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ABSTRACT

Modern Manufacturing, known as Industrial Internet or Industry 4.0, is more than ever determined by
customer-specific products, that are to be manufactured and delivered in given lead times and due-dates.
Many of these manufacturing systems can be modeled as flow-shops where some of the processes can handle
jobs on parallel machines. In addition, complex manufacturing environments contain specific machine loops
or re-entry cycles where jobs might re-enter specific processes at some point of the flow-shop chain. A
specific server is assigned to a job the first time it visits a machine, and it is quite usual that this job
has to be processed by exactly the same server if it re-visits the machine due to quality issues. With the
goal of minimizing the makespan, this paper analyzes this complex flow-shop setting and proposes an
original discrete-event heuristic for solving it in short computing times. Our algorithm combines biased
(non-uniform) randomization strategies with the use of a discrete-event list, which iteratively processes as the
simulation clock advances. A series of computational experiments contribute to illustrate the performance
of our methodology.

1 INTRODUCTION

Manufacturing in the era of cyber-physical systems and Industry 4.0 is determined by a growing demand
for customer-specific products, that are to be manufactured and delivered in given lead times and in-time.
For the operative production scheduling process, questions like “When to release a specific lot at latest
to deliver in-time?” are answered by experience or though the use of backward-oriented scheduling. In
practice, uncertainty is generally not taken into account. In a modern industrial setting with mixed-model
manufacturing lines with a high degree of automation, things get even more complex. Especially, in
semiconductor manufacturing, the production system itself has a high complexity (re-entry cycles, several
hundreds of process steps, etc.). A more sophisticated answer could be delivered by the use of simulation-
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optimization approaches. During planning, construction, and ramp-up, this methods are well established,
but they are rarely adopted for operational support during the decision-making process.

In real-life applications of scheduling, it is possible that some jobs have to visit certain machines more
than once. This repetitiveness may generate conflicts among jobs, at some machines and at different levels
during the whole process. Moreover, later operations may also interfere with earlier required operations
in the same machine on other jobs (Chen et al. 2008). When each machine processes a certain set of jobs
and some of these need to be processed more than once, the classical permutation flow-shop scheduling
problem is transformed into the so-called re-entrant permutation flow-shop scheduling problem or RPFSP
(Graves et al. 1983). This paper analyzes an enriched version of the RPFSP in which some machines
might also be able to process several jobs in parallel, i.e., they are multi-server machines. Despite being
inspired in a real-life case from a German manufacturing industrial partner, this rich variant of the RPFSP
with multi-server machines has not been frequently addressed in the existing literature.

Accordingly, the main contributions of this work can be stated as follows: (i) the modeling of a multi-
server flow-shop problem with machine re-entrance (loops); (ii) an original biased-randomized optimization
heuristic, which also integrates concepts from discrete-event simulation to deal with the complexity of
the system in a natural way; (iii) a review of related work in the existing scientific literature; and (iv) a
series of computational experiments that illustrate the application of the proposed methodology for solving
such complex flow-shop scenarios. Biased-randomized optimization algorithms are extensively discussed
in Grasas et al. (2017). In a nutshell, they make use of Monte Carlo simulation and skewed probability
distributions to introduce a non-uniform random behavior into a constructive heuristic. Thus, the heuristic
is transformed into a more powerful probabilistic algorithm, which can be run in virtually the same
wall-clock time as the original heuristic if parallelization techniques are employed. Some applications of
these algorithms include distributed-assembly flow-shop problems (Gonzalez-Neira et al. 2017), integrated
routing and facility-location problems (Quintero-Araujo et al. 2019), arc routing problems (Gonzalez-Martin
et al. 2012), and e-marketing problems (Marmol et al. 2020). Similarly, discrete-event heuristics — i.e.,
the combination of heuristics with concepts from discrete-event simulation — have been employed in Fikar
et al. (2016) to deal with optimization problems with synchronization issues. To the best of our knowledge,
however, this is the first time that both techniques are hybridized to solve a complex flow-shop problem
as the one analyzed here.

The remainder of the paper is organized as follows. Section 2 provides a more detailed description
of the scheduling problem studied in this paper. Section 3 reviews related work on similar flow-shop
problems. Section 4 proposes a novel optimization heuristic that incorporates concepts from discrete-event
simulation. Section 5 carries out a series of numerical experiments to test our methodology. Section 6
analyzes the obtained results. Section 7 discusses some preliminary managerial insights derived from our
work. Finally, Section 8 summarizes the main findings of this paper and points out some future research
lines.

2 A DETAILED DESCRIPTION OF THE PROBLEM

Figure 1 displays a simple but illustrative example of the type of flow-shop systems we are considering
in this work. As it can be seen at the top part of the figure, jobs arrive at the system on the left side, are
processed in machine M1, and then go to machine M2, where they are processed either by server M2-1 or
by server M2-2, which are in parallel. After being processed by one of these servers, jobs reach machine
M3, from which they come back to the previously visited server in machine M2 before returning to machine
M3 — notice that once a job i is processed in a parallel server k of a machine j, any time i re-enters the
same machine j it has to be processed by the same server k as before. After that, jobs leave the production
system — since they have been completed already. Due to the existence of this re-entrance loop, each job
has to be processed twice in one of the parallel servers of machine M2 as well as in machine M3. Actually,
the fact that jobs are processed in parallel machines makes it possible for some jobs to overtake others
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during the parallel processing, i.e., the order in which jobs leave the system need not correspond to the
order in which jobs entered it.
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Figure 1: A simple example illustrating the multi-server flow-shop problem with machine re-entering.

The bottom part of the figure contains a typical time-versus-machine representation of a flow-shop
problem. Thus, for instance, job 1 starts in machine 1 at time 0. Then, it moves to the first available server
in machine 2 and, after that, it is processed by machine 3. However, before re-entering its previously
visited server in machine 2, it has to wait until job 3 is processed there. Once processed twice by the
first server in machine 2, job 1 returns to machine 3 for a second service, but it has to wait until machine
3 is available since it is currently occupied by job 2, which overtook job 1 in the parallel section of the
flow-shop due to using lower processing times in previous machines.

3 RELATED WORK

During the last decades, a wide range of approaches have been developed for addressing the RPFSP,
from exact methods to heuristic and meta-heuristic algorithms (Danping and Lee 2011). Regarding exact
methods, they have been typically formulated as integer programming problems. However, being a NP-hard
problem, the use of exact methods is limited to small- and medium-sized instances (Kaihara et al. 2010;
Lin et al. 2013). Due to the complexity of the RPFSP, some studies have focused on improving the
computational times of an optimization algorithm, while others have paid attention to the development of
an efficient heuristic (Pan and Chen 2003; Kim and Lee 2009; Yu and Pinedo 2020). For example, Gao
et al. (2015) present a three-step methodology based on the enhancement of an initial solution. The main
goals considered in these studies are: (i) to minimize the weighted sum of key device shortages; (ii) to
maximize the weighted sum of processed lots; (iii) to minimize the number of required machines; and (iv)
to minimize the makespan.

Regarding heuristic approaches, the more popular ones have been the constructive heuristics, as well
as those based on dispatching rules. For example, Choi and Kim (2007) designed and implemented a
local search algorithm based on simulated annealing with the main objective of minimizing the makespan.
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There is a wide variety of heuristics applied to small-sized problems, most of them focused on minimizing
the makespan (Jing et al. 2008; Jing et al. 2011). Similarly, Wu et al. (2018) developed four heuristics,
based on commonly used local search methods, in order to construct an approximate approach for solving
the RPFSP. In addition, the solutions generated by these heuristics are also employed as starting solutions
inside a simulated annealing metaheuristics.

Actually, metaheuristics have been frequently employed to solve the RPFSP. Among them, genetic
algorithms (GA) and tabu search algorithms, as in Chen et al. (2008), where all jobs are assumed to
follow the same path — which includes re-entrance in some machines. In a similar context, Mousavi et al.
(2018) extend the previous paper by including the total tardiness along with the makespan, thus solving a
bi-objective optimization problem. Amin Naseri et al. (2015) designed a mathematical model for solving
the RPFS with no-waiting re-entrant operations. Three different methods were presented: (i) a simulated
annealing; (ii) a GA; and (iii) a bottleneck-based heuristic. Comparing the solutions obtained by the
aforementioned algorithms (considering both small- and large-sized instances), the authors concluded that
their simulated annealing algorithm offered a better performance.

Regarding existing work on systems with parallel machines, Kim and Lee (2009) suggested and tested
two heuristics for solving the re-entrant flow-shop problem with unrelated parallel machines. The main
objective is to minimize the makespan while considering the total tardiness as a key negotiation tool with
the customer. Likewise, Jia et al. (2013) presented a real-time closed-loop control dispatching heuristic
for parallel machines with incompatible job families, limited waiting time constraints, re-entrant flow and
dynamic arrivals. The scheduling is carried out by batches. If a batch family is performing a job on one
machine, it cannot be interrupted until the entire batch ends. Moreover, the re-entrant order is subjected to
the waiting time: if the waiting time exceeds a certain threshold, the batch must go through the previous
machine again (thus repeating the sequence). In that case, the dispatching heuristic method is transformed
into a GA to minimize the total weighted tardiness. Eskandari and Hosseinzadeh (2014) deal with a
hybrid flow-shop scheduling problem with re-work. For solving this problem, some heuristic methods
based on dispatching rules and a variable neighborhood search are proposed. Although it is considered to
include re-entrant flow, the jobs returned to the machines are only those with defects. Moreover, among
the assumptions of the problem is that the machines are always available.

4 A DISCRETE-EVENT HEURISTIC

Figure 2 shows a conceptual schema of the solving approach. It relies on a multi-start framework that
iteratively calls a biased-randomized and adapted version of the well-known NEH heuristic for the classical
permutation flow-shop scheduling problem (Nawaz et al. 1983). Biased-randomization (BR) techniques
make use of skewed probability distributions to introduce non-uniform randomization into a constructive
heuristic such as the NEH, thus transforming it into a probabilistic algorithm able to generate many ‘good-
quality’ solutions to the problem in short computational times. Among other applications, these techniques
have been recently applied in solving different flow-shop scheduling problems (Ferrer et al. 2016), vehicle
routing problems (Belloso et al. 2019; Dominguez et al. 2016), capacitated location routing problems
(Quintero-Araujo et al. 2017), and even to extend and enhance traditional metaheuristic frameworks (Ferone
et al. 2019).

The NEH heuristic, however, is designed to minimize the makespan in a flow-shop scenario with
single-server machines and without any re-entering point. Hence, one of the main challenges in this work
was to adapt the way this heuristic computes makespan to a new multi-sever flow-shop scenario with
re-entering machines. Notice that this computation is not straightforward due to the fact that some jobs
must have to wait for the proper server to be available. This issue is even more troublesome if we force
the job to repeat the previously visited server each time it re-enters a given multi-server machine. Hence,
in order to compute the makespan associated with a given solution (permutation of jobs) generated by the
constructive BR heuristic, we employ a discrete-event deterministic simulation: two types of events are
considered, the starting of a job i in server k of a machine j at time ¢, denoted as (7,i,0, j, k), and the ending
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Figure 2: Conceptual schema of the solving approach.
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of a job i in server k of a machine j at time ¢, denoted as (z,i,1, j,k). The discrete-event list is initialized
by considering the ending events generated by the list of jobs (1,2,...,n) that enter in machine M1. Then,
the simulation clock is started and the next event in the list is extracted from it and processed. On the one
hand, ending events might free the corresponding server / machine and also schedule new starting events
for the associated jobs in case they have not completed the whole sequence of machines yet (including
re-entering points). On the other hand, starting events will block the required servers or machines and will
also generate new ending events associated with the starting ones. This generation of new events continues
until the last job is processed by the last server / machine, which defines the solution makespan.

The entire process describe above is repeated in a multi-start framework as far as the elapsed time does
not exceed the maximum computational time allowed by the manager (or any other finishing criterion).
Because of the BR effect, each iteration is likely to provide a different solution. Once this maximum time
is reached, the best-found solution (the one with the lowest makespan) is returned by the algorithm.

5 COMPUTATIONAL EXPERIMENTS

The proposed BR algorithm has been implemented using Python 3.7 and tested on a workstation with a
multi-core processor Intel Xeon E5-2650 v4 with 32GB of RAM. To the best of the authors knowledge, there
are no public instances for the multi-server flow show-shop problem with machine re-entering. Hence, we
have adapted some of the well-known instances proposed by Taillard (1993) for the classical permutation
flow-shop problem, which are available from Taillard (2020). The extension incorporates both multi-server
machines as well as machine re-entering. In particular, in an instance with m machines, we have modified
machine m — 2 so that it is a 2-server machine (i.e., it can process two jobs in parallel). Also, we have
added a re-entering point (loop) just after machine m — 1, so the first time any job finishes being processed
by machine m — 1 it has to re-visit the same server as before in machine m — 2.

Table 1 displays the obtained results as follows: the first column shows the original name of the instance,
which also indicates the number of jobs and machines (e.g., instance m_i_j has i jobs and j machines).
The next block of columns belong to the classical version of the problem, with single-server machines and
without re-entrance. This scenario is considered to show that the solutions provided by the methodology
(OBS) are relatively close to the best-known solutions from the literature (BKS), which allows to validate
the performance of the described algorithm. Obviously, there is gap between OBS and BKS, since the
methodology is not specifically designed to solve the classical version of the problem. Hence, it does not
make use of the traditional local search operators or the fast makespan computations — which are invalid for
scenarios with multi-sever machines and loops. The remaining three blocks are the most interesting ones,
since they consider the above mentioned real-world problem; the results obtained for the three extended
scenarios show: (i) multi-server without re-entrance loops; (ii) single-server with re-entrance machines;
and (7ii) multi-server with re-entrance machines.

6 ANALYSIS OF RESULTS

Figure 3 summarizes the results provided in Table 1. Notice that, despite being designed for the general case
with multi-server (parallel) machines and re-entrance points (loops), the discrete-event heuristic performs
reasonably well when applied to the classical single-sever flow-shop without loops (series scenario). For the
tested instances, the discrete-event heuristic provides an average makespan of 1,392.7, while the best-known
solution in the literature — obtained with state-of-the-art metaheuristics —is 1,336.3. This result contributes
to validate the approach, specially taking into account that metaheuristics for the classical flow-shop problem
make use of analytical expressions to compute the makespan, together with local search operators and data
structures that allow for a more efficient exploration of the solution space. Unfortunately, these analytical
expressions, operators, and data structures cannot be employed in the general scenario with multi-server
machines and loops.
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The boxplot also shows that considering the multi-sever (parallel machines) option always improves the
makespan when compared with the associate series scenario, e.g.: while the series-without-loop scenario
gives an average makespan of 1,392.7, the substitution of one single-server machine by a two-server
machine reduces this value to 1,372.0. Likewise, while the single-server-with-loop scenario provides an
average makespan of 2,397.3, its parallel counterpart reduces this value to 2,265.5. Finally, notice that
scenarios with a loop always provide a higher makespan than the equivalent scenarios without re-entrance
points, which is coherent with the authors expectations, since the jobs are processed multiple-times on the
Server.
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Figure 3: Makespan comparison among different scenarios and solving approaches.

7 MANAGERIAL INSIGHTS

While the flow-shop literature is vast, real-life systems are diverse and they generate rich scheduling
problems with special characteristics that, when considered altogether, impose new challenges that have
been seldom analyzed in previous works. That is the case, for instance, of flow-shops with multi-server
machines and re-entering points. In these complex scenarios, even traditional metaheuristic algorithms
might find difficulties to generate reasonably good solutions due to the unpredictable time dependencies
generated by the combination of loops and parallel servers. However, discrete-event heuristics — like the one
proposed here — can deal with these synchronization issues in a quite natural way. Also, by incorporating
simulation concepts inside a heuristic optimization framework, these simulation-optimization algorithms
go beyond classical simulation-alone methods, which lack the capacity to efficiently explore the solution
space.

All in all, these simulation-based heuristics constitute a new managerial tool that can support decision
making in the manufacturing and process industries. Due to the (in comparison to mathematical optimization)
lower computation times for the heuristic approach, an real-life application for operational decision support
can be regarded as realistic. Additionally, with the use of stochastic input factors, uncertainty known
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from the real-world setting can be considered in operational decision making. Here, the simulation-based
approach might especially prove beneficial.

8 CONCLUSIONS AND FUTURE WORK

This paper has addressed a challenging permutation flow-shop problem with multi-server machines and
re-entrance points. Despite its relevance for some of the project’s industrial partners, this problem has been
rarely analyzed in the existing scheduling literature. The main complexity in solving the problem lies in
the computation of the makespan, since the combination of parallel servers and loops introduce subtle time
dependencies in the order in which jobs are processed by the machines.

Accordingly, in order to compute the makespan in such a system, a discrete-event simulation is run.
This simulation uses two types of events: the starting of a job in a machine, and the end of a job in
a machine. The simulation is then encapsulated into a biased-randomized heuristic, which allows us to
test different promising configurations of jobs. Computational results show that simulation-optimization
scheduling approaches — as the one proposed here — can be beneficial as a decision-support technology.
This is specially the case for operational decisions in complex manufacturing settings as the ones that can
be found in modern, highly automated, industry 4.0 environments.

As future research lines, the following ones can be highlighted: (i) to test the algorithm in a real-
life manufacturing environment and quantify how it can improve the results obtained by current industrial
practices; (ii) to consider optimization objectives other than makespan, e.g., to maximize rewards for partially
completed jobs, etc.; (iii) to consider backward-oriented approaches, where simulation-based scheduling
generates a specific production plan for a given order set with fixed due-dates under the consideration of
stochastic behavior; and (iv) to extend the algorithm into a full simheuristic one (Juan et al. 2018), so it
can also consider stochastic processing times.
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