
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

ROLLBACK SUPPORT IN HYFLOW MODULAR MODELS

Fernando Barros

Departamento de Engenharia Informática
Universidade de Coimbra
3030 Coimbra, Portugal

ABSTRACT

In this paper we develop an extension of the HYFLOW (Hybrid Flow System Specification) formalism, for
providing rollback support to hybrid modular models. HYFLOW extension preserves formalism modularity
enabling the co-simulation of hierarchical models. Rollback plays an important role in some numerical
methods. Examples include predictor corrector integrators (PCIs), and zero detectors (ZDs). These methods
require simulation time to move both forward and backward in order to compute better estimates for the
numerical solutions. We present formalism semantics and a description of PCI and ZD methods.

1 INTRODUCTION

Some numerical methods require rollback to compute accurate solutions. Examples include predictor-
corrector integrators (PCIs), and zero detectors/(root finding) (ZDs) algorithms. For example, a zero
detector (ZD), can use a fixed sampling period while a zero is not found. Upon detecting a zero within a
time interval, the sampling needs to be adjusted for accurately find the zero in that interval. This process
requires time to move forward and backward so the solution can be found. While finding a zero of a function
is a simple task, the problems arise when the ZD is part of a larger model. In this scenario, the algorithm
becomes more complex since it needs also to rollback the other models every time the ZD times goes
backward. This process becomes more involving when the other models need also to rollback, requiring
a sound semantics so ZDs, for example, can be part of a model network. These problems are commonly
tackled by modeling tools that handle complex models as non-modular units, requiring the internals of
each model to be known (Bouissou and Chapoutot 2012; Fritzson 2004). This approach leads to modeling
& simulation tools that can offer modularity at the user level, but internally, these tools perform model
transformations that do not enforce the corresponding modular simulation. This solution is effective while
models are kept in the same environment. However, they do not guarantee the interoperability of models
developed in different tools, since no modular semantics is commonly supported.

Modularity plays an essential role in model interoperability and co-simulation. The ability to combine
independent models that are known only by their interface has been subject of simulation standards including
the High Level Architecture (HLA) (Kuhl et al. 1999), and the Functional Mock-up Interface (FMI) for
Model Exchange and Co-Simulation (Blochwitz et al. 2012).

In order to represent additional numerical methods we exploit here rollback as a key operator to describe
models that require the ability to go backward in simulation time with the information gathered in the
future. In this paper we present an extension of the HYFLOW formalism (Barros 2003), for supporting
rollback while keeping model interoperability and co-simulation.

2 RELATED WORK

Rollback has been used for providing solutions to problems in different domains. Databases have employed
this concept to support transactions, where rollback is used for setting the model in a valid state if some

1039978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Barros

operations do not succeeded in a transaction that is intended to be performed atomically (Gray 1978). This
concept has also been used in parallel optimistic simulation enabling the model to be set into a valid state
when simulation messages arrive out of (time) order (Jefferson 1985). The introduction of rollback in
parallel programming was accomplished through the concept of transactional memory, enabling expressing
parallelism with the use of lock-free (optimist) operators that use rollback when the optimistic assumptions
are not fulfilled (Herlihy and Moss 1993).

Some attempts to describe rollback in modeling did not achieve a sound semantics for enabling the
co-simulation of hybrid systems (Lee and Zhen 2005). Rollback has also been used in the context timed
automata (Lynch and Vaandrager 1996). However, to the best of our knowledge, the support for rollback
in the context of hybrid hierarchical, modular models is currently missing.

The representation of hybrid systems has been subjected to extensive research. The DEV&DESS
(Praehofer 1991), for example, belongs to a common family of representations that abstracts continuous
signals as exact. Since these types of formalisms do not provide an explicit description of numerical
integrators they cannot be used to model systems where certain proprieties need to be guaranteed. This is
the case, for example, of energy conservation systems that require the use of geometric integrators (Hairer
et al. 2005), to achieve accurate simulation results in large time intervals. Given HYFLOW ability to
describe numerical methods it can be used to make the interoperability of different numerical integrators
(Barros 2018). Many simulation languages like Modelica (Fritzson 2004), do not support co-simulation.
They usually convert an apparently modular model into a large atomic model that is simulated in a non-
modular form. HYFLOW, on the contrary, enables independent modular models to be co-simulated.We
note that, given HYFLOW modular design, a user not requiring, for example, new types of integrators can
build new models just by assembling existing components. However, HYFLOW enables users to develop
new algorithms, like integrators or zero-cross detectors, in a modular form. This kind of flexibility is not
enabled by other approaches like DEVS&DESS and Modelica.

There are currently different definitions of hybrid simulation. In the operational research area, for
example, hybrid simulation is considered as a combination of at least two of the following paradigms:
discrete-event (DE), system dynamics (SDs), and agent-based simulation (ABS) (Brailsford et al. 2019).
HYFLOW follows a different perspective based on the semantics of hybrid flow trajectories. This semantics
enables the creation of basic modular models that can be used to describe more complex systems. For
example, the numerical integrator defined in Section 4 can be used as the basic block to describe SD models.
In a similar manner other paradigms, like fluid stochastic Petri-nets, can be described in HYFLOW (Barros
2015). The extension of HYFLOW with the rollback operator enables models to use non-causal numerical
methods to achieve more accurate simulations. This is the case, for example, of the detector described in
Section 5, that can signal a zero-cross event with an arbitrary accuracy.

In the next section we present the HYFLOW and its semantics, showing formalism ability to compose
and co-simulate modular hybrids models with rollback.

3 THE HYFLOW FORMALISM

The Hybrid Flow System Specification (HYFLOW) is a formalism aimed to represent hybrid systems with
a time-variant topology (Barros 2003). HYFLOW achieves the representation of continuous variables using
the concepts of multi-sampling and dense outputs (Barros 2002), while the representation of discrete events
is based on the Discrete Event System Specification (DEVS) (Zeigler 1984). HYFLOW has two types of
models: basic and network. Basic models provide state representation and transition functions. Network
models are a composition of basic models and other network models. Given its definition, a network
provides an abstraction for representing hierarchical systems.

1040

Barros

3.1 Basic Model

We consider B̂ as the set of names corresponding to basic HYFLOW models. A HYFLOW basic model
associated with name B ∈ B̂ is defined by:

MB = (X ,Y,P,P0,ρ,ω,δ ,Λc,λd)

where

X = Xc×Xd is the set of input flow values
Xc is the set of continuous input flow values
Xd is the set of discrete input flow values

Y = Yc×Yd is the set of output flow values
Yc is the set of continuous output flow values
Yd is the set of discrete output flow values

P is the set of partial states (p-states)
P0 ⊆ P is the set of (valid) initial p-states
ρ : P−→H is the time-to-input function
ω : P−→H is the time-to-output function
S = {(p,e)|p ∈ P,0≤ e≤ ν(p)} is the state set, with

ν(p) = min{ρ(p),ω(p)}, the time-to-transition function
δ : S×Xφ ×Pφ −→ P is the transition function, with

Xφ = Xc× (Xd ∪{φ}),
Pφ = P∪{φ},
and φ is the null value (absence of value)

Λc : S−→ Yc is the continuous output function
λd : P−→ Yd is the partial discrete output function

The HYFLOW time base is the set of hyperreals numbers H = {x+ zε| x ∈ R, z ∈ Z}, where ε is an
infinitesimal value, such that ε > 0 and ε < 1

n for n = 1,2,3, ... (Goldblatt 1998). The discrete output of a
component described by a HYFLOW basic model is constrained to be null (φ) when in states (s,e) with
e 6= ω(p).

Time functions include negative values to define rollback interval. When the model rollbacks, the
transition function receives the p-state at rollback time. This p-state enables the model to make a decision
based on information brought from the future.

Figure 1 depicts the typical trajectories of a HYFLOW component. At time t1 the component in p-state
p0 samples its input, since its elapsed time reaches ρ(p0) = e0. The component changes its p-state to
p1 = δ ((p0,ρ(p0)),(x1,φ),φ), where x1 is the sampled value and no discrete flow is present. At time
t2 the discrete flow xd is received by the component that changes to p-state p2 = δ ((p1,e1),(x2,xd),φ),
where x2 is the continuous flow at t2. At time t3 the component reaches the time-to-output time limit and it
changes to p-state p3 = δ ((p2,ω(p2)),(x3,φ),φ). At this time the discrete flow yd = λd(p2) is produced.
Additionally, component continuous output flow is always present and given by Λc(p,e). The component
can also define a rollback by specifying a negative value for time-to-input/output functions.

Considering that ρ(p3) < 0, the model rolls back to time t ′3 = t3− ρ(p3). Assuming t ′3 < t2, the
component changes to p-state δ ((p1, t ′3− t1),(x′3,φ), p3). This transition occurs backward at time t ′3 with
p-state p3 gathered at future time t3 > t ′3. A more detailed description of formalism semantics is provided
in the next sections through the concept of HYFLOW modular components.

1041

Barros

Figure 1: Basic HYFLOW component trajectories.

3.2 Basic Component

To describe HYFLOW semantics we extend here the concept of component defined in Barros (2008)
with the rollback mechanism. Components have their behavior governed by HYFLOW models but they
introduce the rules on how models are interpreted. We consider that a basic component associated with
name B ∈ B̂ and model MB = (X ,Y,P,P0,ρ,ω,δ ,Λc,λ), has two state variables: s ∈ S, and ϕ ∈ Pφ ; where
S is the component transition history set, and ϕ ∈ Pφ is the component future p-state. Given HYFLOW
non-instantaneous assumption (Barros 2008), an event (t + ε, p) ∈ E describes the effect of a transition
triggered at time t that has changed component current p-state to p. Component transition history keeps
record of past transitions, enabling rollback, with the information ϕ ∈ Pφ gathered at time in the future.
Component transition history set is defined by:

S = P(E)

where

E = {(t, p)| t ∈H∧ p ∈ P} is the set of events

P(E) is the power set of E

To simplify the description of component semantics, we introduce the concept of action, defined here
as an extend function that can read/modify component state variables. A basic component associated with
name B ∈ B̂ and model MB = (X ,Y,P,P0,ρ,ω,δ ,Λc,λ) is defined by:

ΞB = (N,Λ,∆,R)

1042

Barros

where

N ::−→H, is the component next time transition action, defined by:

N(),

(tk, pk)←max
t
{(t, p) ∈ s}

return tk +ν(pk)

Λ :: H−→ Y φ , is the component output action, defined by:

Λ(t),

(tk, pk)←max
t
{(t, p) ∈ s}

if (t− tk = ω(pk))

return (Λc(pk, t− tk),λ (pk))

else

return (Λc(pk, t− tk),φ)

with Y φ = Yc× (Yd ∪{φ})
∆ :: H×Xφ , is the component transition action, defined by:

∆(t,(xc, xd)),

if (t 6= N()∧ xd = φ ∧ϕ = φ) return

(tk, pk)←max
t
{(t, p) ∈ s}

ϕ ← δ ((pk, t− tk),(xc, xd),ϕ)

if (ν(ϕ)≥ 0){
s← s ∪ {(t + ε,ϕ)}
ϕ ← φ

}
Given a transition at time t the component p-state, by the non-instantaneous propagation, changes only

at t + ε .

R :: H, is the component rollback action, defined by:

R(t),

s←{(tk, pk) ∈ s∧ tk < t}
if (s = {}) error

Given two numbers x,y ∈H , with x = a+mε and y = b+nε , the relational operator < is defined by:

x < y if (a < b)∨ (a = b∧m < n)

Simulation is performed by components that have their behavior governed by the associated model.
Component simulation algorithm is described in Section 3.6, that employs component actions to run
simulations. Component self-scheduling transition time is given by action N. Component output is given
by action Λ. The ∆ action describes component state after a transition occurs. This action receives as
parameter the state gather in a future time, when the rollback was requested by the component. Component
action R is responsible to update component state when time is rolled back.

1043

Barros

3.3 Network Model

HYFLOW networks are compositions of HYFLOW models (basic or other HYFLOW network models).
Additionally, each network has a special component, named as the executive, that is responsible for defining
network topology (composition and coupling). Let N̂ be the set of names corresponding to HYFLOW
network models, with N̂∩ B̂ = {}. A HYFLOW network model associated with name N is defined by:

MN = (X ,Y,η)

where

N is the network name
X = Xc×Xd is the set of network input flows

Xc is the set of network continuous input flows
Xd is the set of network discrete input flows

Y = Yc×Yd is the set of network output flows
Yc is the set of network continuous output flows
Yd is the set of network discrete output flows

η is the name of the dynamic topology network executive

The executive is a HYFLOW basic model extended with topology related operators. The executive model
is defined by:

Mη = (Xη ,Yη ,P,P0,ρ,ω,δ ,Λc,λd , Σ̂,γ)

where

Σ̂ is the set of network topologies

γ : P−→ Σ̂ is the topology function

The network topology Σα ∈ Σ̂, corresponding to the p-state pα ∈ P, is given by:

Σα = γ(pα) = (Cα ,{Ii,α}∪{Iη ,α , IN,α},{Fi,α}∪{Fη ,α ,FN,α})
where

Cα is the set of names associated with the executive state pα

for all i ∈Cα ∪{η}
Ii,α is the sequence of influencers of i

Fi,α is the input function of i

IN,α is the sequence of network influencers

FN,α is the network output function

For all i ∈Cα

Mi = (X ,Y,P,P0,ρ,ω,δ ,Λc,λd)i if i ∈ B̂

Mi = (X ,Y,η)i if i ∈ N̂

The topology of a network is defined by its executive through the topology function γ , which maps the
executive p-state into network composition and coupling. Thus, topology adaption can be achieved by
changing the executive p-state. HYFLOW network models are simulated by HYFLOW network components
that perform the orchestration of basic or other networks. Network co-simulation is achieved by a general
communication protocol that relies only on the component interface. This protocol is independent from
model details, enabling the composition of components that are interpreted as black boxes.

1044

Barros

3.4 Executive Component

Before describing the network component we define the executive component, an extension to the basic
component, that introduces the topology function required to establish network topology. A HYFLOW exe-
cutive component Ξη with η ∈ η̂ , associated with the executive model Mη = (X ,Y,P,P0,ρ,ω,δ ,Λc,λ , Σ̂,γ)
is defined by:

Ξη = (N,Λ,∆,R,Γ)

where

Γ ::−→ Σ̂, is the executive component topology action defined by:
Γ(),

(tk, pk)←max
t
{(t, p) ∈ s}

return γ(pk)

Executive component action Γ defines the current network topology and is used in the next section to define
network semantics and in particular network dynamic topology.

3.5 Network Component

A network is composed by the executive component and a set of other components. These components
and their interconnections can change according to the current state of the executive. Components can
be basic or other HYFLOW networks, making possible to define networks hierarchically. A HYFLOW
network component ΞN with N ∈ N̂, associated with the network model MN = (X ,Y,η), executive Mη =

(Xη ,Yη ,P,P0,ρ,ω,δ ,Λc,λ , Σ̂,γ), and current topology Γη() = (C,{Ii}∪
{

Iη , IN
}
,Fi∪

{
Fη ,FN

}
), is defined

by:
ΞN = (N,Λ,∆,R)

where
N ::−→H, is the time of next transition, defined by:

N(), return min
k∈C∪{η}

{Nk()}

Λ :: H−→ Y φ , is the network component output, defined by:

Λ(t), return FN(×
k∈ IN

Λk(t))

∆ :: H×Xφ , is the network component transition, defined by:

∆(t,x),

y[N]← x

∀k∈C y[k]← Λk(t)

∀k∈C ∆k(t,Fk(×
j∈ Ik

y[j]))

∆η(t,Fη(×
j∈ Iη

y[j]))

R :: H, is the component rollback action, defined by:

R(t),

∀k∈C Rk(t)

Rη(t)

1045

Barros

In the rollback action, determinism is guaranteed by making the executive the last component that undergoes
rollback.

3.6 Component Simulation

Component simulation is performed by the action:

S :: M×H

where M= {m |Mm = ({}×Xd ,Y, . . .), m∈ B̂∪ N̂}, is the set of names associated with HFSS models (basic
or network) defining a null continuous input flow interface. The simulation action is defined by:

S(m,Ω),

C← Nm()

while (C< Ω){
∆m(C,(φ ,φ))

c← Nm()

while (c< C){
Rm(c)

C← c

∆m(C,(φ ,φ))

}
C← c

}

Simulation, in addition to supporting the regular forward time behavior, also needs to enable consecutive
rollbacks to occur, as enabled by action inner loop. In the next section we present a predictor-corrector
integrator, that provides an application example for HYFLOW rollback semantics.

4 PREDICTOR-CORRECTOR INTEGRATOR

Many numerical methods, like integrators, require rollback, since they use look-ahead into the future in
order to make a better estimator of that future. A simple example is the predictor corrector integrator (PCI).
A simple algorithm uses the Euler method to make the first prediction, and then it can use the trapezoidal
rule to increase the accuracy. The PCI can be described by the following equations:

yp
k+1 = yk +h f (xk,yk)

yc
k+1 = yk +

1
2 h[f (xk,yk)+ f (xp

k+1,y
p
k+1)]

When used in isolation PCIs can be implemented in a straightforward manner. However, the main problem
is model interoperability when, for example, we need to combine the integrator with a zero detection
algorithm. In this case the integrator output can no longer be described by a discrete set of values, but a
dense output representation is required. Moreover, since the integrator rollback, any component attached
to it needs also to rollback so all components can be synchronized. The HYFLOW model of the PCI with
a constant step-size h > 0 can be defined by:

MPCI = (X ,Y,P,P0,ρ,ω,δ ,Λc,λd)

1046

Barros

where

X = R×{}
Y = R×{}
P = {(ϕ, f , fk,yk)|ϕ ∈ {I,A,B,C}; f ∈ R2 −→ R; fk,yk ∈ R}
P0 = {(ϕ, f , fk,yk)|ϕ = I}

ρ(ϕ, f , fk,yk) =


0 if ϕ = I
−h if ϕ = B
h otherwise

ω(ϕ, f , fk,yk) = ∞

δ ((I, f , fk,yk),e,(xc,xd),φ) = (A, f , f (xc,yk),yk)

δ ((A, f , fk,yk),e,(xc,xd),φ) = (B, f , fk,yk + std(e) fk)

δ ((B, f , fk,yk),e,(xc,xd),φ) = (C, f , 1
2(f (xc,yk+1)+ fk),yk+1), with yk+1 = yk + std(e) fk

δ ((B, f , fk,yk),e,(xc,xd),(ϕ, f , fk,yk)
′) = (ϕ ′, f , f ′k,yk))

δ ((C, f , fk,yk),e,(xc,xd),φ) = (A, f , f (xc,yk),yk + std(e) fk)

Λc((ϕ, f , fk,yk),e) = yk + std(e) fk

λd(ϕ, f , fk,yk) = φ

The PCI phase diagram is depicted in Figure 2. In the initial phase I component samples its input in
order to compute the derivative. The component then cycles between phases A,B, and C. In phase A the
PCI is in predictor mode. It makes a forward step h, enters phase B and gathers the new derivative. In
phase B it moves backward to phase C. With current and predicted derivatives the component moves to
phase A with an improved estimator for the solution.

Figure 2: Predictor-corrector integrator phase transitions.

In the next section we describe a zero-detector model that also uses rollback to accurately find the zero
values of a continuous flow.

5 ZERO DETECTOR

Zero detectors (ZDs) play a fundamental role in hybrid systems, where they are responsible to monitor
continuous variables and detect events that can create discontinues. Although finding a root of a function
can be performed by very efficient methods (Stoer and Bulirsh 2002), these methods rely on rollback
and they cannot be easily applied in a modular simulation (co-simulation) context. We introduce next a
HYFLOW modular description of the false position method (FPM) for zero-detection. FPM is described in
Figure 3 that describes method behavior when a zero is detected in the interval [a,b] since f (a) f (b)< 0.
FMP performs a linear interpolation to find an approximation z, and a new search interval [a,z] is used in
the next iteration. The method is repeated until the desired accuracy is achieved. Although the method

1047

Barros

is quite simple it requires rollback, and a modular representation for this mechanism, as supported by
HYFLOW. A zero-detector HYFLOW model can be defined by:

MZD = (X ,Y,P,P0,ρ,ω,δ ,Λc,λd)

where

X = R×{}
Y = {}×R
P = {(ϕ,α,β ,a, fa)|ϕ ∈ {I,K,F,Z}; α,β ∈H; a, fa ∈ R}
P0 = {(ϕ,α,β ,a, fa)|ϕ = I,α = 0,β = ∞, a = 0}
ρ(ϕ,α,β ,a, fa) = α

ω(ϕ,α,β ,a, fa) = β

δ ((Z,α,β ,a, fa),e,(xc,xd), p) = (K,h,∞,a+ e,0)
δ ((ϕ,α,β ,a, fa),e,(xc,xd), p) = (Z,∞,0,a+ e,0) if ϕ 6= Z∧|xc|< tol
δ ((ϕ,α,β ,a, fa),e,(xc,xd), p) = (F,−xce/(xc− fa),β ,a+ e,xc) if faxc < 0
δ ((ϕ,α,β ,a, fa),e,(xc,xd),(ϕ,α,β ,a, fa)

′) = (F,−xc(a′−a− e)/(f ′a− fa),β ,a+ e,xc) if faxc ≥ 0
δ ((I,α,β ,a, fa),e,(xc,xd),φ) = (K,h,∞,a+ e,xc)

δ ((K,α,β ,a, fa),e,(xc,xd),φ) = (K,h,∞,a+ e,xc) if faxc ≥ 0
Λc(p,e) = φ

λd(p) = 0

Figure 3: False position method for zero detection.

For simplifying description, the ZD samples its input at a fixed interval h. Upon detection of a zero
interval, the FPM is applied to find the zero with an accuracy tol. When the zero is found a discrete output
is sent to inform other models of the event. A more robust detection algorithm can use adaptive sampling
for ensuring that the function has only one zero within a sampling interval. More efficient algorithms, like
Newton-Raphson and fixed point methods (Stoer and Bulirsh 2002), can also be described, since they have
similar rollback requirements. In the next section we present simulation results for PCI and ZD models.

6 SIMULATION RESULTS

We consider results for the predictor-corrector integrator of Section 4. HYFLOW network model is described
in Figure 4, where G is a function generator with output f (x) = e−x cos2(x)x−0.1, I is the PCI, and the
input function FI is the identity. Simulation results are shown in Figure 5, for a step-size of 0.1s. Results are
produced with the HYFLOW modeling environment implemented in the TypeScript language (Vanderkam
2019). The ability to combine rollback-based components is demonstrated by the HYFLOW network of

1048

Barros

Figure 6, where Z is a zero-detector described in Section 5, and input functions FI and FZ are the identity
function. The ZD has a sampling interval of 0.02s, while PCI step-size was 0.1s, as before. Zero was
detected at times: 0s, 0.23969s, 1.99249s, 2.61746s and 4.13494s, as shown in Figure 5, by looking the
zeros of the integral function I[f (x)].

Figure 4: Function generator and PCI network.

Figure 5: Fixed step-size predictor-corrector integrator.

Given that both components can rollback, the ZD can detect zeros in the predictor and corrector phases
of the PCI, a simple optimization strategy would be to stop the ZD during the predictor phase of the
integrator.

Figure 6: Function generator, PCI, and ZD network.

An interesting case not supported by the current TypeScript implementation is the ability to rollback
network dynamic topologies. An efficient storage of the executive component is required to handle these
types of models.

CONCLUSION
An extension to the HYFLOW formalism able to represent rollback was presented. Formalism semantics
was described using the concept of modular component. The extended HYFLOW keeps the modularity of
the original formalism, enabling the composition and co-simulation of modular hybrid models supporting

1049

Barros

rollback. We have shown that the HYFLOW rollback operator can be used to represent predictor-corrector
integrators, and zero detectors based on the false position method. Programming techniques, like reverse
computation (Biswas and Mall 1999; Carothers et al. 1999), will be considered to improve the efficiency
of rollback. This is particularly relevant for enabling dynamic topology models, a feature not currently
supported by the HYFLOW implementation developed in the TypeScript language.

References
Barros, F. 2002. “Towards a Theory of Continuous Flow Models”. International Journal of General Systems 31(1):29–39.
Barros, F. 2003. “Dynamic Structure Multiparadigm Modeling and Simulation”. ACM Transactions on Modeling and Computer

Simulation 13(3):259–275.
Barros, F. 2008. “Semantics of Dynamic Structure Event-based Systems”. In Proceedings of the 2th International Conference

on Distributed Event-based Systems. July 1st-4th, Rome, Italy, 245-252.
Barros, F. 2015. “A Modular Representation of Fluid Stochastic Petri Nets”. In Proceedings of the Symposium on Theory of

Modeling and Simulation. April 12th-15th, Alexandria, Virginia.
Barros, F. 2018. “Composition of Numerical Integrators in the HyFlow Formalism”. In Proceedings of the Winter Simulation

Conference, edited by M. Rabe, A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson. December 9th-12th,
Gothenburg, Sweden.

Biswas, B., and R. Mall. 1999. “Reverse Execution of Programs”. ACM SIGPLAN Notices 34(4):61–69.
Blochwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauß, H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel,

H. Olsson, and A. Viel. 2012. “The Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of
Simulation Models”. In Proceedings of the 9th Modelica Conference. September 3rd-5th, Munich, Germany.

Bouissou, O., and A. Chapoutot. 2012. “An Operational Semantics for Simulink’s Simulation Engine”. ACM SIGPLAN
Notices 47(5):129–138.

Brailsford, S., T. Eldabi, M. Kunc, N. Mustafee, and A. Osorio. 2019. “Hybrid Simulation Modelling in Operational Research:
A State-of-the-art Review”. European Journal of Operational Research 278(3):721–737.

Carothers, C., K. Perumalla, and R. Fujimoto. 1999. “Efficient Optimistic Parallel Simulations using Reverse Computation”.
ACM Transactions on Modeling and Computer Simulation 9(3):224–253.

Fritzson, P. 2004. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc. Press.

Goldblatt, R. 1998. Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. New York: Springer.
Gray, J. 1978. “Notes on Database Operating Systems”. In Operating Systems. Lecture Notes in Computer Science, edited by

R. Bayer, G. Graham, and G. Seegmüller, Volume 60, 393–481. Berlin: Springer.
Hairer, E., C. Lubich, and G. Wanner. 2005. Geometrical Numerical Integration: Structure-Preserving Algorithms for Ordinary

Differential Equations. 2nd ed. Number 31 in Springer Series in Computational Mathematics. Berlin: Springer-Verlag.
Herlihy, M., and J. Moss. 1993. “Transactional Memory: Architectural Support for Lock-Free Data Structures”. In Proceedings

of the 20th International Symposium on Computer Architecture. San Diego, California, 289-300.
Jefferson, D. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):404–425.
Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating Computer Simulation Systems: An Introduction to the High Level

Architecture. Upper Saddle River, New Jersey: Prentice Hall.
Lee, E., and H. Zhen. 2005. “Operational Semantics of Hybrid Systems”. In Proceedings of the 8th International Workshop

on Hybrid Systems: Computation and Control. March 9th-11th, Zurich, Switzerland, 25-53.
Lynch, N., and F. Vaandrager. 1996. “Forward and Backward Simulations: II. Timing-Based Systems”. Information and

computation 128(1):1–25.
Praehofer, H. 1991. System Theoretic Foundations for Combined Discrete-Continuous System Simulation. Ph. D. thesis, University

of Linz.
Stoer, J., and R. Bulirsh. 2002. Introduction to Numerical Analysis. 3rd ed. Berlin: Springer.
Vanderkam, D. 2019. Effective TypeScript. Sebastopol, California: O’Reilly.
Zeigler, B. 1984. Multifaceted Modelling and Discrete Event Simulation. San Diego: Academic Press.

AUTHOR BIOGRAPHY
FERNANDO BARROS is a professor at the University of Coimbra, Portugal. His research interests include theory of modeling
& simulation and hybrid dynamic topology systems. He published more than 70 papers in journals, book chapters and conference
proceedings, and he has organized several conferences and workshops in the area of simulation. Fernando Barros is a member
of the editorial board of the Int. J. Simulation and Process Modelling and vice-president of the The Society for Modeling &
Simulation International (SCS). His e-mail address is barros@dei.uc.pt.

1050

barros@dei.uc.pt

	INTRODUCTION
	RELATED WORK
	THE HyFlow FORMALISM
	Basic Model
	Basic Component
	Network Model
	Executive Component
	Network Component
	Component Simulation

	PREDICTOR-CORRECTOR INTEGRATOR
	ZERO DETECTOR
	SIMULATION RESULTS

