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ABSTRACT

In production systems, scheduling problems need to be solved under complex environmental conditions. In
this paper, we present a comprehensive scheduling approach that is applicable in real industrial environments.
To cope with the parameter uncertainty of real world problems, forecasting, classification, and simulation
techniques are combined with heuristic optimization algorithms. Thus, the approach allows for identifying
and including demand fluctuations and scrap rates, and offers a selection of suitable schedules depending on
particular demand constellations in scheduling. Furthermore, we adapt seven optimization algorithms for
two-stage hybrid flow shops with unrelated machines, machine qualifications, and skipping stages with the
objective to minimize the makespan. The combination of methods is validated on a real production case of
the automobile industry. The paper shows for the application case that metaheuristics provide significantly
better results than SPT and safety factors, above a certain size, can reduce their effect preventing incomplete
demand positions.

1 INTRODUCTION

In complex production environments, as they can be found in the automotive industry, machine schedules
have to be determined under frequently changing customer demands and possible production failures or
unplanned delays. The determination of almost optimal schedules in such an environment is a challenge
because of the high complexity of the scheduling problem and the uncertainty of several system parameters.
Even under simplifying conditions neglecting uncertainty and set-up times, the resulting deterministic
optimization problems are NP-hard and can be solved exactly only for small and unrealistic configurations
within a reasonable time. Heuristics and metaheuristics are more flexible and allow one to approximate the
optimal schedule for the deterministic model for much larger configurations. A multitude of scheduling
approaches deals with developing improved scheduling algorithms for deterministic test instances with only
few realistic and mostly simplified conditions in comparison to practice. These studies are appropriate to
show the basic functionality of the algorithms, but it is a long way to apply them under real production
conditions (Ruiz et al. 2008). With the approach presented in this paper, we generate schedules based
on realistic problem settings. For realistic models, data from the running production have to be used to
define the actual instance of the scheduling problem. A statistical evaluation of past data allows one to
determine safety margins to compensate scrap or unplanned demands. Before the schedule resulting from
a deterministic optimization problem should be exploited in a production with its statistical fluctuation in
the parameters, it should be tested and possibly improved in a stochastic simulation model.
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Thus, we present a comprehensive methodology to solve scheduling problems within the scope of
uncertainty of production parameters arising from a real application case of a supplier in the automotive
industry. The basic problem describes a two-stage scheduling problem with unrelated machines, machine
qualifications, and skipping stages. Seven heuristic algorithms, namely Shortest Processing Time heuristic
(SPT), local search, and tabu search metaheuristics algorithms, are implemented to minimize the makespan
and parameters are derived from available real-world production data. A composition of forecasting,
classification, simulation, and heuristic algorithms is developed to identify high-risk articles with demand
fluctuations, include and evaluate scrap rates, and select appropriate safety factors to be multiplied by the
demands. A detailed simulation model from the production has been built using the software AnyLogic
8.5 (Borshchev and Grigoryev 2014). By means of simulation it is possible to include the interdependence
of production parameters, to evaluate and possibly improve schedules before they are applied in the
real production environment, and select the most suitable schedules depending on the particular demand
constellation. In addition, the approach shows which production details should be included in mathematical
algorithms and which should be included in a simulation model.

The structure of the paper is as follows: In the next section we present a detailed description of the
scheduling problem. Related work is briefly summarized afterwards. Section 4 introduces seven heuristic
algorithms to compute schedules for the hybrid flow shop problem. Afterwards, in Section 5, the available
data from the production are described and methods are presented to estimate the parameters of the
optimization problem from the data. Then, a detailed analysis of the schedules in the simulation model is
introduced. In Section 7, some typical results of example runs are presented, followed by the conclusions
which outline some steps for future research.

2 DESCRIPTION OF THE BASIC MODEL

The problem analyzed is a two-stage hybrid flow shop where a set of jobs N = {1, . . . ,n} has to be processed
in stages i, where i ∈M with M = {1,2} and each job j ∈ N has the same route to follow through the
stages. At each stage i a job is to be processed by at most one machine l, l ∈Mi = {1, . . . ,mi}, where
mi ≥ 1. As far as possible, we set the parameters according Ruiz et al. (2008) to support a homogeneous
notation for machine scheduling studies. The following assumptions hold for our model.

1. In the first stage, all jobs are available for processing at time 0.
2. Jobs that are to be produced in the first and second stage can only begin to be processed in the

second stage, after the whole job corresponding with demand1 j has been finished in the first stage.
3. Each machine can only process one job at a time.
4. The processing of a job on a machine cannot be interrupted, i.e., preemption is not allowed.
5. The problem contains machine qualifications. Each job can only be processed on certain machines

in each stage, where the set of eligible machines is Ei j, with 1≤ |Ei j| ≤ mi.
6. Some jobs visit only one of the stages. The set of stages to be visited is Fj, where 1≤ |Fj| ≤ 2.
7. There are infinite buffers in front, between, and at the end of the two stages.
8. Processing times pil j are described by independent random variables separated by machine, stage

and job. In the second stage, processing times are not machine-related.
9. For set-up times si, stochastic distributions over all machines and articles per stage are available.
10. For scrap rates ri j, article- and stage-related stochastic distributions are available for both stages.
11. Available parts on stock stocki j are included.
12. Order quantities of the jobs demandi j underly uncertainty and may change even during the week

when it is produced, which results in varying appropriate production volumes productionvolumei j.
13. The objective is to minimize the makespan Cmax, where Cmax is the maximum completion time and

Ci j defines the completion time of a job j on stage i, which can be determined with parameters
productionvolumei j and pi j. Cmax = max

i∈M, j∈N
Ci j.
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With defining the precedence relations xil jk and x as variables, schedules can be described in their full
extent, where x = (xil jk)i∈M,l∈Mi, j,k∈N . xil jk will be used in the optimization algorithms and is defined as

xil jk :=

{
1, if job j precedes job k on machine l at stage i,
0, otherwise.

3 RELATED WORK

An enormous number of papers on scheduling for hybrid flow shops is available. Overviews can be found
in Ribas et al. (2010), Ruiz and Vázquez-Rodrı́guez (2010) and Komaki et al. (2019). In the following,
selectively a few studies of the overviews are discussed that dealt with hybrid flow shops to minimize the
makespan and are related to our problem (see Section 2).

Jabbarizadeh et al. (2009) test three constructive heuristics for a problem with identical parallel
machines, machine qualifications, sequence dependent setup times, and limited availability of machines. In
contrast to our problem, skipping stages and unrelated machines are not considered. They assign the jobs in
the processing stages i > 1 in order of completion times of the previous stage, namely according to Earliest
Completion Times (ECT). Their evaluation shows that in combination with Shortest Processing Time (SPT),
results are better than with Longest Processing Time (LPT). A heuristic based on the algorithm of Johnson
(1954) gives the best results in their study. In the field of metaheuristics, a version of simulated annealing,
which is a local search algorithm with acceptance of setbacks, outperforms a genetic algorithm. Ruiz et al.
(2008) present a study dealing with a large number of realistic components and unrelated machines. But,
they only compare constructive heuristics and find that NEH provides best solutions. Low et al. (2008)
compare sixteen combinations of heuristics for unrelated machines with machine qualifications in the first
stage and only one machine in the second stage. They do not consider skipping stages. They find that a
modified Johnson rule with planning the second stage according to ECT of the first stage performs best.
For a hybrid flow shop with identical parallel machines, skipping stages, and sequence-dependent setup
times, Naderi et al. (2010) apply job sequencing and machine assignment in the same step. They do not
take machine qualifications and unrelated machines into account. All stages i are scheduled according
ECT of the stage i itself and taking into account the arrival times at the stages, if i > 1, which result
from Ci−1 j. Compared to other constructive algorithms for their problem and with their test data, this
constructive algorithm provides good results. They also use Iterated Local Search, which dominates the
other tested metaheuristics like genetic algorithms up to a number of 80 jobs. Dios et al. (2018) compare
24 constructive heuristics for a hybrid flow shop with identical parallel machines and skipping stages and
the evaluation of their experiments show that two SPT-based and one LPT-based heuristic generate the best
schedules according to Cmax. They do not take unrelated machines into account.

Thus, none of the studies provides local search and tabu search algorithms for the problem mentioned
in Section 2. In addition, the mentioned approaches compute schedules for deterministic models, but
most production processes show stochastic behavior. One way to optimize stochastic models is the use of
sample average approximations, which is used by Almeder and Hartl (2013) in combination with variable
neighbourhood search to optimize a two-stage flow shop problem describing a real world production process
in the metal-working industry. In contrast to our problem, the number of machines is smaller, machine
qualification and setup times are not required, and the behavior of orders seems to be more homogeneous.
Production data are not used to determine model parameters. Instead, sampling averaging of simulation
results is used to determine the parameters of the optimization problem, which is analysed with similar
methods that we apply, but tabu lists seem to be not used.

Our approach is also related to approaches that combine simulation and optimization. Overviews of
methods can be found in Juan et al. (2015) and Figueira and Almada-Lobo (2014). Simulation optimization
is also often applied in semiconductor manufacturing as described in Lin and Chen (2015). With regard to
the different possibilities to combine optimization and simulation, our study falls into the category of first
computing a schedule for a deterministic model, which is afterwards evaluated in the detailed simulation
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model. In an additional step it is then possible to improve the schedule based on the simulation results
using techniques for simulation optimization.

In application scenarios, parameters for the optimization problem have to be estimated and future
demands have to be forecasted. For parameter estimation and modeling from available data, standard
methods of input modeling as summarized for example in Law (2015) may be applied. Classification
of articles according to their future demands is more demanding. To the best of our knowledge, only
Murray et al. (2015) have examined an application case of article classification. They focus on a higher
stage in production planning than in our application, where we plan the machine scheduling for in-house
production, which is one of the last stages in the supply chain. They use k-means clustering in order to
group customers into segments and do not address the single article demands. Customers are the first layer
in a supply chain, because they are causing the demand for articles, but the demand becomes more distorted
and volatile when customers’ order quantities are planned through the different stages of the supply chain
(Lee et al. 1997). To forecast demands, various methods from statistics like regression or time-series exist.
It turns out that no single best method with an optimal parameter set exists to predict demand in different
settings. Instead, algorithm are developed to select good parameters (Kück and Scholz-Reiter 2013) or to
even select the optimal prediction method together with the parameters as done by Scholz-Reiter et al.
(2014). However, our results indicate that to obtain a robust schedule often a simple over-provisioning of
the demand for high risk articles, classified by means of a clustering algorithm, is sufficient.

Although we do not develop a new optimization technique, the presented study is original, to the best
of our knowledge, because it combines the statistical analysis of production data with adapted heuristic
optimization methods to our problem and the subsequent detailed simulation of a real production problem.
The experiments give insights in the behavior of different local search heuristics and clearly indicate that
local search heuristics are able to improve the makespan significantly compared to schedules resulting from
simple heuristics like SPT as previously used in literature to solve our specific problem.

4 COMPUTATION OF SCHEDULES

Taking available results from literature into account, we choose to apply SPT, local search, and tabu search
algorithms, and ECT to compute and optimize schedules for the basic model described in Section 2 and
extend them for machine qualifications, skipping stages, and unrelated machines. In detail, we schedule
the first stage with one of the algorithms and combine them in each case with ECT for scheduling the
second stage. This procedure leads to the algorithms that are described in Algorithms 1–4. With its variants
by choosing the parameters method ∈ {shi f t,swap} and tabu ∈ {true, f alse}, we construct in total seven
different optimization algorithms for the basic model of Section 2.

To create an initial solution, with Algorithm 1 successively the jobs are scheduled on stage 1 according
to their increasing processing times on the machines that become available. When all jobs are scheduled
to stage 1, stage 2 is scheduled with Algorithm 2 according their completion times of stage 1. Based on
this initial solution, six algorithms that can be created with Algorithm 3 and Algorithm 4 optimize the
solution. Both Algorithm 3 and Algorithm 4 are computed in ”shift” or ”swap” variant. ”shift” places one
randomly selected job to another position in the existing schedule, whereas ”swap” exchanges the positions
of two randomly selected jobs of the existing schedule. After one of these moves and the consideration of
eligibility restrictions for the machines and stages, the schedule is checked for improvement by comparing
makespans. In addition, Algorithm 4 can be executed with or without a tabu list (tabu ∈ {true, f alse}).
With a tabu list, the algorithms do not test again a solution x that has already been tested and is included
in the tabu list at the moment. Algorithm 3 and Algorithm 4 terminate, if there is no improvement in the
makespan within a defined amount of iterations.

Algorithm 1 (Shortest Processing Time, SPT)

1. Order jobs j according to their increasing average processing times in stage 1 (productionvolumei j · pi j) and save the
queue in PrioList1.
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2. Whenever a machine in stage 1 becomes available, select next unscheduled job j of PrioList1 that is qualified for
the given machine and schedule j on the available machine.

3. Execute Algorithm 2 (ECT).

4. return schedule x with Cmax(x).

Algorithm 2 (Earliest Completion Time, ECT)

1. Order jobs on stage 2 according to their completion times C1 j. If a job is not processed on stage 1, set C1 j := 0. Of
course, if a job should not be processed on stage 2, the job is not in the sequence for stage 2. If two jobs have the
same completion time C1 j, order these jobs alphanumerically. Save queue in PrioList2.

2. Whenever a machine in stage 2 becomes available, select next unscheduled job j of PrioList2 that is qualified for
the given machine and schedule j on the available machine.

Algorithm 3 (Local Search – Random Descent)

1. Given a feasible initial solution x with makespan Cmax(x).
Choose parameter iterations > 0 and set termination := iterations.
Choose parameter method ∈ {shi f t,swap}.

2. while termination 6= 0
(a) Duplicate xn := x.
(b) Randomly choose a job j on stage i = 1. For this job ∃!xilk j = 1. According to xilk j = 1 define l and k.
(c) Randomly choose a machine ln ∈ Ei j.
(d) if method = shi f t

i. Shift job j to machine ln and randomly choose a position to insert job j on this machine ln.
(e) if method = swap

i. Randomly choose a job js on selected machine ln. For this job ∃!xilnkn j = 1. According to xilnkn j = 1 define
kn.

ii. Exchange positions of selected jobs j and js with setting xilk j = 0, xilnkn js = 0, xilk js = 1, and xiln jkn = 1.
(f) Save solution in xn, execute Algorithm 2 (ECT) and compute makespan Cmax(xn).
(g) if Cmax(xn)<Cmax(x)

x := xn, Cmax(x) :=Cmax(xn).
termination := iterations.

else
termination := termination−1.

3. return x with Cmax(x).

Algorithm 4 (Tabu and Local Search – Steepest Descent)

1. Given a feasible initial solution x with makespan Cmax(x).
Choose parameter iterations and set termination := iterations.
Choose parameter method ∈ {shi f t,swap}.
Choose parameter tabu ∈ {true, f alse}.

2. if tabu = true
Initialize T := {x}.
Choose parameter t > 0.

else
Initialize T := {}.

3. repeat termination 6= 0
(a) Duplicate xn := x.
(b) Set N := {}.

for all jobs j on stage i.
For the selected job ∃!xilk j = 1. According to xilk j = 1 define l and k.
for all ln ∈ Ei j

if method = shi f t
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Shift job j to machine ln and randomly choose a position to insert job j on this machine ln.
Save solution in xn, execute Algorithm 2 (ECT) and compute makespan Cmax(xn).
if xn /∈ T

N = N∪{xn}.
if method = swap

for all js on the selected machine ln
According to xilnkn js = 1 define kn.
Exchange positions of jobs j and js with xilk j = xilnkn js = 0, xilk js = xilnkn j = 1.
Execute Algorithm 2 (ECT).
Save solution in xn and compute makespan Cmax(xn).
if xn /∈ T

N = N∪{xn}.
if tabu = true

T = T ∪N.
if |T |> t

Delete the |T |− t elements from T , which are added earliest.
if N = {}

Set termination := 0.
for all jobs xn ∈ N.

if Cmax(xn)<Cmax(x)
x := xn, Cmax(x) :=Cmax(xn).
termination := iterations.

else
termination := termination−1.

4. return x with Cmax(x).

5 PARAMETER UNCERTAINTY

The algorithms for computing schedules presented above all assume that the complete information about
the problem is available. This situation can be rarely found in practice. Usually information about a system
is uncertain and at most historical data are available to quantify uncertainty.

If uncertainty is modeled by random variables, in principle a stochastic optimization problem can be
formulated (Van Hentenryck and Bent 2006). The solution of stochastic optimization problems turns out
to be much more complex than the solution of their deterministic counterparts where random variables
are substituted by deterministic values. This in particular holds for realistic stochastic hybrid flow shop
problems, as the ones analyzed in this paper. For those models, even the analysis of a single configuration
cannot be evaluated analytically. Instead, stochastic simulation has to be applied. For an optimization of
such models, stochastic discrete event simulation has to be coupled with heuristic optimization methods
(Juan et al. 2019). However, since stochastic simulation is time consuming and heuristic optimization
methods tend to use a large number of function evaluations, the computation of almost optimal schedules
can be cumbersome when started from some random schedule. To reduce computation time, it is much
better to compare different near-optimal schedules from deterministic optimization models using a detailed
simulation model. Another point is that any model is an approximation of the real system. This implies
that the optimal solution for the simulation model, even if it can be found, is not necessarily optimal for
the real system and it is more important to find a schedule which gives good results and is robust against
small changes in the parameters or the specification of the random variables.

The major source of information about model parameters is the available data from the running system.
In production systems, often a large amount of data is available and can be used to model uncertainty
appropriately. We have to distinguish between internal parameters of the production system like processing
or setup times, scrap rates, and availability of machines and external parameters, mainly the varying demand.
We begin with the internal parameters that, up to some extent, can be measured in the production system.
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In practice, quality and availability of production data vary considerably. In Table 1, we analyzed several
scenarios where data are available at different levels of detail, and show how this data can be used in
optimization and simulation. One aspect that should be mentioned is that due to outliers with high values
it seems to be preferable to use the median instead of the mean value for processing and setup times in the
optimization model to get more realistic schedules. In contrast, for scrap rates it is useful to use the mean
value due to having a buffer.

Table 1: Data concept for scheduling parameters in optimization and simulation.

processing times pil j and setup times si scrap rate ri j
case optimization simulation optimization simulation
article data on dedicated ma-
chine available

median per article
and machine

random value from
distribution per arti-
cle and machine

mean value per arti-
cle and machine

random value from
distribution per arti-
cle and machine

no article data on dedicated
machines available for the
article, but article data on
the stage available

median per article
over all machines

random value from
distribution per arti-
cle over all machines

mean value per arti-
cle over all machines

random value from
distribution per arti-
cle over all machines

no article-related and
machine-related data avail-
able, but article-related
planned data on the stage
available

planned data for the
article on the stage

planned data for the
article on the stage

- -

no article-related and
machine-related data avail-
able, but data for all articles
on the stage available

median over all ma-
chines for all articles

random value from
distribution over all
machines for all ar-
ticles

mean value over all
machines for all ar-
ticles

random value from
distribution over all
machines for all ar-
ticles

External uncertainty, mainly created by varying demands, is out of the control of the producer, but
can also be predicted based on historical data. In particular, at the first stages of longer supply chains,
uncertainty in demands can be significant and seems to grow in volatility and amount over the stages (Lee
et al. 1997). Figure 1 shows the ordered quantities over time of a specific article for a supplier in the
automotive industry. The last value in each time series shows the demand that is finally delivered. The
other points show the development of the previously ordered amount for the same date.

It can be noticed that in this example the demand grows considerably in the last week. Thus, any
schedule that has been made with available data one week before delivery will fail. Also during the
planned week itself, changes can occur for these high risk articles. Fluctuation in demands is, of course,
article-specific and it is not necessary or possible to model every article in detail. Hence, we first perform
a cluster analysis based on historical data to distinguish between low-, medium- and high-risk articles. A
high-risk article changes its demand often and significantly in the weeks before and of production, whereas
for low-risk articles ordered quantities and final demand are very similar. For clustering, articles of the
first and second stage are considered, because their demands are highly related and similar in their level of
demands. If one article needs to be produced in both stages, both demands are considered and clustered
in the algorithm. Clustering for the field data resulted in 3 or 4 clusters. For high risk articles, we use
over-provisioning to avoid situations where the demand cannot be satisfied. Therefore, the demand of high
risk articles is multiplied by article and stage related safety factors (SF2i j) to keep the slot in the schedule
reserved.

The same procedure can be applied to all article demands, e.g. if the production is very sensitive about
producing less than the needed customer demand. First their deterministic median of the related scrap rate
(see Table 1) is included in the demand and after that the demand is multiplied by a safety factor (SF1i j).
Notice that an earlier completion, resulting in unused reserved slots is easy to handle with the algorithms
presented in section 2 because it only causes at most slightly extended storage cost. Whereas an unexpected
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Figure 1: Time series of demands of a high risk article.

longer slot for articles would mean drastic delays for the schedule. All analyzed factors influencing the
demand in our application case result in following formula to calculate the appropriate production quantity:

productionvolumei j =
demandi j− stocki j

(1− ri j)
· SF1i j · SF2i j

6 SCHEDULING UNDER UNCERTAINTY

The simulation model for our application case was build in AnyLogic 8.5. For every produced part the
model generates values from the probability distributions mentioned in Table 1 and it considers also further
specific characteristics of production. The following points of our application case are included in the
simulation model, but not in the optimization model:

• There are two groups of machines. Only one machine of a group can be set up at the same time.
• Produced products, which are transported by conveyors to a quality check station in the first stage

can block each other.
• Articles are moved from the first to the second stage by small carriers with fixed capacity.
• Detailed modeling of the connection of logistics and production at the beginning of the second

stage with reservation of a trolley for a production worker, that puts the parts to the machine.
• Shift times: One of the two machines at the second stage does not produce during the night and

both machines do not produce on weekends.
• Four stations with separate article related distributions, where scrap parts are identified.

To evaluate the algorithms by simulation, the schedules created by the algorithms of Section 4 are
analyzed in the detailed simulation model using multiple replications in parallel. The number of replications
is chosen with respect to the width of confidence intervals. The results of the Cmax values are an indicator
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to judge how robust a given schedule is and which schedule is expected to perform best in production.
To evaluate the scrap uncertainties analyzed in Section 5, we count how many simulation runs realize
production volumes that are higher or equal to the required demands.

7 EXAMPLE RUNS

To evaluate the seven algorithms of Section 4, we use historical data of the company. Different safety
factors are also considered to reduce and evaluate the risk of producing less demand than the customer
requests, and a simulation of every schedule is performed. The application has the following characteristics:

1. Every week around 60 jobs j with demandi j are produced in the two-stage system.
2. The first stage contains 11 unrelated parallel machines and the second stage consists of 2 identical

parallel machines.
3. Stochastic distributions per job and machine for the processing times pil j are available. The median

of the processing time on stage 1 is about 80 seconds and on stage 2 it is 4 seconds per article.
4. For set-up times si in stage 1, stochastic distributions are available over all machines and article

numbers. The median of set-up time on stage 1 is about 100 minutes and about 4 minutes on stage
2. On stage 2, set-up times are deterministic, because it is a conveyor belt production stage with a
constant flow rate.

5. For scrap ri j, article-related data are available for both stages. The overall average scrap rate in
stage 1 is about 2,5 % and in stage 2 about 3,2 %.

We run the optimization algorithms with an Intel R© CoreTM i7-3770 3,4 GHz and 12 GB RAM and
we run the simulations on a Intel R© XeonTM E5-2699 v4 2,2 GHz and 64 GB RAM.

Since it is very important in our application case that weekly demands are fulfilled completely, we first
evaluate which safety factor for scrap (1,2 or 1,4 or 1,6) performs best. For this purpose, we have analyzed
production volumes for each safety factor in the simulation for six selected calendar weeks, for which we
have demand data. Figure 2 shows the percentages of simulation runs that produce one or more parts less
for the weekly demand so that the weekly demand is not fulfilled. Per data point we run the simulation 280
times. Safety factors 1.4 and 1.6 provide similarly good results and it seems to be not realistic to reduce
the probability of incomplete demands below 20 % without an extreme overproduction. For this reason,
in the following we use SF1i j = 1,4. We set SF2i j = 1,1 to reserve slots for high-risk articles.

We run the metaheuristics with iterations= 5000 and a time restriction of 2 minutes without improvement.
The metaheuristics include stochastic components. Therefore, the variation in objective function values
with 16 replications for an exemplary week is shown in Figure 3. Steepest descent and tabu search
algorithms provide the same values in every replication, while the random descent algorithms provide
varying schedules. The borders in the box plot describe the first and third quartiles. Upper and lower
limits describe the minimum and maximum makespan that appeared in the optimization runs. For random
descent algorithms, the majority of values (included in the box) differs within about a quarter of a day,
which means that the influence of stochastic is relatively small. Random descent (shift) provides worse
makespan values and is less robust than random descent (swap), which means that for this data set and
the chosen calendar week, random descent (swap) and the other algorithms with ”swap” are preferable.
Even for the schedules of random descent, the variation in the results does not change the relations of
performance between the metaheuristics concerning makespan essentially, so selecting one schedule per
metaheuristic is a good choice.

Thus, for each week and each algorithm we now take one objective value, so that for each algorithm
we have six data points. The analysis is illustrated in Figure 4. The largest computation time over all
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Figure 2: Percentage of simulation runs producing
too few amounts due to scrap varying SF1i j.

Figure 3: Optimization results with 16 replications
per optimization method for calendar week 12 with
SF1i j = 1,4 and SF2i j = 1,1.

algorithms and weeks was 2 minutes 49 seconds for tabu Search (swap) run and the minimal time was 6
ms for a calculation of SPT. We mentioned in Section 4 that we use the schedule resulting from SPT as
initial solution for the local search and tabu search algorithms. Therefore, it is not surprising that according
to Figure 4 the six metaheuristics provide better results than SPT. However, the difference between the
values is considerable. By applying random decent (swap) instead of SPT, the makespan for calendar
week 12 is reduced from 14,5 days to 9,5 days. In contrast, the differences of makespans comparing the
six metaheuristics for each week are minor. Hence, with this evaluation, we cannot decide which of the
metaheuristics performs best for the application.

Figure 4: Optimization results per optimization
method with SF1i j = 1,4 and SF2i j = 1,1.

Figure 5: Simulation results for calendar week 12
with SF1i j = 1,4 and SF2i j = 1,1.

To decide under almost real conditions which method returns the schedules with the lowest makespan
and which schedule is in comparison with others most robust against uncertainties in processing times
or set up times, Figure 5 shows how makespans of the different schedules for week 12 performs in the
simulation. The simulation is replicated 40 times, and only runs fulfilling the weekly demand are included.

1465



Schumacher, Buchholz, Fiedler, and Gorecki

Again, the borders in the box plot describe the first and third quartiles, and upper and lower limits show
the minimum and maximum makespan of the simulation runs. Outliers are not included in Figure 5. The
computation time of 40 parallel replications of the simulation is about 9 minutes. From the results it is
obvious that for week 12 Random Decent (swap) provides the smallest mean value for makespan. It can
also be seen that the schedule of Random Decent (swap) compared to the schedule of Steepest Decent
(swap) it is more robust. The results of the simulation provide for all methods only slightly higher results
than in the optimization, which is a strong hint that the additional details of the simulation model have
only limited effects.

8 CONCLUSION

In this paper, we present a methodology to solve hybrid flow shop scheduling problems under uncertainty,
which has been derived from a real industrial use case. It is shown that the combination of data analysis
to estimate model parameters, heuristic optimization, and detailed stochastic simulation results in robust
schedules that can be used in real systems. Metaheuristics provide significantly better results than SPT
for the application case. The use of stochastic simulation to evaluate and improve schedules from the
deterministic optimization problem indicates that robust schedules are generated. In addition, we have
shown that, depending on the application, safety factors that can be multiplied by the demand, above a
certain size, can reduce their effect on preventing incompletely fulfilled demand positions.

Our approach can be further developed by using more-efficient forecasting techniques to predict model
parameters, by additional heuristics to generate schedules for the optimization model, and by combining
the simulation model with additional techniques to perform optimization based on simulation.
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