer in the 
General Population”. Journal of the American Medical Association 284(15):1954–1961. 

Hayes, A. J., J. Leal, A. M. Gray, R. R. Holman, and P. M. Clarke. 2013. “UKPDS Outcomes Model 2: A New Version of a Model 
to Simulate Lifetime Health Outcomes of Patients with Type 2 Diabetes Mellitus Using Data from the 30 Year United 
Kingdom Prospective Diabetes Study: UKPDS 82”. Diabetologia 56(9):1925–1933.  

Keenum, Z., G. McGwin, C. D. Witherspoon, J. A. Haller, M. E. Clark, and C. Owsley. 2016. “Patients’ Adherence to 
Recommended Follow-Up Eye Care After Diabetic Retinopathy Screening in a Publicly Funded County Clinic and Factors 
Associated with Follow-Up Eye Care Use”. Journal of the American Medical Association Ophthalmology 134(11):1221–
1228.  

Kuo, S., B. B. Fleming, N. S. Gittings, L. F. Han, L. S. Geiss, M. M. Engelgau, and S. H. Roman. 2005. “Trends in Care Practices 
and Outcomes Among Medicare Beneficiaries with Diabetes”. American Journal of Preventive Medicine 29(5):396–403. 

Leasher, J. L., R. R. A. Bourne, S. R. Flaxman, J. B. Jonas, J. Keeffe, K. Naidoo, K. Pesudovs, H. Price, R. A. White, T. Y. Wong, 
S. Resnikoff, and H. R. Taylor. 2016. “Global Estimates on the Number of People Blind or Visually Impaired by Diabetic 
Retinopathy: A Meta-Analysis from 1990 to 2010”. Diabetes Care 39(9):1643–1649. 

Lee, R., T. Y. Wong, and C. Sabanayagam. 2015. “Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related 
Vision Loss”. Eye and Vision 2(1):1–25.  

Lee, S., J. Ko, X. Tan, I. Patel, R. Balkrishnan, and J. Chang. 2014. “Markov Chain Modelling Analysis of HIV/AIDS Progression: 
A Race-Based Forecast in the United States”. Indian Journal of Pharmaceutical Sciences 76(2):107-115. 

Lich, K. H., M. C. O'Leary, S. Nambiar, R. M. Townsley, M. E. Mayorga, K. Hicklin, L. Frerichs, P. R. Shafer, M. M. Davis, and 
S. B. Wheeler. 2019. “Estimating the Impact of Insurance Expansion on Colorectal Cancer and Related Costs in North 
Carolina: A Population-Level Simulation Analysis”. Preventive Medicine 129:105847.  

Maa, A. Y., W. J. Feuer, C. Q. Davis, E. K. Pillow, T. D. Brown, R. M. Caywood, J. E. Chasan, and S. R. Fransen. 2016. “A Novel 
Device for Accurate and Efficient Testing for Vision-Threatening Diabetic Retinopathy”. Journal of Diabetes and Its 
Complications 30(3):524–532. 

Murchison, A. P., L. Hark, L. T. Pizzi, Y. Dai, E. L. Mayro, P. P. Storey, B. E. Leiby, and J. A. Haller. 2017. “Non-Adherence to 
Eye Care in People with Diabetes”. BMJ Open Diabetes Research and Care 5(1):e000333.  

Naik, S., C. C. Wykoff, W. C. Ou, J. Stevenson, S. Gupta, and A. R. Shah. 2018. “Identification of Factors to Increase Efficacy of 
Telemedicine Screening for Diabetic Retinopathy in Endocrinology Practices Using the Intelligent Retinal Imaging System 
(IRIS) Platform”. Diabetes Research and Clinical Practice 140:265–270. 

Nambiar, S., M. E. Mayorga, M. C. O’Leary, K. H. Lich, and S. B. Wheeler. 2018. “A Simulation Model to Assess the Impact of 
Insurance Expansion On Colorectal Cancer Screening at the Population Level”. In Proceedings of the 2018 Winter Simulation 
Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. J. Johansson, 2701–2712. Piscataway, 
New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Pandit, R. R., T. D. Wibbelsman, S. P. Considine, T. L. Jenkins, D. Xu, H. J. Levin, A. Obeid, and A. C. Ho. 2020. “Distribution 
and Practice Patterns of Retina Providers in the United States”. Ophthalmology S0161-6420(20):30367-5. In Print, 
doi:10.1016/j.ophtha.2020.04.016.  

Piyasena, M. M. P. N., G. V. S. Murthy, J. L. Y. Yip, C. Gilbert, M. Zuurmond, T. Peto, I. Gordon, S. Hewage, and S. 
Kamalakannan. 2019. “Systematic Review on Barriers and Enablers for Access to Diabetic Retinopathy Screening Services 
in Different Income Settings”. PloS One 14(4):e0198979. 

954



Swan, Nambiar, Koutouan, Mayorga, Ivy, and Fransen 
 

 

Savoy, M. 2020. “IDx-DR for Diabetic Retinopathy Screening”. American Family Physician 101(5):307–308. 
Senthilvel, V., R. Radhakrishnan, R. Sathiyamoorthi, S. Sumathi, and V. Jayanthi. 2012. “A Study on Multi Stages of Diabetic 

Retinopathy Among Diabetic Patients in Puducherry-Using Markov Chain Model Approach”. Advances in Applied 
Mathematical Biosciences 3(1):49–55.  

Srikanth, P. 2015. “Using Markov Chains to Predict the Natural Progression of Diabetic Retinopathy”. International Journal of 
Ophthalmology 8(1):132-137. 

Standfield, B. L. 2017. “Economic Modelling Methods for the Estimation of Resource Use, Cost-Effectiveness and Allocative 
Efficiency of Health Care Provision in a Capacity Constrained Health Care System”. Ph.D. thesis, School of Medical Science, 
Griffith University, Queensland, Australia.  

Storey, B. Y. P., and J. A. Haller. 2016. Retina Today: The Significance of Physician Communication in the Care of Patients. 
http://retinatoday.com/2016/09/the-significance-of-physician-communication-in-the-care-of-patients-with-diabetes/, 
accessed 1st May 2020. 

Swan, B., C. Shevlin, A. Cho, and D. Phinney. 2018. “Simulation Tool to Evaluate Electronic Consultations in Rheumatology”. In 
Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and 
B. J. Johansson, 2589–2599. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Swan, B., O. Ozaltin, S. Hilburn, E. Gignac, and G. McCammon. 2019. “Evaluating an Emergency Department Care Redesign: A 
Simulation Approach”. In Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. G. Bae, S. 
Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y. J. Son, 1137–1147. Piscataway, New Jersey: Institute of Electrical and 
Electronics Engineers, Inc. 

Tan, K. H. X., L. Simonella, H. L. Wee, A. Roellin, Y. W. Lim, W. Y. Lim, K. S. Chia, M. Hartman, and A. R. Cook. 2013. 
“Quantifying the Natural History of Breast Cancer”. British Journal of Cancer 109(8):2035–2043.  

Yau, J. W., S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. 
Grauslund, and S. Haffner. 2012. “Global Prevalence and Major Risk Factors of Diabetic Retinopathy”. Diabetes 
Care 35(3):556–564.  

Zhang, X., J. B. Saaddine, C. F. Chou, M. F. Cotch, Y. J. Cheng, L. S. Geiss, E. W. Gregg, A. L. Albright, B. E. K. Klein, and R. 
Klein. 2010. “Prevalence of Diabetic Retinopathy in the United States, 2005-2008”. Journal of the American Medical 
Association 304(6):649–656.  

AUTHOR BIOGRAPHIES 

 
BREANNA SWAN is a PhD candidate in Industrial and Systems Engineering at North Carolina State University. She holds a MS 
in Mathematics from University of Wisconsin - Milwaukee. Her research interests are in using data to support evidence-based 
decisions by integrating simulations, predictive analytics, and optimization models. Her email is bpswan@ncsu.edu.  
 
SIDDHARTHA NAMBIAR holds a PhD in Industrial and Systems Engineering from North Carolina State University and an MS 
in Industrial Engineering from SUNY Buffalo. His research interests include stochastic modeling and simulation applied to health 
care. His email address is snambia@ncsu.edu.  
 
PRISCILLE KOUTOUAN is a PhD student in Industrial and Systems Engineering at North Carolina State University. She holds 
a BS in Petroleum Engineering from the University of Houston. Her research interests include the use of simulation modeling, 
statistical and stochastic modeling to support health policy decision making. Her email address is prkoutout@ncsu.edu.  
 
MARIA E. MAYORGA is a Professor of Personalized Medicine in Industrial and Systems Engineering at North Carolina State 
University. Her research interests include predictive models in health care, emergency response, and humanitarian logistics. She 
has authored over 65 publications and has been supported by NIH and NSF, among others. Her email is memayorg@ncsu.edu.  
 
JULIE S. IVY is a Professor and Fitts Faculty Fellow in Industrial and Systems Engineering at North Carolina State University. 
Her research interests include mathematical modeling of stochastic dynamic systems as applied to healthcare and public health. Her 
research has been supported by the CDC, NSF, and NIH, among others. Her email is jsivy@ncsu.edu.   
 
STEPHEN FRANSEN, MD, is a board-certified retina specialist with over 30 years’ experience caring for patients with diabetic 
retinopathy. He serves as a faculty member at the University of Oklahoma, Dean McGee Eye Institute, and as the Chief Medical 
Officer with Retinal Care Inc. His email is stephen.fransen@retinalcare.com.   

955


