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ABSTRACT

Removing bottlenecks that restrain the overall performance of a factory can give companies a competitive
edge. Although in principle, it is possible to connect multiple detailed discrete-event simulation models
to form a complete factory model, it could be too computationally expensive, especially if the connected
models are used for simulation-based optimizations. Observing that computational speed of running a
simulation model can be significantly reduced by aggregating multiple line-level models into an aggregated
factory level, this paper investigates, with some loss of detail, if the identified bottleneck information from
an aggregated factory model, in terms of which parameters to improve, would be useful and accurate enough
when compared to the bottleneck information obtained with some detailed connected line-level models.
The results from a real-world, multi-level industrial application study have demonstrated the feasibility of
this approach, showing that the aggregation method can represent the underlying detailed line-level model
for bottleneck analysis.

1 INTRODUCTION

Multi-objective optimization (MOO) of discrete-event simulation (DES) models representing manufacturing
systems, also known as simulation-based optimization (SBO), is moving from a research topic to industrial
applications at an increasing rate (Negahban and Smith 2014). Utilizing simulation and optimization to
improve production processes gives companies a competitive advantage and can increase the success of
planning and commissioning new production lines (Dudas et al. 2014).

The concept of the fourth industrial revolution, commonly referred to as Industry 4.0, has become
important for companies to respond to rapidly changing markets and conditions (Goienetxea Uriarte et al.
2020). Industry 4.0 also incorporates smart manufacturing wherein factories can utilize diagnostic, predictive,
and prescriptive analytics. Diagnostic analysis implies identifying root cause and effect on problems by
analyzing past and current performance. Predictive analysis is the typical use of a simulation model where
”what if” scenarios are tested and compared, such as changing buffer sizes, new demand scenarios, or
introducing new variants. Finally, prescriptive analytics offers a range of solutions to a problem and can help
develop future courses of action (Jain et al. 2015). Offering accurate prescriptive advice to a decision-maker
on the factory level, utilizing MOO with genetic algorithms, is the aim of this paper.

The highest level in the manufacturing hierarchy for this paper will be the factory level, here referred to
as the factory. The factory contains production lines, each composed of interconnected workstations and/or
machines forming a production flow to transform raw material into intermediate products and finished goods.
Machine will be used to refer to both physical machines and workstations in the remainder of this paper.

There are issues with SBO, among others, the demanding computational time needed to complete
an optimization run. The required computational time of the optimization is based on model running
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time, multiplied by the number of replications used to obtain statistically sound results, and multiplied
by the number of iterations, or generations, of the specified genetic algorithm. Time needed to complete
a simulation project, one of the grand challenges mentioned by Fowler and Rose (2004), increases time
required for an optimization study. The field of model simplification is not well established, but interest is
increasing over time, with special interest at the Winter Simulation Conference and in the semiconductor
industry (van der Zee 2019; Robinson 2011). Approaches to decreasing or reducing the computational cost
of a simulation model are studied by several authors, utilizing different techniques (Chwif et al. 2006;
Lefeber and Armbruster 2011; Duarte et al. 2007). One approach is model abstraction or aggregation of the
coded model, previously reported by Lidberg et al. (2018), enabling SBO on the factory level.

Through a real-world, multi-level industrial application study, this paper investigates if the same set of
parameters identified in an aggregated model on the entire factory level matches the parameters identified
with a simulation model that is a connection of multiple detailed line-level models. If the same parameters
are identified with the two different modeling approaches, then it can demonstrate the feasibility of the
aggregation approach and would allow a decision-maker to prioritize improvement areas of the entire
factory, be assured of the efficacy of the improvements, without the need of resorting to the computationally
expensive detailed line-level models to create the factory model.

To identify bottlenecks on the parameter level and prescribe the sequence in which to remove them, the
SCORE method has been developed and studied in multiple applications and domains (Bernedixen et al.
2015; Ng et al. 2018). SCORE utilizes the Theory of Constraints by Goldratt and Cox (1984) and prescribes
the removal of these constraints by utilizing SBO, most often with the genetic algorithm NSGA-II or
NSGA-III (Deb et al. 2002; Deb and Jain 2014). The advantage of this method is the ability to identify, not
just machines – as in Roser et al. (2002) – but which operating parameters, e.g., processing time per variant,
as bottlenecks and ordering them in the sequence most beneficial for removal. By identifying parameters
related to product variants as bottlenecks the production schedule is also considered. Each parameter is
assigned either its original value or an improved value. The improved value provides an indication of the
effect if the removal of the bottleneck, e.g., decreasing the processing time by 20%, has taken place. Even
though it could be difficult to implement the improvement in practice, it is paramount information for the
decision-maker if the optimization can show where the minimal improvement in the system can provide the
largest leverage of the overall system performance. The number of improvements is set as a minimization
objective in a multi-objective optimization study along with other objectives of interest. The parameters
included in the Pareto-optimal front are then tallied resulting in prevalence and ranking. The most common
parameter, i.e., with the highest frequency of inclusion in the non-dominated solutions, is considered to be
the main bottleneck in the system.

The paper is organized as follows; Section 2 details the proposed optimization experiment and presents
the application study and factory model, Section 3 presents the results of both factory and line-level
bottleneck optimizations, and the paper concludes with conclusions and suggestions for further work while
also summarizing the contributions to science and practice.

2 METHOD

This section beings with a brief explanation of the aggregation technique used in the optimization on the
factory level is shown in Section 2.1. Several of these modules are used to build a high-level model of
the industrial system, which are detailed in Section 2.2. Lastly, the optimization settings and setup are
explained in Section 2.3.

2.1 Aggregate Model

To conserve computational resources and enable the optimization of several production lines in a factory,
using simple line models is a requirement. Several methods are used in literature based on numerical,
analytical, or modeling approaches applied to the conceptual model or coded model (Frantz 1995; Robinson
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2011; van der Zee 2019). This study uses a model aggregation method where a small number of components
and parameters are used to construct a generic model that is reconfigurable to model an arbitrary production
line. A schematic description of the generic simulation model is shown in Figure 1, and the method is
further detailed in Lidberg et al. (2019), Pehrsson (2013), and Pehrsson et al. (2015).

LineInput LineWIP LineOutput

WIPControl PalletSource

Filled
Pallets

Filled
Pallets

Products
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Products
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Empty
Pallets

Empty
Pallets

Figure 1: Schematic description of the aggregation technique, adapted from Lidberg et al. (2019).

The basic principle of the modeling technique is a closed-loop pallet system where pallets transport the
products from entry to exit, called LineInput and LineOutput respectively, while keeping work in progress
(WIP) at an average level. After releasing the product at LineOutput, the pallet enters a parallel processing
object, WIPControl, acting as a delay mechanism. The processing time, i.e., return delay, in WIPControl is
determined by an exponential distribution function with a mean value, or scale parameter, derived from
Little’s Law (Little 1961), shown in Equation 1. Following the time spent in WIPControl, the pallets are
available for parts at LineInput. Additions to the technique, made in Lidberg et al. (2019), allows for variant
based setup improving the accuracy of the technique. The data input required are Availability, mean down
time MDT, maximum WIP MaxWIP, average WIP AvgWIP, processing time PT, and minimum lead time
MinLT. The technique is built using generic modeling components of the selected DES software enabling
the technique to be a drop-in replacement of production lines or other components without reconfiguration
of the preceding or succeeding operations, and offers near-constant computational time irrespective of
parameter settings.

E[X ] =
(MaxWIP−AvgWIP)∗ProcessingTime

Availability
(1)

2.2 Industrial System

The system studied is an automotive engine manufacturing plant with three production stages: machining,
automated assembly, and final assembly. Each stage is separated by a finished goods inventory (FGI) with
products to be delivered to the subsequent stage by means of automated transport. There is one FGI for
each machining component, one shared for the automated assemblies, and one FGI after final assembly
which has been omitted in the model. The industrial system used in the application study, the same as
for Lidberg et al. (2018), has been extended with several new production lines, both for machining and
assembly. This is due to the introduction of new product families, requiring the machining and assembly
of additional unique parts. These extensions have increased the complexity of the model, as well as the
complexity of the optimization problem.

Due to the historical organizational setup, the purchasing and development of each component type
and assembly have been led by individual teams. Each team has overseen setting the cycle times, and
availability levels, to achieve a yearly production target for the production lines they control. This has led
to differences between the capabilities of the different production lines. Differences can be seen in Table 6
for the PT and Availability targets, which results in the need for different shift patterns. Access to the
application study has been conditional on obfuscating input and output data to protect company assets,
although all data relations have been preserved.
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2.2.1 Industrial System Model

Each production line is modeled in detail and regularly updated with input data. From these detailed
models, data can be extracted to populate the aggregated factory model. The updated and extended model
for the industrial system application study is shown in Figure 2. The machining lines (ML) are identified
according to the type of component produced {A, . . . ,D}, and numbered for each parallel line of the same
component. The automated assembly lines (AA) and final assembly lines (FA) are numbered sequentially
for each type of assembly. The inputs of raw material to the machining lines are infinite and only the
main products are modeled in the lines, sub-assemblies are omitted. To allow for the introduction of new

MLA1-3

MLB1-5

MLC1-2

MLD1-2

FGI

FGI

FGI

FGI

ToAA AA02

AA01

AA03

FGI FA03

FA02

FA01

FA04

FA05

Dispatch

Production FGI Transport

MixedProduct Family 1 2 3

Figure 2: Layout of the model where machining lines are condensed. ToAA represents the automated
transport to the different AA-lines and Dispatch is the output for the model. AA and FA lines are also
dedicated to one product family compared to ML lines which are mixed.

product families additional production lines have been added. Component A has received the machining
lines MLA02 and MLA03, and MLB03 and MLB04 is added for component B. For component C and D, the
machining lines have been reconfigured and extended for the new variants. To assemble the new products;
one automated assembly line AA03, and one final assembly line FA05 has been added while the others have
been reconfigured.

The machining lines are modeled with one or several aggregated objects determined by two factors: size
of the intermediary buffers in the line, and existing logical partitioning. The first factor where a machining
line has a large internal buffer – intended for decoupling between shifts or decoupling several hours of
production – the line will be modeled in parts. In the case of MLA01, three aggregation objects are used
separated by large buffers, each aggregation object having separate parameters. The second factor, existing
logical partitioning, divides a production line into several aggregation objects based on existing or arbitrary
partitions of the physical system, e.g., team areas, production stages, data collection areas, production rate,
or quality containment areas.

Several new variants have been added to enable the assembly of new products and the same variant can
also be produced from multiple machining lines, thus adding additional complexity. Assignment of variants
to machining lines is fixed. Each production line is running full output on every shift, with different shift
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patterns, see Table 6. The real industrial system can vary the production speed for different shifts to better
match the requirements of the production plan. The production plan in the model is fixed. Improving the
output of the whole plant is of larger interest for this study than matching the production plan. This also
entails that production will continue, even though the production limit has been reached for that shift, in
contrast to the real system where adherence to the production plan is highly prioritized.

2.3 Multi-Level Optimization

Optimizing on the factory level, to identify bottlenecks on the line-level, ensures that the improvements
suggested are of benefit to the total system. The validity of the factory model is in part transitive, by using
input data from valid detailed models of each production line to construct the aggregated models, and in
part by comparison with historic plant output. In Section 1, the SCORE method of identifying bottlenecks
in a production system was explained. The method relies on testing the effects of removing constraints by
greatly improving certain parameters. The settings used for the optimization on factory level is detailed
in Table 1, where each parameter, its abbreviation and symbol, the respective improvement value, and
direction is shown.

The improvement to α is dependent on the original value of each production line shown in Table 6. For
lines with α < 80% the value is raised to 95%, otherwise, the value is raised to 98%. This is to mitigate
the large differences in α between the different types of lines. Improving ζ , reducing the value by 20%,
could result in a negative value in Equation 1 for cases where ε and ζ are close to equal, e.g., a production
system with a pallet loop. Instead, by improving ζ , ε is also improved by the same amount. SCORE
utilizes Boolean parameters where parameters are either improved, 1, or not improved, 0. Parameters used
this way will be denoted with the hat operator, e.g., α̂ , all subject to {0,1}. The two objectives used are
maxOut = max

(
∑out put

)
for maximizing output, and minImp in Equation 2 for minimizing the number

of improvements. The settings for NSGA-II are shown in Table 2.

Table 1: Improvements for each parameter shown with the abbreviation used and the direction of improvement.

Symbol Parameter Abbreviation Improvement Direction

α Availability Avb 10-15% Higher
β Mean Time To Repair MTTR 10% Lower
γ Minimum Lead Time MinLT 20% Lower
δ Processing Time PT 10% Lower
ε Average WIP AvgWIP 20% Lower
ζ Maximum WIP MaxWIP 20% Lower
η Setup time ST 20% Lower

minImp = min
( n

∑
i=1

(α̂i + β̂i + γ̂i + δ̂i + ε̂i + ζ̂i + η̂i)
)
, where

n = number of aggregation objects
(2)

3 RESULTS

This section presents the results for the factory level optimization in Section 3.1, choosing a line to further
optimize in Section 3.2. After running a new optimization on the line-level, the bottleneck parameters
identified are tallied and compared to the bottlenecks on the factory level in Section 3.3.
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Table 2: Settings for the NSGA-II and NSGA-III optimization algorithms.

Parameter Name NSGA-II NSGA-III

Population size 120 200
Mutation type Uniform Uniform
Mutation distribution index 20 20
Mutation probability 0.0060241 0.0019342
Crossover type Uniform Range Uniform Range
Crossover distribution index 20 20
Crossover probability 0.9 0.9
Reference points 190

3.1 Factory Level Optimization

Following the SCORE methodology, the frequency of occurrence of a parameter in the non-dominated
solutions are calculated for each improvement shown in Figure 3. The increases in output compared to the
number of improvements made is shown in Figure 4, with diminishing returns clearly visible for minImp > 5.
Comparison of the impact for different parameters is shown in Table 3, where six improvements are listed.
The table shows improvements to the top bottlenecks identified in Figure 3.
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Figure 3: Top fifteen issues from the optimization on factory level, calculated from the first Pareto-optimal
front. Frequency is the percentage of inclusion of the parameter in the solutions on the Pareto-optimal front.
Sub-lines to each line are indicated by superscript.

The first four bottlenecks listed in the frequency chart have the most effect on the objective. For
minImp = 5 and minImp = 6, the best solutions are not corresponding to the frequency chart. Instead,
those parameters are located at position 11 and 13. The results prescribe an approach to improving the
total manufacturing output from the factory, by priority and which parameter to improve. Compared to the
baseline of zero improvements, removing five bottlenecks results in a possible improvement of over 12%.
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Figure 4: Results from the optimization on factory level showing the first 50 Pareto-optimal ranks with
rank one solutions also shown connected by a red line. Improvements = minImp and Output is the total
amount of products produced during the statistical collection period.

Table 3: Improvement to maxOut in percent, compared to baseline of zero improvements, for different
combinations.

MLC1α̂ MLC2α̂ MLD1α̂ MLC2γ̂ AA02γ̂ AA02
δ̂

minImp maxOut

0 0 0 0 0 0 0 0.00%
0 1 0 0 0 0 1 3.19%
1 0 1 0 0 0 2 6.34%
1 1 1 0 0 0 3 8.55%
1 1 1 1 0 0 4 10.45%
1 1 1 1 0 1 5 12.13%
1 1 1 1 1 0 6 12.30%

3.2 Line-Level Optimization

The optimizations performed on the line-level models are configured differently from the factory-level
optimizations. This is because, for the line level, the main interest lies in finding the improvements to
a specific parameter already identified as significantly influencing on the factory level. MLC2 had three
parameters in the bottleneck ranking for the factory level and will be optimized with SCORE. MLC2 is an
automated machining line, where the machines are serviced by gantries and produces five different variants.
Machining lines for component C require setup between variants, making them sensitive to production
schedule changes and prone to running large batches, which in turn increases the need for a large FGI.

Three parameters from the factory level optimization points to MLC2; α , γ , and η . Improvements to α

and η on the factory level are directly connected to improving the parameter of individual machines on the
line-level. Improving γ for this line can be accomplished by the following actions: increasing availability of
individual machines, lowering mean time to repair, decreasing buffer sizes, decreasing setup times, i.e., η ,
or changing the production schedule. Thus, the parameters affect each other, improving α or η would also
affect γ .
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A SCORE optimization with NSGA-III was setup with new settings, shown in Table 2, and objectives.
An altered objective to determine the number of improvements made on the line-level is shown in Equation 3,
with parameters shown in Table 4. The hat operator will also be used here to denote an improved parameter.
The maxOut objective in the previous optimization is unchanged. To find results where also γ is improved,
a new optimization goal is added as objective three, minLT = min(γ). Improving η will benefit both
objectives and is therefore not used as a separate objective.

minImpMLC2 = min
( n

∑
i=1

m

∑
j=1

α̂i j +
n

∑
i=1

m

∑
j=1

β̂i j +
n

∑
i=1

k

∑
j=1

δ̂i j +
n

∑
i=1

η̂i +
s

∑
i=1

θ̂i

)
, where

n = number of machines,

m = number of failure profiles for each machine,

s = number of buffers, and

k = number of variants for the system

(3)

Table 4: Improvements for each parameter on the line-level shown with the abbreviation used and the
direction of improvement. Subscripts for α and β denotes failure profiles, while for γ they denote product
variants.

Symbol Parameter Abbreviation Improvement Direction

α1... j Availability Avb 15% Higher
β1... j Mean Time To Repair MTTR 50% Lower
δ1...k Processing Time Per Variant PTV 25% Lower
η Setup Time ST 25% Lower
θ Storage Capacity SC 25% Lower

After running the optimization for 40,000 iterations, the results are shown as two sets of figures,
Figure 5 for improving γ , and Figure 6 for improving maxOut. Each result is ranked by only two objectives,
minImp and either maxOut or minLT. The frequency charts are showing results for the first Pareto-optimal
front, and the scatter plots are showing minImp≤ 20 in the first Pareto-optimal rank.

Summarizing the improvements to minimize γ , the most frequent are α̂2, indicating the second failure
profile designated for infrequent longer failures, and η̂ . Most notably, the lack of superscript in the parameters
with α̂2 shows that single sequential machines are the most affected. OP0160P1, which denotes the gantry
serving machines in operation group 160, is sensitive to both α̂1 and α̂2; outages in the gantry affects the
whole operation group. To maximize output of MLC2, many parameters are shared with the bottlenecks for
minimizing γ , e.g., α̂2. This objective indicates that improvements to δ , particularly for machines early in
the production line, such as OP0005, are effective improvements.

MOO with conflicting objectives will provide a number of trade-off solutions, where none of the
different solutions, in the same Pareto-optimal rank, are strictly better than another solution for all objectives.
A summary of the most common parameters for the two extremes when applying ten improvements is
shown in Table 5. The important improvements for minLT are α̂2 and η̂ , while for maxOut, the most
important improvement is α̂2.

3.3 Line Improvements Applied to Factory Level

Removing a bottleneck, in SCORE terminology, implies an improvement of 10%−50% depending on the
parameter and setting. Achieving the exact improvement may not be feasible, economically or technically,
and the ease of implementation can differ between improvement types. A small improvement was chosen by
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Figure 5: Frequency chart for the top five bottlenecks and a scatter plot showing the first Pareto-optimal
front for Improvements = minImpMLC2 cf. minLT, minImpMLC2 ≤ 20.

Table 5: Best trade-offs for either objective after applying ten improvements summarized by type of
improvement. Values are compared to the baseline of zero improvements.

α̂1 α̂2 β̂ δ̂ η̂ θ̂ maxOut minLT

0 4 1 0 5 0 1.07% -14.8%
1 5 2 1 1 0 1.83% -11.4%
1 3 0 3 2 1 2.37% -8.6%
1 4 2 1 1 1 4.02% -7.4%
0 5 1 2 1 1 5.53% -2.2%

increasing α by 2% and γ by 10%, delivering an increase of 5% in output for MLC2. Involving industrial
engineers in the process of determining feasible improvements would increase the confidence in this value.
On the factory level an improvement of 1.1% for maxOut was recorded. Although a small increase, the
value of the finished products is higher than intermediate products in MLC2.

4 CONCLUSIONS AND FURTHER WORK

A multi-level MOO for an industrial application study has been performed where bottlenecks identified
on the factory level has been improved in the context of the line-level, thus prescribing an improvement
order beneficial to the entire system. Issues identified on the aggregated factory level was availability, lead
time, and setup time for a particular line. These parameters were also found to be the most significant
bottlenecks on the detailed line-level. This shows, albeit limited in scope, that an aggregated model on the
factory level can identify relevant bottlenecks on the line-level and, therefore, gives a decision-maker on
the factory level actionable improvement suggestions and a priority for investments without the need of
connecting detailed line-level models. These improvements are also verified to be of benefit to the total
industrial system avoiding sub-optimizations which can be introduced if only optimizing on the line-level.
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Figure 6: Frequency chart for the top five bottlenecks and a scatter plot showing the first Pareto-optimal
front for Improvements = minImpMLC2 cf. maxOut, minImpMLC2 ≤ 20.

For further work, increasing the speed of the factory optimization, further enhancements to the aggregation
model can be evaluated, and variance reduction techniques could be implemented to reduce the number
of iterations needed. Another point of interest would be adding shifts combined with a variable speed
parameter to simulate staffing requirements for a specific shift pattern. To improve the decision support to a
decision-maker, adding economic parameters to the optimization, with costs for applying improvements on
the line-level, would be beneficial. Automating the chain of generating data from detailed line-level models,
populating or generating the aggregated factory model, running the multi-level optimization, and returning
the improvements would increase the benefit for the industry.
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Table 6: Settings for each line in the factory level simulation with superscripts for sub-lines. Superscripts in
the Line column shows the number of sub-lines. FA lines are identical. Shift parameters are inclusive and
denotes, from 1 to 5: day, evening, night, weekend, and weekend nights. The data has been altered to
protect company assets, although all data relations have been preserved.

Line Shift PT (s) Avb (%) MTTR (s) AvgWIP MaxWIP MinLT (h)

MLA13 4 30 85 300 4001, 3002, 3503 6001, 4002,3 21,2, 11

MLA2-33 4 60 801, 852 900 4361, 1002 7541, 2002 4.51, 12

MLB12 4 551, 532 90 380 250 300 21, 12

MLB22 5 53 901, 852 380 250 300 21, 12

MLB32 4 53 90 380 250 300 21, 12

MLB42 5 190 95 6001, 3802 1501, 2502 2001, 3002 41, 12

MLC1 4 50 83 600 365 372 4
MLC2 4 45 83 600 350 500 5.1
MLD1 4 40 83 600 340 400 3
MLD2 4 60 83 600 540 600 5
AA01 3 45 85 300 120 135 1.3
AA02 3 40 85 300 110 125 1
AA03 3 45 85 300 120 135 1.3
FA 3 80 95 300 35 40 0.5
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