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ABSTRACT

Efficient coordination of unmanned aerial vehicles (UAVs) requires the solving of challenging operational
problems. One of them is the integrated team task assignment and orienteering problem (TAOP). The TAOP
can be seen as an extension of the well-known team orienteering problem (TOP). In the classical TOP, a
homogeneous fleet of UAVs has to select and visit a subset of customers in order to maximize, subject to
a maximum travel time per route, the total reward obtained from these visits. In the TAOP, a number of
different tasks (customer services) have to be assigned to a fleet of heterogeneous UAVs, while the best
routing plan must also be determined to cover these services. Since factors such as weather conditions
might influence travel times, these are modeled as random variables. Reliability issues are also considered,
since random times might prevent a route from being successfully completed before a UAV runs out of
battery.

1 INTRODUCTION

Due to remote sensing and mobility capabilities, unmanned aerial vehicles (UAVs) are instrumental to
perform a variety of civilian missions nowadays. With the recent advancement in IoT technologies, UAVs
can be used for remote sensing and monitoring applications. Equipped with proper accessories and sensors,
UAVs can collect and transmit data in real time. These advantages make UAVs a favorable platform
for monitoring and emergency response operations. One of the promising applications of UAVs is in
the maritime surveillance domain. Wide-area monitoring capacity, along with ground-based maneuvering
capabilities, give UAVs a distinct advantage over manned aircraft in maritime surveillance operations.
These operations can range over data acquisition (Eisenbeiss 2004), vessel classification and detection
(Stacy et al. 2002), coastal surveillance to protect national borders from illegal immigrants and illicit drugs
(Stone and Clarke 2001), or even locating and tracking ocean debris (Rubio et al. 2004).
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There is an increasing demand in using UAVs for surveillance and information-gathering tasks. Several
examples can be found in the fields of environmental monitoring (Schaub et al. 2018), natural disaster
scenarios such as floods or forest fires (Alexis et al. 2009; Popescu et al. 2015), or marine surveillance
scenarios (Bürkle and Essendorfer 2010). These tasks cover exploration and data acquisition, and have the
common point of avoiding the cost of direct human control.

Albeit these appealing advantages, planning and coordinating a set of UAVs to efficiently perform any
of these operations require a considerable dexterity. In practice, UAVs have a limited battery capacity.
Therefore, it is not feasible to keep them in service for a long time and cover the entire surveillance
region. This highlights the importance of the team orienteering problem (TOP) and its applications in the
context of UAVs (Bayliss et al. 2020). In this problem, the desirable goal is to dispatch UAVs to areas
or service nodes that are reachable with a significant service reward value. While maximizing the total
reward collected by the UAVs, subject to a maximum time allowed per route, many technical factors need
to be considered, e.g., travel times between nodes, rewards associated with visiting each node, capacity of
UAV batteries, etc. In addition, some unforeseen factors such as harsh weather conditions could interfere
with theb UAVs’ performance and the quality of the transmitted data. For instance, taking a picture of
good quality might take longer than usual under windy or rainy conditions (Panadero et al. 2020), or the
travel times might be affected by the wind speed. Moreover, in case of emergency needs, it is essential to
plan the UAVs’ routes in a timely manner with high accuracy. That emphasizes the agility requirement of
the solution approach to respond quickly and solve the problem in a reliable way.

One of the stochastic factors in this problem is the traveling time which can get impacted by the service
time variability and some external factors such as weather conditions. Wind variables provide information
that might be used by UAV applications on marine search and rescue missions. For instance, the central
region of the Mediterranean Sea is a hot spot regarding rescue operations. These operations may benefit from
optimized UAV operations that maximize the total ‘reward’ collected with limited resources. The routes
design may be a function of the wind drag. Hence, wind predictions provided by the Copernicus service
are of noticeable interest. Figure 1 shows the wind predictions on a central region of the Mediterranean Sea
provided by the product WIND-GLO-WIND-L4-NRT-OBSERVATIONS-012-004 on January 19th, 2020.
The estimation of the 6-hour blended wind products make use of remotely sensed surface wind derived
from real-time data provided by scatterometers located on satellites.

Figure 1: Wind predictions on a central region of the Mediterranean Sea.

Hence, an accurate solution approach has to properly address service time stochasticity and include the
wind predictions into the calculation. Another crucial aspect of the problem is the UAVs’ driving-range
limitations. It is essential to provide a routing solution that ensures a high probability of task completion
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before the UAVs’ battery outage. When a UAV performs the tasks that are assigned to it, its battery level
gets reduced. After visiting the last node in its route, the UAV’s battery level should be sufficient to enable
its return to the depot.

This paper aims to solve an extension of the TOP problem considering a fleet of UAVs with heterogeneous
tasks. This indicates, disregarding technical differences of the UAVs, that they are all required to perform
the same tasks and provide similar services. The user’s demands are heterogeneous and may need to be
satisfied by multiple UAV visits. Therefore, this problem is considered as a task assignment and orienteering
problem (TAOP) with uncertainty conditions. This TAOP is an integration of two different optimization
sub-problems: (i) It assigns a number of different customer services among a heterogeneous fleet of UAVs
and(ii) it determines the most efficient route and sequence to visit users and complete their service demand.
A visual representation of this TAOP is shown in Figure 2.

Figure 2: A visual representation of the TAOP of UAVs (without mixed-type nodes).

The main contribution of this paper is the proposal of an ‘agile’ (fast and flexible) simheuristic algorithm
that can take into account all the aforementioned deterministic and stochastic factors. Simheuristics are a
fruitful combination of heuristic algorithms with simulation models, and have been successfully employed
to solve stochastic optimization problems in different areas, such as transportation (Reyes-Rubiano et al.
2019), aircraft turnaround operations (Tomasella et al. 2019), waste collection management (Gruler et al.
2017), disaster management (Yazdani et al. 2020), healthcare operations (Dehghanimohammadabadi and
Kabadayi 2020), or computational finance (Panadero et al. 2018).

The remaining sections of the paper are structured as follows: Section 2 briefly reviews related articles.
Section 3 describes the proposed simheuristic algorithm and its structure. Section 4 carries out a series
of computational experiments to illustrate the performance of the proposed algorithm. Finally, the main
findings and future research lines are given in Section 5.

2 RELATED WORK ON UAV TASK-ASSIGNMENT AND ROUTING PROBLEMS

Task allocation among groups of UAVs is a challenge that has been investigated during the last two decades
(Jin et al. 2004). Many researchers have also analyzed the team orienteering problem (Vansteenwegen et al.
2011). Exact optimization methods, such as branch-and-bound, branch-and-cut, and dynamic programming
have been used to solve small-sized instances of these problems to optimality (Keshtkaran et al. 2016).
However, being NP-hard optimization problems (even in their deterministic versions), several approximate
methods have been proposed to deal with large-sized instances of these two problems. Metaheuristic
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algorithms, for instance, have been used to provide near-optimal solutions to large-sized TOP instances
(Archetti et al. 2007; Vidal et al. 2013; Ke et al. 2016), although they also require higher computational
times than simpler heuristics. Gunawan et al. (2016) provide an excellent review of the orienteering
problem and its variants.

Regarding task allocation in UAVs, iterative network flow algorithms – in which tasks are assigned to
UAVs sequentially in a greedy fashion – have also been in the focus of research (Hu et al. 2015). Again,
heuristic methods can perform the assignment very rapidly compared to other existing approaches. However,
they can generate plans that are far from optimal. Approaches to the assignment problem that emphasize
timing constraints have also been proposed (Schumacher et al. 2004). In these approaches, detailed paths
are selected for each of the vehicles in order to guarantee simultaneous arrival at an anti-aircraft defense
system, while minimizing exposure to radar along the way. However, these methods require that task
assignment and trajectory design are solved simultaneously, which increases the problem size.

Several papers discuss task assignment under uncertainty scenarios. In Alighanbari and How (2008),
the authors presented a new formulation for the UAV task-assignment problem for uncertain and dynamic
environments. They proposed an alternative strategy that combines robust planning with the techniques
developed to eliminate churning. The resulting robust filter embedded task assignment uses both proactive
and reactive techniques to handle the uncertainty in the information, and is shown to improve worst-case
behavior of the plans while, at the same time, ensuring that limited churning behavior is exhibited by the
vehicle responding to noisy measurements. Choi et al. (2009) addressed single and multiple assignment
problems by presenting two decentralized algorithms. Bertuccelli et al. (2009) extended one of these
algorithms to solve the heterogeneous UAVs’ real-time task-assignment problem under uncertainty. When
executing multiple missions, UAVs form teams and are able to work cooperatively. In this context, the
multi-UAV cooperative control and decision mechanisms, including task assignment, path planning, and
tactical decision making, have received a great deal of attention (Chen et al. 2018). Methods like linear
programming, dynamic programming, and Markov decision processes have been employed in the multi-UAV
task-assignment literature (Chen et al. 2014). While centralized task assignment for multi-UAV is often not
practical due to communication limits, robustness issues, and scalability, the decentralized multi-UAV task
assignment problem has been also studied by Kwak et al. (2013). These authors investigated the optimization
of the decentralized task assignment for heterogeneous UAVs. In their work, each UAV selects its targets by
employing the consensus-based bundle algorithm. They used a scoring matrix to reflect heterogeneity among
the UAVs and targets with different capabilities. In Edison and Shima (2011), a cooperative multiple task
assignment problem was built up for heterogeneous UAVs performing classification, attack, and verification
tasks. Zhu et al. (2018) focused on the reconnaissance task-allocation problem for UAVs, where ground
targets with different features and sizes where considered. Recent publications related to stochastic TOPs
are those provided by Panadero et al. (2020) and Bayliss et al. (2020). The former introduces random
processing times into the analysis of TOPs, while the latter proposes a learnheuristic algorithm that considers
the UAVs’ physical constraints. However, none of the above analyze the integrated task-assignment and
routing problem discussed in this work.

3 AN ‘AGILE’ SIMHEURISTIC APPROACH

Agile optimization techniques are crucial for real-time decision-making problems. Their algorithm design
has to be fast in execution, simple in implementation, easy to tune, and flexible. In order to solve the
team task-assignment orienteering problem with stochastic travel times, we propose the use of an ‘agile’
two-stage simheuristic algorithm, capable of providing good-quality solutions in a reasonable amount of
time, even for large-scale TAOP instances with random travel times. Simheuristics are a special type of
simulation-optimization algorithms that combine simulation techniques with metaheuristics (Juan et al.
2018). Depending on the characteristics of the system under considerations, simheuristics include a Monte
Carlo simulation (Gonzalez-Neira et al. 2017) or a discrete-event simulation (Rabe et al. 2020). The
algorithm employed in this case to solve the stochastic TAOP is described next and illustrated in Figure 3.
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During the first stage (first two rows in the aforementioned figure), the following loop is executed until a
stopping criterion is met:

• A round-robin selection process is used to randomly assign a set of compatible nodes to each
UAV. A biased-randomized heuristic is employed during the round-robin process. This heuristic
determines the sequence of customers that the UAV has to visit. This prioritization process is based
on two factors: (i) customers’ compatibility with the UAV capabilities and (ii) marginal distance
between each UAV’s customers. The first factor ensures that the UAV can provide the expected
services based on the customers’ needs. The second criterion refers to the difference (in absolute

Figure 3: Schema of our simheuristic approach.

1328



Panadero, Juan, Grifoll, Dehghanimohamamdabadi, Freixes, and Serrat

value) between k-to-customer distance and k*-to-customer distance, where k is the UAV index and
k* represents the closest UAV to the customer without considering k.

• Once a random but feasible task-assignment map has been constructed, the global deterministic
TOP is split into smaller deterministic sub-problems (one per type of UAV), and a fast routing
heuristic is employed to find the maximum reward routing plan, i.e., the best routing plan for each
UAV.

• If the global team assignment and routing plan (the one resulting from the aggregation of the plans
obtained for each sub-problem) provides a ‘promising’ reward, then a fast Monte Carlo simulation
(with a reduced number of runs) is employed to test the quality of this plan when applied in a
stochastic scenario (notice that rough estimates of expected total reward, reliability level, and other
statistics are provided at this stage by the simulation component).

• Finally, a reduced number of task-assignment plans offering the best rough estimates are saved in
a list of ‘elite’ task-assignment plans.

During the second stage (third row in Figure 3), these elite task-assignment plans are intensively
analyzed to improve them as much as possible, thus obtaining more accurate estimates, i.e.:

• A biased-randomized TOP algorithm (Quintero-Araujo et al. 2017) is applied to each of the task-
assignment plans in order to enhance the quality of the routing process and increase the associated
rewards as much as possible. To maximize the total collected reward, due to a driving-range
constraint, not all the nodes can be visited. Consequently, a subset of available nodes have to
be selected. Biased-randomization techniques make use of a skewed probability distribution to
introduce some ‘smooth’ randomness into the logic of the heuristic procedure, thus transforming it
into a probabilistic algorithm. Applications of these techniques can be found in different optimization
problems, from health care logistics (Fikar et al. 2016) to arc routing problems (Gonzalez-Martin
et al. 2012).

• An intensive Monte Carlo simulation (including additional runs) is employed to generate a proba-
bilistic profile of the associated solution, including expected total reward, reliability level, variance,
quartiles, etc.

4 COMPUTATIONAL RESULTS

Our simheuristic algorithm was implemented as a Java application using the Eclipse IDE (Figure 4). The
experiments were performed on a personal computer with 8 GB of RAM and an Intel Core i7 at 2.3 GHz.
Since, to the best of our knowledge, there are no publicly available instances for the stochastic TAOP, we
decided to extend the standard instances initially introduced for the deterministic version of the TOP by
Chao et al. (1996). These instances have been widely used in previous research to test the performance
of algorithms aimed at solving the deterministic TOP. The extension incorporates both task assignment to
each UAV, as well as random traveling times.

Regarding the task assignment, we have considered that there are two different types of UAVs (i.e.,
UAVs with different technical specifications), each of them performing a specific task. Hence, each type
of UAV can visit a subset of customers, depending on the required task. In addition, we have randomly
assigned a task to be performed to each customer. Also, for each pair of nodes i and j, we have assumed
that the travel time between them, Ti j, follows a log-normal probability distribution – in a real-world
application, historical data could be used to determine the best-fit probability distribution for each of the
Ti j. The log-normal distribution Ti j has two parameters, namely the location parameter, µi j, and the scale
parameter, σi j, which relate to the expected value E[Ti j] and the variance Var[Ti j] as follows:
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Figure 4: Screenshot of the algorithm code in the Java Eclipse IDE.
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In addition, we consider that Var[Ti j] = c ·E[Ti j], being c ≥ 0 a design parameter that allows us to
experiment with different levels of uncertainty. In our experiments we have considered three different
levels of uncertainty: low (L, with c = 0.05), medium (M, with c = 0.25), and large (L, with c = 0.50).
The algorithm was executed five times with different seeds, storing only the best solutions in each run.
A maximum time of 100 seconds was allowed for each execution. Table 1 presents the results for some
selected instances with different characteristics. The first column of Table 1 identifies the instances. Each
instance is characterized by following the nomenclature px.y.z.w, where: x denotes the set – each set depicts
a concrete scenario with a specific number of nodes and their locations, y is the number of UAVs (which
varies between 2 and 4 depending to the instance), z indicates the number of drones of each type, and w
represents the maximum driving range. The second column shows the maximum travel time allowed, Tmax,
while column three indicates the best-found solution (in terms of collected rewards) to the deterministic
version of the problem (OBD). We have divided the remaining columns into three different parts. In the
first part, we evaluate our best deterministic solution under a stochastic scenario using different levels
of uncertainty. Columns OBD-x, with x ∈ {L,M,H}, show the expected rewards collected when OBD is
evaluated in a stochastic scenario. To compute these columns, we have executed the algorithm using the
expected reward of each node as a deterministic value, and disabling the simulation component. Once the
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solution has been obtained, we have estimated its real value in a stochastic environment by using simulation.
In the second part of Table 1, we show the expected rewards obtained using the solution provided by our
simheuristic approach, OBS-x. Finally, in the third part, the last columns report the obtained gaps with
respect to the OBD.

Table 1: Results under deterministic and stochastic scenarios for different levels of variance (c).

Deterministic in Stochastic Scenario Stochastic Scenario
Instance Tmax OBD OBD-L OBD-M OBD-H OBS-L OBS-M OBS-H
p1.2.1.q 40 190 136.33 120.94 111.63 155.65 138.91 134.49
p1.4.2.j 12.5 60 47.72 41.61 38.98 51.07 45.21 42.25
p1.4.2.k 13.8 80 72.66 58.92 55.63 73.41 64.41 60.43
p2.4.2.i 9.5 120 119.04 113.11 109.85 119.20 112.78 108.29
p3.2.1.n 40 530 341.73 318.28 310.38 507.90 401.67 381.23
p3.4.2.h 12.5 220 182.12 154.46 145.51 183.70 151.19 144.63
p4.4.2.k 37.5 654 449.60 403.53 397.94 535.77 458.29 449.59
p5.4.2.m 16.2 550 297.56 282.86 276.93 320.42 283.55 271.83
p4.4.2.m 42.5 773 545.64 453.22 438.84 629.38 537.48 462.40
p4.4.2.r 55 1004 648.55 589.32 570.34 863.48 667.30 622.91
p4.4.2.s 35 994 688.89 597.12 586.19 893.77 707.68 664.01
p5.2.1.w 28.8 1320 834.48 803.62 765.60 1221.52 1021.65 993.93

Averages: 541.25 363.69 328.08 317.32 462.94 382.51 361.33

Figure 5 shows the box-plots of the aforementioned gaps. It is important to remark that these gaps are
always negative, meaning that the OBD can be seen as a lower bound in a scenario with perfect information
(i.e., without uncertainty). The results show that the solutions provided by our simheuristic approach
(OBS-x) clearly outperform the deterministic solutions when these are simulated (OBD-x). Actually, the
latter can be seen as an upper bound for the expected cost. In other words, near-optimal solutions for the
deterministic version of the problem might be sub-optimal solutions for the stochastic version. This key
point reveals the importance of integrating simulation methods during the search process when dealing with
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stochastic optimization problems. Regarding the reliability level of the solutions, Figure 6 demonstrates
that the OBS-x solutions outperform the OBD-x solutions, i.e., the solutions generated by our simheuristics
are more reliable. Finally, it is visible that a higher degree of uncertainty translates into a higher expected
cost and, consequently, in a lower degree of reliability.
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Figure 6: Boxplot of reliabilities.

5 CONCLUSIONS AND FUTURE WORK

This paper presents an agile simheuristic algorithm to solve a stochastic version of the team task-assignment
and orienteering problem (TAOP), with a special focus on applications to unmanned aerial vehicles (UAVs).
The TAOP extends the classical team orienteering problem by integrating a task-assignment stage in which
a fleet of heterogeneous UAVs are assigned to customers based on their specific characteristics. Hence, the
main goal is to maximize the total expected reward collected by a fleet of UAVs, while keeping an eye on
the probabilistic profile of the best solutions – and, in particular, their reliability level. Both uncertainty
on the travel times and the reliability of the final solutions are also taken into account.

The introduced simheuristic algorithm deals with the stochastic version of the TAOP by generating
multiple task-assignment plans and then routing them using a fast biased-randomized heuristic. For each
promising task-and-routing solution, associated statistics are obtained by means of a simulation process.
Since travel times are considered to be random variables, the designed task-assignment and routing plans
could suffer from route failures whenever the total time in covering a planned route exceeds a maximum UAV
driving. Hence, not only expected times of each promising solution are computed, but also its reliability
level is estimated. With this approach, the simheuristic algorithm allows the manager to select solutions
with a high reward and, at the same time, a reasonably high reliability level. The performance of the
proposed simheuristic is tested in an extensive experiential analysis under multiple uncertainty scenarios.
The results show the superiority of the simheuristic approach over a typical metaheuristic approach. They
also illustrate that near-optimal solutions for the deterministic version of an optimization problem are
usually sub-optimal solutions for the stochastic counterpart.
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The approach described in this paper can be enhanced in several directions: (i) instead of using a
relatively simple multi-start framework, a more advanced metaheuristic framework could be employed in
order to better guide the search process if more computing time is available; and (ii) it would be interesting
to analyze the effects of correlated travel times (e.g., due to common weather conditions) on the solutions
provided by the simheuristics: being based on simulation, our approach could easily consider a correlation
matrix between pairs of travel times.
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