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ABSTRACT

Problems in operations research are typically combinatorial and high-dimensional. To a degree, linear programs may
efficiently solve such large decision problems. For stochastic multi-period problems, decomposition into a sequence
of one-stage decisions with approximated downstream effects is often necessary, e.g., by deploying reinforcement
learning to obtain value function approximations (VFAs). When embedding such VFAs into one-stage linear
programs, VFA design is restricted by linearity. This paper presents an integrated simulation approach for
such complex optimization problems, developing a deep reinforcement learning algorithm that combines linear
programming and neural network VFAs. Our proposed method embeds neural network VFAs into one-stage linear
decision problems, combining the nonlinear expressive power of neural networks with the efficiency of solving linear
programs. As a proof of concept, we perform numerical experiments on a transportation problem. The neural network
VFAs consistently outperform polynomial VFAs as well as other benchmarks, with limited design and tuning effort.

1 INTRODUCTION

Problems in operations research (OR) are generally concerned with allocating resources in a way that maximizes
some reward function. Applications of OR are found in domains such as transportation, energy, and manufacturing.
Resources are typically allocated over time (i.e., multi-period planning), with future problem states being subject to
uncertainty. Markov Decision Process (MPD) models are useful to describe such problems. However, as problem
states and actions are typically represented by fairly large vectors – in the magnitude of hundreds or thousands
of variables – these MDPs cannot be solved exactly and must be solved using simulation instead. Reinforcement
Learning (RL) finds approximate solutions to such dynamic planning problems. One solution class within RL
focuses on value function approximations (VFAs) to estimate downstream values corresponding to each state-action
pair, as such creating a decision policy. This typically requires designing a set of features (i.e., explanatory variables),
organizing them as a polynomial function (i.e., a linear approximation) that represents the value of a given state-action
pair, and performing linear regression after sampling value observations to learn weights associated to the features.

Although polynomial VFAs often yield satisfactory results, designing appropriate features is challenging.
Particularly higher-level interactions are difficult to grasp for human designers. For instance, many allocation
problems have both spatial and temporal components, yet the relationships between these components are often
difficult to formalize. As the VFA is a linear combination of features, all these relations must be explicitly
defined in separate features. In recent years, the application of neural networks to design VFAs has become
increasingly popular. Neural networks are able to learn complex nonlinear functions. Because neural networks are
not restricted by linearity, they may identify nonlinear structures between lower-level features, without explicitly
defining these structures as separate features.

The problem of defining appropriate polynomial VFAs is often amplified when action spaces are too large
for enumeration. In OR, linear programming is a popular approach to deal with large action spaces. Many
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OR problems may be formulated as mathematical programs – preferably linear programs (LPs) – that solve
to optimality within reasonable time. Although linear programming allows to deal with vastly larger action
spaces than enumeration, polynomial VFAs are difficult to embed, as the variables representing the features in
the objective function must also be linear. Although nonlinear features might be designed – only the combination
of features needs to be linear – all features must be expressed as linear systems, often requiring complicated
constructions of artificial variables. Complex polynomial VFAs are therefore difficult to embed in LPs. Neural
network VFAs may circumvent this problem, by automatically identifying relations between simple linear features.

We design a hybrid approach to address RL problems, integrating neural networks in a decision-making
LPs to obtain VFAs. The planning problem tested is a dynamic transportation problem. To preserve focus on
the methodological aspect of the paper, we will not discuss design choices in detail. The problem serves as
a test case that is sufficiently rich and challenging to adequately test the solution method. This paper contributes
to the state of the art in the following ways. First, we design a hybrid approach for integrating neural network
VFAs and LPs to tackle RL problems with large action spaces in the OR domain. Second, we provide insights
into the performance of various neural network structures based on simulation experiments in a transportation
context, focusing on solution quality and computational effort.

2 LITERATURE REVIEW

This paper integrates linear programming and neural networks in the context of value function approximation,
aimed at solving multi-period optimization problems with large discrete action spaces. We reflect on related
works in these areas.

Typical RL algorithms require at least several thousands of simulated observations to learn a policy, so it is
essential that decision problems are solvable in limited time (at most a few seconds). There are several approaches
to deal with large action spaces, see, e.g., Powell and Ma (2011), Busoniu et al. (2017). We present a coarse
categorization here. The first one – which is utilized in this paper – is mathematical programming. Expressing the
decision problem as a mathematical program retains optimality. Although it vastly improves scalability compared
to enumeration, it may require action space reduction (e.g., by deploying meta-heuristics) when scaling to very large
action spaces. Second, factorization methods (Pazis and Parr 2011; Dulac-Arnold et al. 2012) divide the action space
into linear subproblems, exponentially reducing the computational effort. However, the size of the state space is a
limiting influence in this approach, requiring a value to be stored for each unique state. Third, a subset of (promising)
actions may be sampled (Dulac-Arnold et al. 2015), rather than evaluating the full action space. Sampling methods
are scalable to very large action spaces, but might result in selecting suboptimal actions. Furthermore, effective action
sampling requires a fixed action space, whereas in OR settings we often work with state-dependent action spaces.

We proceed to discuss the application of neural networks in RL, which are considered as potentially powerful
tools in learning algorithms. In OR contexts, neural network VFAs have mainly been applied on classical engineering
problems that typically have low-dimensional action spaces (Powell and Ma 2011). Bertsekas and Tsitsiklis (1995)
discuss the use of feature vectors as input to neural networks as an alternative to polynomial VFAs. Alternatively, as a
preliminary step, neural networks may automatically derive the feature vector from the state description (Keller et al.
2006). Bertsekas (2012) addresses neural networks in RL from a helicopter perspective. The author broadly defines
neural networks as essentially nonlinear VFAs, using either the full state description or a smaller feature vector as
input. Again, neural networks may also be used as a pre-processing step to extract feature vectors from the state. In
the RL community, the integration of neural networks is known as deep reinforcement learning (LeCun et al. 2015;
Schmidhuber 2015). The basic application is Deep Q-learning (DQN), where the full state description is input for the
neural network, aiming to replicate a lookup table that returns accurate values corresponding to each state (Lillicrap
et al. 2015). As with regular Q-learning, this approach requires the state space to be relatively small. Say et al. (2017)
use neural networks to capture transition functions rather than VFAs, also applying linear programming in this context.
Schmidhuber (2015) provides a survey of deep learning studies, including the use of neural networks in reinforcement
learning. The neural networks are generally used to learn values associated to state-action pairs, i.e., as nonlinear VFAs.

Finally, we discuss linear programming in RL. Two approaches may be distinguished, namely (i) solving
the full RL model directly by linear programming (also known as approximate linear programming) and (ii)
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using linear programming to formulate and solve the decision problem encountered in value iteration (the use in
this paper). The latter implies solving a linear program for each state that is encountered. De Farias and Van Roy
(2003) study the approximate linear programming approach for RL. They use linearly defined VFAs to deal
with large state spaces and constraint sampling to deal with large action spaces action. Powell (2016) discusses
the use of linear programming in the context of value iteration, solving a linear program at each decision epoch.
Decision problems with tens of thousands dimensions can generally be handled with modern commercial solvers.
However, when instances become too vast, also linear programming will result in unsatisfactory computational
times, requiring to reduce the action space. For very large or complicated combinatorial problems we often resort
to meta-heuristics (Powell 2009), which typically embed forms of mathematical programming as well.

3 SOLUTION METHOD

We briefly introduce the notation for Markov decision problems (MDPs) as used in this paper. MDP models are
useful to mathematically model decision problems with stochastic and dynamic properties. In OR, many decision
problems are combinatorial optimization problems. An MDP is a stochastic control process for which the objective
is to maximize rewards (or minimize costs) over a discrete time horizon T , with decision epochs t∈T separated
by equidistant time intervals. A discounted MDP can be described by the tuple (S ,X (S),P(S′ |S,x),R(S,x),ρ),
with S being the set of problem states, X (S) being the set of feasible actions when in state S∈S , P(S′ |S,x)
being the transition probability of moving from state S to S′∈S ′⊆S after taking action x∈X (S), R(S,x)
being the direct reward when taking action x in state S, and ρ∈ [0,1) being the discount rate applied to future
rewards. The Bellman equation (Bellman 1952) yields the maximum value corresponding to each state:

V(S)= max
x∈X (S)

(
R(S,x)+ρ∑

S′∈S ′
P
(
S′ |S,x

)
V(S′)

)
.

Solving the Bellman equation for all states yields the optimal policy, yet for many realistic problems exact
solutions are computationally intractable. The next section addresses this issue.

3.1 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning that aims to learn policies for MDPs that are too
large to solve exactly within reasonable time. This section provides a short and high-level overview. We refer to
Powell and Ma (2011) for an extensive discussion on the topic. At its core, RL uses Monte Carlo simulation to
sample rewards and estimate the downstream values of state-action pairs, enabling to learn good policies without
exhaustively exploring the MDP. From a computational perspective, problems may arise in three areas of MDPs,
namely the sizes of the state space (number of states), action space (number of actions per state) and outcome
space (number of possible outcomes per action). Multiple solution approaches exist for each of these areas; we
restrict ourselves to the ones related to the VFA method used in this paper.

We start with the outcome space S ′⊆S . To identify the best action in any state, the Bellman equation requires
computing V(S′) for each S′∈S ′, where S ′ might be unique for each state-action pair. RL circumvents this task
by instead attaching a single value to a state-action pair, replacing the stochastic expression ∑

S′∈S ′
P
(
S′ |S,x

)
V(S′)

with a deterministic value function V(S,x). For each state-action pair, we now only evaluate one downstream value
rather than |S ′| outcomes. This downstream value is estimated by repeated Monte Carlo sampling, randomly
drawing outcome states S′ and observing their corresponding values.

Next, we discuss the state space S . In many optimization problems the state is a high-dimensional vector with
numerous possible realizations. Computing the value for each individual state may therefore be intractable. Therefore,
we replace the true value function with a value function approximation (VFA) V̄(S,x). The VFA is a function that
returns an expected value given a set of features (explanatory variables) that capture the essential information in
state-action pairs needed to estimate their downstream value. The VFA design step is further discussed in Section 3.2.

Finally, we address the action space X . In combinatorial problems, this space quickly grows beyond the
limits of enumeration. As we need thousands of observations to learn a good policy, each decision problem
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should typically be solvable within a few seconds. To avoid enumerating the full action space, the decision
problem may be expressed as a mathematical program. In particular LPs are well-studied; modern solvers often
handle such problems highly efficiently. Mathematical programs can be solved to optimality, while significantly
upscaling the action space sizes that can be handled.

We now present the outline of the RL algorithm, based on Powell (2016). We perform N iterations to learn
the VFA; each iteration represents a discrete time step. At every iteration n, the action maximizes expected value
given the prevailing VFA V̄n−1(·), resulting in the following observed value (obtained by solving the LP):

v̂n= max
xn∈X (Sn)

(
R(Sn,xn)+ρV̄n−1(Sn,xn)

)
.

The difference between expected value for the preceding state-action pair at n−1, described by V̄n−1(Sn−1,xn−1),
and the observation at n (i.e., v̂n) is utilized to update the VFA, using an updating function V̄n(·) ←[
U
(
V̄n−1(·),Sn−1,xn−1,v̂n

)
. Algorithm 1 shows the outline of the RL algorithm to learn the VFA.

Algorithm 1 Basic RL simulation algorithm to learn the VFA.

1: initialize V̄0(·)
2: n←[1
3: S1

P←−[S
4: while n≤N do

5: xn←[ argmax
xn∈X (Sn)

(
R(Sn,xn)+ρV̄n−1(Sn,xn)

)
6: v̂n←[

(
R(Sn,xn)+ρV̄n−1(Sn,xn)

)
7: V̄n(·)←[U

(
V̄n−1(·),Sn−1,xn−1,v̂n

)
8: S ′←[(Sn,xn)

9: Sn+1
P←−[S ′

10: n←[n+1
11: end while
12: return V̄N(·)

3.2 Polynomial VFA (PL-VFA)

This section addresses the VFA in more detail. As mentioned earlier, the algorithm operates on features that
are extracted from state-action pairs. Let F be the set of indicators describing the features, with each indicator
f ∈F referring to some representative feature of a state-action pair. We define a mapping φ that extracts features
for any given state-action pair, i.e., φ :(S,x) 7→R|F |, the corresponding vector of features is [φ f ]∀ f∈F . Formally,
the VFA is described by (V̄ ◦φ) :S×X 7→R; we may compute a value for each state-action pair.

VFAs are commonly arranged in polynomial form (PL-VFA), also known as linear function approximation.
Let w f ∈ R be a weight associated to feature φ f ∈ R. Then, the polynomial VFA may be described by
V̄(S,x)=∑ f∈F w f φ f (S,x). PL-VFAs are popular for several reasons. Polynomials are able to approximate most
functions, an appropriate polynomial in theory may approach the true value function arbitrarily close. Furthermore,
although the features might be nonlinear, the expression itself is linear. It can therefore be incorporated into
linear programming formulations. Techniques such as temporal-difference learning are applicable to update the
feature weights (Sutton and Barto 2018).

Although polynomials might theoretically approximate the true value function, randomly defining a polynomial
will likely not lead to good performance (Powell 2016). A properly designed PL-VFA is aligned with the structure
of the value function. This manual design of VFAs is a key challenge for successful implementations, requiring
careful modeling and testing of individual value functions. This is where the linear formulation becomes restrictive,
as features representing higher-order effects must be explicitly modeled. Additional problems arise when we
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resort to linear programming to handle large action spaces. It then becomes challenging to express non-linear
features in linear form. Such conversions often require complicated structures involving many artificial variables.

To overcome the limitations of polynomial VFAs, the VFA may be expressed by neural networks. The
nonlinear architecture of such networks allows to unravel complex structures, even when inputs are linear operands
of state-action pairs. We further discuss neural network VFAs in the next section.

3.3 Neural Network VFA (NN-VFA)

This section addresses VFA design using neural networks; for a general introduction to neural networks we
refer to Gurney (2018). In neural network VFAs (NN-VFAs), the feature vector [φ f ]∀ f∈F is transformed by
a weighted set of nonlinear activation functions (neurons), resulting into a single output value V̄(S,x). Compared
to the PL-VFA, the main advantage is that the NN-VFA may learn higher-order effects that are not explicitly
defined in the feature vector. We emphasize that the input quality remains crucial for the NN-VFA performance,
yet feature design is comparatively easier than for PL-VFAs.

The NN-VFA is composed of an input layer (the feature vector), at least one hidden layer containing neurons
(having multiple hidden layers constitutes a ‘deep’ neural network), and an output layer with a single node that
returns the expected value for the given state-action pair (Van Heeswijk and La Poutré 2018). In a fully connected
network, every neuron in the network connects to all neurons in the preceding layer. Each neuron receives the
inner product of all neurons in the preceding layer and their corresponding output weights as input and transforms
it into a single neuron value.

The NN-VFA contains K≥1 hidden layers; we use K ,{1,...,K} to denote the set of hidden layers. The
indicator k=0 refers to the input layer that contains the features; layer K+1 is the output layer. Furthermore,
the index dk∈N refers to a specific neuron in layer k∈K , with Dk denoting the set of neurons in layer k. Each
neuron represents a nonlinear activation function σdk , corresponding to neuron d in layer k. For layers k>0,
an input weight wdk,dk−1∈R describes the weight of a neuron as input for dk; the vector #»wdk =[wdk,dk−1]∀dk−1∈Dk−1

denotes all inbound weights for neuron dk.
Neuron values are denoted as follows. The value of neuron d in layer k is described by ydk; the value vector

for layer k is given by #»y k =[ydk]∀dk∈Dk . The input layer equals the features, i.e., #»y 0=[yd0]∀d0∈D0 , [φ f ]∀ f∈F ,
with |D0|= |F |. The values of the neurons are expressed by ydk ,σdk(〈

#»y k−1,
#»wdk〉). Finally, the output value

of the network is given by V̄(Sn−1,xn−1),ydK+1 =〈#»y K,
#»wdK+1〉.

Activation functions in neural networks are by definition nonlinear. Therefore, they cannot be directly
computed when embedded in linear programs. However, most common activation functions in contemporary
neural networks can be modeled by simple piecewise linear functions. Integration of the NN-VFA in linear
programs for decision-making is discussed in the next section.

3.4 Integrating the NN-VFA in LPs

Nowadays, many neural networks use (variants of) rectified linear units (ReLUs) as activation functions (Wilmanski
et al. 2016). A ReLU returns either 0 or its input value, whichever is larger. They can be represented by a
piecewise linear function with two components, allowing to incorporate them in the LP designed to solve the
decision problem. Each state-action pair has a unique expected downstream value. To evaluate actions, the neural
network must therefore be expressed as a set of linear equations. We follow an implementation comparable
to that of Bunel et al. (2018), using binary variables and big M constraints to correctly compute the ReLU values.
Additional artificial variables are required to compute the basis functions corresponding to actions. To preserve
linearity of the action problem, the features should be linear expressions that can be derived from [S,x].

The updating function U(·) is represented by a stochastic gradient descent (SGD) algorithm to update the
weights, meaning that the network weights are adjusted after each iteration and corresponding observation v̂n
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(Haykin 2009). At n=0, we use He initialization to generate starting values for the weights (He et al. 2015). The
learning rate η∈(0,1] determines how responsive the weights are to observations deviating from the estimate.

The following constraints (valid ∀[k,dk]∈K ×Dk and M+ being a sufficiently large number) describe the
ReLU values within the decision-making LP:

ydk≥0 ,

ydk≥ ∑
dk−1∈Dk−1

wdk−1,dk ·ydk−1 ,

ydk≤zdk ·M
+ ,

ydk≤(1−zdk)·M
++ ∑

dk−1∈Dk−1

wdk−1,dk ·ydk−1 ,

zdk≥
∑dk−1∈Dk−1

wdk−1,dk ·ydk−1

M+
,

zdk≤1+
∑dk−1∈Dk−1

wdk−1,dk ·ydk−1

M+
,

ydk∈R,zdk∈{0,1} .

To summarize: in order to embed the NN-VFA into the problem-specific LP, we (i) add linear expressions
that compute features based on the state-action pair, (ii) express the ReLU values for all hidden nodes, and (iii)
compute V̄(Sn−1,xn−1) as output of the neural network.

4 EXPERIMENTAL DESIGN

To validate the behavior and performance of the NN-VFA, we run a number of simulation experiments that
compare it to various benchmarks. We evaluate both the behavior of the VFAs V̄N(·) under varying circumstances
and the performance R(·) of the resulting policies.

The first benchmark is linear programming (LP) without lookahead, i.e., only maximizing the current reward.
This may be viewed as the classical deterministic OR approach, in which probabilistic future information is ignored.
For the second benchmark, we perform deep reinforcement learning (DQN), using the full state description as
input layer for the network (rather than manually defined features). The third benchmark is the PL-VFA, using
the same features as the NN-VFAs, but organized in a linear fashion.

For a clear comparison that distills the essential insights, we keep the applications basic. For the weight
updating function U(·), we use TD(0) for the PL-VFA and SGD for DQN and the NN-VFAs. To allow for
a fair comparison between methods, we utilize the same learning rate η; however, various learning rates are
tested for the initial calibration. In all cases, we use He initialization to set the weights at n=0. We use pure
exploration to acquire value observations, i.e., each decision maximizes the expected value given the prevailing
policy. Furthermore, we deliberately do not put excessive effort into designing and fine-tuning features; after
all, the main goal of the NN-VFA is to reduce the manual design effort compared to the PL-VFA.

The experiments compare two neural network VFAs: the NN(1,20)-VFA (1 layer, 20 neurons) and the
NN(3,20)-VFA (3 layers, 20 neurons per layer) to the single-period LP (no lookahead), two DQNs (DQN(1,20) and
DQN(3,20), note the first is technically not ’deep’), and a PL-VFA. Although a single-layer network theoretically
suffices to learn a function, deep neural networks may model the same function with significantly fewer neurons
(Delalleau and Bengio 2011). In fact, for many common functions, the required number of neurons decreases
exponentially with the number of layers (Lin et al. 2017). Rolnick and Tegmark (2018) suggest that, for many
functions encountered in practical settings, relatively small networks suffice to accurately describe functions.
Downsides of deeper networks are the longer training time and potential loss of information (Huang et al. 2016).

The experimental design is as follows. First, we compare convergence properties of the algorithms, i.e., the
number of iterations required for convergence to a stable policy. Second, we perform experiments on neural
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network configurations. We test various numbers of hidden layers and hidden nodes, as well as several learning
rates. These experiments provide insight into the behavior and robustness of the NN-VFA under varying conditions.
Third, we report the computational times corresponding to multiple NN-VFAs and benchmarks policies, providing
insights into the impact of adding nodes and layers. Fourth, we evaluate the performance (i.e., by measuring the
direct rewards) of the tested solution methods. We measure offline performances by fixing the policy after every
10,000 training iterations and subsequently perform 10,000 performance iterations. These experiments show
how policy quality changes when performing additional training iterations, which is valuable when computational
budgets are limited. In total we perform N = 100,000 training iterations, resulting in 10 offline policies per
solution method. All procedures are coded in C++ and CPLEX 12.8 is used to solve the linear decision problems.
The experiments run on a 64-bit Linux machine with a 4x1.60GHz CPU and 8GB RAM.

4.1 Problem Definition

This section outlines the transportation problem inspired by the nomadic trucker problem (Powell et al. 2007).
Our main deviation is that the trucker may load and unload jobs at any location, being rewarded also when
bringing a job closer to its destination. At every vertex, the truck decides which adjacent vertex to visit (or stay).
Both deterministically known jobs and probabilistic arrivals influence this decision. A simplified representation
of the problem is sketched in Figure 1. The problem is characterized by a large discrete action space and a
complex optimal policy. Let a strongly connected graph {V ,E } represent a transport network. Vertex set V
represents the potential origins and destinations of transport jobs. Edge set E specifies the undirected connections
between vertices; each edge has travel time 1. Edge lengths are L2 distances between vertex pairs and are used
to compute travel costs. A capacitated agent roams the graph, traveling between directly connected vertices. At
each decision epoch t∈T , the agent decides (i) which jobs to load, (ii) which jobs to unload, (iii) which vertex
to visit next (including the option to remain at the current vertex).

Figure 1: Simplified problem representation.

We sketch the corresponding MDP. The problem state S contains the information necessary for decision-making,
including the relevant properties of all transport jobs in the graph and the current location of the agent vloc∈V .
Each job is defined by four properties, namely (i) the vertex v∈V at which the job is currently located, (ii)
the destination vertex v+∈V , (iii) the time remaining until the due date t+∈T +, and (iv) the assignment status
a∈{0,1} (a=1 means the job is currently carried by the agent). Each unique combination of properties constitutes
a job type j, [v,v+,t+,a]; the number of jobs per type is denoted by I j. For the full system we define the vector
I=[I j]∀ j. The problem state is given by S, [I,vloc]; the set containing all possible states is denoted by S .

We proceed to describe the action x, which is a vector describing the number of each job type (un)loaded and
the next vertex to visit. Let V ad j

vloc ⊆V be the set containing both vloc and the vertices adjacent to it. The variable

vnxt∈V ad j
vloc describes the next destination of the agent. Furthermore, γ=0 indicates that a job is unloaded and
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γ=1 that it is loaded. The action is defined by x(S)=[x j,vnxt ]∀[ j,vnxt ]. The action space X (S) is bound to various
constraints; due to space limitations the full LP model for decision-making is omitted. The key constraints are
straightforward though: (i) the agent may only (un)load at its current location, (ii) jobs are always unloaded
when at their destination vertex, and (iii) the agent’s transport capacity may not be exceeded.

Next, we describe the reward function R(S,x). The rewards consist of: (i) a fixed reward for each successful
delivery and (ii) a reward for bringing a job closer to its destination, proportional to the reduction in shortest
path distance (an increase in distance yields a negative ‘reward’). We proceed to discuss the costs: (i) a fixed
cost per distance unit covered (i.e., a cost associated with each edge), independent of the number of jobs carried,
(ii) a fixed cost associated with each job that is (un)loaded, and (iii) a penalty for violating due dates. Jobs may
be voluntarily unloaded by the agent or forced to be unloaded when t+=0, i.e., when the due date has been
reached. The reward components are linear with respect to jobs and distances, as to not give NN-VFAs an unfair
advantage by introducing obvious nonlinearities.

Feature design reflects the components of the reward function. The features are low-level and expressed
by linear equations based on [S,x]. We define the following features: a bias scalar, the number of jobs carried by
the agent, the location of the agent, the number of jobs per vertex in V ad j, the total time slack per neighboring
vertex, and the most likely vertex to visit after visiting the neighboring vertex (given the weighted shortest path
of each job). The total number of features is 2+3·|V |.

For the experiments, we design an instance with |V |=5, a maximum degree of 3, and up to 5 new jobs
generated per vertex at each epoch, with accumulation possible up to 45 jobs. The agent may carry up to 20 jobs.
The action space grows exponentially with the number of jobs, rendering enumeration infeasible even for this
modestly-sized instance: an indicative upper bound for the size of |X | is given by 220·245·(3+1), representing
the maximum number of combinations of drop-offs, pick-ups and destinations that may be conceived.

5 NUMERICAL RESULTS

This section discusses the experimental results. We start with the convergence results. Preliminary experiments
on simplified problem settings with trivial policies indicate that all VFAs work correctly, converging to the true
optimal value function, i.e., V̄N(·)≈V(·). Figure 2 shows a convergence example for the real problem instance.
The PL-VFA converges fastest, but to considerably lower values than the NN-VFAs. Similarly, the NN(1,20)-VFA
converges faster than the NN(3,20)-VFA, but to somewhat lower values. The DQNs converge to the same value
as the LP with lookahead (to aid the representation, only DQN(3,20) is shown in Figure 2), implying that they
are not suitable to learn future values. Most likely, this is due to the high dimension of the problem state.

We proceed to address learning rates, testing for η={0.001,0.01,0.1}. Figure 3 illustrates the convergence
speeds per learning rate for the NN(1,20)-VFA; to aid the visual representation, we omit the other VFAs (which
display comparable behavior). For completeness, we mention that the NN(3,20)-VFA with η=0.1 does not converge
to a stable policy. In general, we find that deeper neural networks are less robust with respect to larger learning
rates. Errors may be magnified when passing through multiple layers, returning extreme values. Furthermore,
NN-VFAs with η=0.001 do not converge within 100,000 iterations. We therefore use η=0.01 onwards.
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Figure 2: Example of V̄n(·) convergence for various VFAs.
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Figure 3: V̄n(·) for NN(1,20), using various learning rates η.

Next, we look at the effects of altering neural network configurations, varying the number of neurons per layer.
The results are shown in Table 1. The performance differences between the configurations are relatively small,
with the exception of the NN(1,10)-VFA, which performs notably worse than other configurations. Balancing
performance and speed, we use 20 neurons per layer for the remainder of the experiments.

Table 1: Policy performance R(·) for the NN(1,·)-VFA and NN(3,·)-VFAs, normalized w.r.t. best VFAs.

# neurons per layer
Solution method 10 15 20 25 30

NN(1,·)-VFA 0.66 0.91 1.00 0.92 0.98
NN(3,·)-VFA 0.92 0.99 0.99 0.98 1.00

We assess the computational time per iteration; roughly 99% of the computational budget is allocated to solving
the LPs. On average, the polynomial VFA is solved in 0.02s per iteration, the NN(1,20)-VFA takes 0.16s, and the
NN(3,20)-VFA takes 0.39s. Due to the additional sets of variables and constraints, NN-VFAs are inherently slower
to compute than the PL-VFA. Table 2 shows the times for other network configurations also; both adding layers and
neurons considerably increases the computational effort. It is important to note that – although we can perform many
more iterations for a PL-VFA than for an NN-VFA with the same computational budget – the VFAs converge to
stable policies; even increasing the number of iterations considerably beyond 100,000 will not improve performance.

Table 2: Computational time (in s) per iteration for various VFAs.

Solution # neurons per layer
method 10 15 20 25 30

LP 0.02 - - - - -
DQN(1,·) - - - 0.18 - -
DQN(3,·) - - - 0.41 - -
PL-VFA 0.02 - - - - -
NN(1,·)-VFA - 0.07 0.15 0.16 0.17 0.19
NN(3,·)-VFA - 0.15 0.33 0.39 0.66 0.71
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To conclude the experiments, we reflect on the qualities of NN-VFA policies. An example of offline performances
– measured by testing the policies learned after each 10,000 training iterations – is shown in Figure 4. Both LP without
lookahead and DQN (equivalent in terms of performance) are ineffective in this problem setting, decidedly being
outperformed by the VFA methods. From 20,000 iterations onwards, the PL-VFA is considerably outperformed. In
general, we note that the PL-VFA needs relatively few iterations to converge to a stable – but often clearly suboptimal –
policy. Furthermore, the NN(3,20)-VFA performs better than the NN(1,20)-VFA and is slightly more stable over time.
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Figure 4: Example of offline policy performance R(·) for various V̄n,n∈{0,N}

Table 3 shows the average policy performance of repeated replications, measured after completing N=100,000
training iterations. The NN(1,20)-VFA outperforms the PL-VFA by 10.1% and the NN(3,20)-VFA does so by
19.6%. Although both NN-VFAs achieve comparable policy performance at times, the NN(1,20)-VFA is more
prone to fluctuating performances, which is also indicated by its higher standard deviation. Furthermore, the
NN(3,20)-VFA has more expressive power, enabling more accurate approximations. The results demonstrate
that – given sufficient training iterations – NN-VFAs significantly outperform the PL-VFA for our transportation
problem. The DQN networks and the LP approach have equal performance; they do not anticipate downstream
costs and therefore have no standard deviation.

Table 3: Average policy performance R(·)
after N iterations, normalized w.r.t. PL-VFA.

Solution method Mean St. dev.

LP 0.798 0.00%
DQN(1,20) 0.798 0.00%
DQN(3,20) 0.798 0.00%
PL-VFA 1.000 1.25%
NN(1,20)-VFA 1.101 1.65%
NN(3,20)-VFA 1.196 0.72%
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6 CONCLUSIONS

This paper proposes the integration of linear programs for decision-making and value function approximations in
the form of neural networks, geared towards solving high-dimensional and combinatorial problems in operations
research. Our hybrid method is rooted in the paradigm of reinforcement learning with value function approximations.
Traditionally, large action spaces in OR problems are handled by formulating the decision problem as a linear
program, yet it is difficult to properly define polynomial VFAs in this context.

The main contribution of the neural network VFA is the reduced effort of manual feature design, which
is a crucial and precarious step in all solutions relying on VFAs. Unlike PL-VFAs, NN-VFAs are able to learn
higher-order effects of simple input features without explicitly designing them, reducing the effort for manual
feature design. This is particularly relevant when embedding VFAs in linear programs, in which the design of
nonlinear features may be a cumbersome task.

We test our solution method on a representative transportation problem with a large discrete action space,
a complex optimal policy, and a multi-component reward function. We compare NN-VFAs to an LP without
lookahead, two DQN architectures and a PL-VFA, keeping all other factors equal. For our test problem, we
observe significant improvements in performance, with the best NN-VFA outperforming the PL-VFA by 19.6%.
The findings are also robust across neural network configurations; with various settings for training iterations,
learning rates, neurons, and layers, the benchmarks are consistently outperformed. NN-VFAs with multiple
hidden layers yield the best and most stable policies, but also require more iterations to converge and more
computational effort per iteration. This paper presents an exploration with respect to the integration of LPs and
NN-VFAs; additional research on different problem classes is needed to draw more general conclusions about
the approach. Furthermore, advanced techniques in neural network configuration and weight updates may reduce
training time and/or improve performance. In our opinion, the obtained results warrant such further studies.
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