Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

DEEP Q-NETWORK MODEL FOR DYNAMIC JOB SHOP SCHEDULING PPROBLEM BASED
ON DISCRETE EVENT SIMULATION

Yakup Turgut
Cafer Erhan Bozdag

Department of Industrial Engineering
Istanbul Technical University
Macka
Istanbul, 34367, TURKEY

ABSTRACT

In the last few decades, dynamic job scheduling problems (DJSPs) has received more attention from
researchers and practitioners. However, the potential of reinforcement learning (RL) methods has not been
exploited adequately for solving DJSPs. In this work deep Q-network (DQN) model is applied to train
an agent to learn how to schedule the jobs dynamically by minimizing the delay time of jobs. The DQN
model is trained based on a discrete event simulation experiment. The model is tested by comparing the
trained DQN model against two popular dispatching rules, shortest processing time and earliest due date.
The obtained results indicate that the DQN model has a better performance than these dispatching rules.

1 INTRODUCTION

The most basic job shop scheduling problem (JSP) can be defined as follows: there are n jobs with a set
of operations that need to be processed by m machines. Each job has technical precedence order on m
machines. The key problem is sequencing n jobs on m machines by minimizing a measure of performance.
Although the JSP seems to be a simple problem in concept, it is a difficult problem to solve optimally
because it is an NP-hard combinatorial optimization problem (Morton and Pentico 1993; Garey, Johnson,
and Sethi 1976). Priority rules or dispatching rules are widely used for JSP because they are simple to use
and have low time complexity. The priority rules work as a function, assign a number to each job, and
determine which one to choose to process on a machine from waiting jobs. In the event of a tie, the job with
the smallest number is selected (Gere Jr 1966). On the other hand, computational algorithms and heuristics
based on dispatching rules have been extensively applied to solve the JSP optimally or near-optimally
(Chen and Matis 2013; Branke and Pickardt 2011; Cheng et al. 1996).

The JSP is called static JSP if the information related to the jobs to prepare the schedule is known
beforehand. If it is not known, it is called the dynamic JSP. Because real-world scheduling problems are
dynamic, researchers and practitioners have begun to focus on solving dynamic JSP rather than static JSP
over the past several decades. It can be seen that solving dynamic scheduling problems requires more effort
than solving static scheduling problems.

DJSPs can be interpreted as sequential decision processes and job scheduling decisions can be improved
by training an agent based on reinforcement learning algorithms. The literature review in Section 2 indicates
that there has been little work on employing RL algorithms for dynamic JSP. This study aims to construct
an RL model based on DQN (Deep Q-Network) to sequence jobs dynamically In this study deep Q-network
(DQN) model is applied to train an agent to learn how to schedule the jobs dynamically by minimizing
the delay time of jobs. The DQN model is trained based on a discrete event simulation experiment. The
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results of the proposed model show that the trained agent is able to schedule jobs that dynamically arrive
at the system while considerably reducing the scheduling cost according to two popular dispatching rules.

The remainder of this paper is organized as follows. Section 2 presents the literature concerning dynamic
JSP. Section 3 describes the application of the DQN model to dynamic JSP. The simulation experiments
and results are discussed in Section 4. Section 5 concludes the paper and discusses directions for future
work.

2 DYNAMIC JOB SHOP SCHEDULIG

Dynamic JSP has been studied over several decades. Ramasesh (1990) proposed a classification scheme
of scheduling problems. Based on this scheme, the JSP can be classified as a static model and dynamic
model according to the nature of job arrivals at the shop and the nature of requirements. The author defines
DIJSP as a dynamic model where jobs arrive at the shop randomly and intermittently over time.

DIJSP is not restricted to the nature of job arrivals. DISP can be extended by including other dynamic
events such as machine breakdowns, changes in due dates, order cancellation, the arrival of urgent orders
(Baykasoglu and Karaslan 2017; Fang and Xi 1997; Suwa and Sandoh 2007; Larsen and Pranzo 2019).
Baykasoglu and Karaslan (2017) developed a new approach based on a greedy randomized adaptive search
procedure to solve DJSP by taking into account the sequence-dependent setup times in addition to the above
dynamic events. With the addition of these dynamics events, DJSP is also called a dynamic rescheduling
problem in the literature. Larsen and Pranzo (2019) introduced a simulation-based framework for dynamic
rescheduling problems.

A major research effort focuses on developing new methods to solve the job shop scheduling problems
optimally or near-optimally at a reasonable time. Mohan et al. (2019) presented a survey on the development
of dynamic job shop scheduling, they indicated that scheduling methods can be classified as precise methods
and approximate methods. Simulation has been extensively used because of its capabilities of handling
the complexity of DJSP (Kiran and Smith 1984; Turker et al. 2019; Zhang et al. 2017; Xiong et al.
2017). Ramasesh (1990) presented a literature survey of simulation studies for DJSP. Turker et al. (2019)
proposed a decision support system based on simulation to increase the performance of dispatching rules,
they indicated that the DSS improves the following performance measures: workstation utilization, number
of tardy jobs, amount of waiting time of jobs.

On the other hand, reinforcement learning can be used as an alternative approach for solving DJSPs
(Zhang and Dietterich 1995; Gabel and Riedmiller 2008; Aydin and Oztemel 2000; Riedmiller and
Riedmiller 1999; Gabel and Riedmiller 2012; Wang and Usher 2005). Wang and Usher (2005) investigated
the application of Q-learning algorithm for dispatching rule selection problem on a single machine. The
results of the study demonstrate the potential of RL for application to the JSP. Gabel and Riedmiller
(2012) tackled DJSP as a sequential decision-making problem and applied policy gradient RL for solving
dynamic and static JSP. Aydin and Oztemel (2000) introduced an intelligent agent-based system for dynamic
scheduling problems. These researchers developed Q-III learning algorithm to select the most appropriate
dispatching rule dynamically. Gabel and Riedmiller (2008) considered the dynamic job shop scheduling
problem as a multi-agent learning problem.

3 DQN Model for DYNAMIC JOB SHOP SCHEDULING

In this section, we give the basics of the DQN model and describe how it is adopted to solve dynamic JSP.

3.1 DQN Model

DQN (Deep Q-Network) was developed by Mnih et al. (2015) to handle the reinforcement learning problems
with large state space. A successful Atari game implementation of the algorithm have inspired the RL
community to use it in other domains. It is a function approximation method and a deep convolutional
neural network is used as a value function approximation. Value function parameterized as Q(s,a;6;).
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Figure 1: Flow diagram of dynamic job shop production environment.

Where 6; are the parameters (weights of neural netowrk) of the Q-network at iteration i. The following
loss function is used to update the Q-network.

Li(8) = E(sq,9.) UD)[(r +ymax (', 6;) = Q(s,a,:6))*] (1
To satisfy the stability and divergence of the function, DQN uses experience replay and fixed Q-targets:

» Experience Replay: is used to generate uncorrelated experiences data for online training of deep
RL agents. It separates the learning phase and gaining experience. The discovered experiences
((s¢,ar,8.+1,r;)) are stored in a large table and then based on taking random samples uniformly
(U(D)) from this table, learning is performed. The main advantage of this approach, it provides
better convergence when training the DQN. On the other hand, to make experience replay more
efficient, Schaul et al. (2015) proposed prioritized experience replay. The key idea is that some
transitions can increase the learning performance more than from others.

* Fixed Q-Targets: In deep Q learning, to calculate the loss (aka TD (Temporal Difference) error),
we calculate the difference between the TD target and current Q value. But we do not know the real
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TD target. So using the same parameters for estimating the target and Q-value, cause the correlation
between them. DQN uses a separate network with a fixed parameter called 6, for estimating the
TD target.

The flow diagram of DQN for our problem is illustrated in Figure 2. The pseudo-code of the DQN algorithm
for our problem is given in Figure 3.

Observation
Observation Store Replay
N (st, at, St+1, 1t) —
Memory
Waiting Production
Area Environment
1. (s,a,s’r)
Action Q learning 2.(s,a,8"1) ‘
selection batch update n. (s, a, s",r)

at

Figure 2: Flow diagram of DQN for DJSP.

3.1.1 State Space

The next task selection depends on a lot of factors. These factors are given in Figure 1. The state space
of the learning problem should be defined based on these factors. The state space of the environment is
represented as follows:

i: Jobs

J: Machines/Buffers

X;: [Arrival Time, Processing Time, Machine Route, Due date, Importance]

Y;: [Current state (Idle/Busy), availability of buffer, current waiting jobs at the buffer]

These features makes state space too large to use tabular learning methods. So methods based function
approximation seems quite appropriate to estimate the value function of each state. In this study, DQN
(Deep Q-learning) is used as a function approximation method.

3.1.2 Action Space

In DQN, the intelligent agent needs to decide which job should be selected from the waiting jobs and
should send it to its first machine route. Also, it should determine its sequence among the jobs waiting on
the buffers of machines.
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Algorithm 1: DQN pseudocode for DJSP

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights 6
3 Initialize target action-value function O~ with weights 6 = 6~

4 Fitness value evaluation for each individual
5 for Episode 1:n do

6 for 1=1,T do
7 With probability € select a random action a;
8 otherwise select a,=argmin, Q(s;,a,0)
9 Execute action a;, observe reward r; and state s,
10 Store (s;,a;,#;,a;+1) into the replay memory (E)
11 Randomly select a minibatch of experiences from E
12
T, if it is a terminal state
rj+argming, Q(s;,a,07), otherwise
13 Perform a gradient descent step on DNN loss function (y; — Q(s;,a;,6))* with respect to 6
14 Every C steps set 0~ < 0
15 end
16 end

Figure 3: DQN pseudocode for DJSP.

3.1.3 Reward Mechanism

The main purpose of the reward mechanism is to help to reduce the cost because of the selection of wrong
actions. In literature, some performance measures such as makespan, mean lateness, number of tardy
jobs are considered as objective to be minimized. This performance measure is very useful in static job
scheduling problems. But in dynamic job scheduling problems, to generate a schedule based on one of
these factors may not be profitable in the long term due to uncertainty. So the delay time of the jobs can be
considered as the main performance measure. On the other hand, the jobs may not be equally important.
For example, the agent may decide to feed a new arrival job into the buffer and if there was no available
space in the buffer, the job with the least priority can be transferred to the first waiting area to provide space
for the new job. But this transfer causes some costs. Moreover, the capacity of the buffers of machines is
considered when evaluating the reward mechanism. So the reward mechanism is defined as follows:

R=Y1;«D;+Y T;xJi+ Y K;x(E)) 2)
i i J

In equation (1), I; and D; represents the cost of one unit time delay of job i and delay time of job i after
taking an action. Ej is a binary variable, it takes 1 if the buffer capacity of machine j is exceeded after the
action is taken, otherwise, it equals zero. K; is a parameter which represents the cost of excessing buffer
capacity at machine j. 7; is a binary variable, it takes 1 if the job i is transferred to the waiting area when
it waits on the buffer of a machine. J; is a parameter. In fact, the Equation (2) indicates a cost function
which needs to be minimized by taking the correct actions.
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4 EXPERIMENT RESULTS AND ANALYSIS
4.1 Training Configuration

A hypothetical dynamic JSP is considered in this study. We have assumed that there are 10 unique jobs
with their special machine routes and operation times on each of 5 machines. Each job arriving at the
system belongs to one of these job types based on uniform distribution. The time between job arrivals
to the system follows an exponential distribution with a mean of 12. The processing times of jobs were
uniformly distributed between 6 and 8. The due date of each job is unique regardless of its type. The
discrete event simulation approach is adopted to train a DQN agent under the following assumptions.

* A job cannot be divided. Therefore, two or more operations of the same job cannot be processed
at the same time.

» Technical precedence order of jobs can not be violated.

* Jobs cannot be cancelled. Each job should be processed until it is completed.

*  Machine failures have been ignored.

e The time required to move parts between workstations is also ignored.

* The length of queues in front of machines are limited to their buffer size.

* Even if a job is queued in front of the machine, it may change its position in the queue or be sent
back to the waiting area.

The algorithm is implemented in python. Keras library is used to build neural networks. The hyper-
parameters of the DQN algorithm, which are determined by the trial and error approach, are shown in
Table 1.

Table 1: The hyper parameters of DQN algorithm.

Hyper-parameter DQN
Replay Buffer Size 10000

Batch Size 28
Discount factor 0.95
Learning Rate 0.007

4.2 Experiment Results

The DQN agent was trained under the above experiment conditions and the average delayed time and unit
scheduling costs of the finished jobs are shown in Figure 4 and Figure 5, respectively. The training process
was allowed to continue until 100,000 jobs were processed through all machines.

Figure 4 shows the average delay time of finished jobs during the training process. In the early period
of training, the agent selects the actions randomly to store in Replay Memory. After a certain time for
collecting enough experiment, the optimization effects of learning phase comes out. When the training is
performed to some extent, the average delay time of jobs no longer decreases significantly, but fluctuates
smoothly, which implies that the agent has learned a stable control strategy. Figure 5 shows the unit
scheduling cost of finished jobs (i.e., the average scheduling cost of finished jobs). It follows a similar
pattern to Figure 4 in the training process.

4.2.1 Model Comparison

The dispatching rules are commonly used for dynamics job scheduling problems since they are simple
and good fixed-policies. The weakness of these rules is that they are only able to handle one performance
measure. For instance, Earliest Due Date (EDD) was shown to best for minimizing the maximum tardiness
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Figure 5: The training process of the agent for unit scheduling cost.

(Barman 1998). To test the performance of DQN model, we compared the results of it with following
dispatching rules:

*  Shortest Processing Time (SPT) : Highest priority is given to the job having the shortest processing
time
e Earliest Due Date (EDD): Highest priority is given to the job having earliest due date.

These rules were selected due to their success on due-date based objectives (Chiang and Fu 2007). This
is also in line with our reward function. We have generated 1000 jobs with the same training configuration
(see Section 4.1). The generated jobs were scheduled by using the training DQN model and two dispatching
rules. Figure 6 shows that the DQN model outperforms than two dispatching rules in the long run.
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Figure 6: Comparison of DQN model with two heuristics.

5 CONCLUSION

In this study, the dynamic job scheduling problem, which consists of n work and m machines, and where
the jobs arrive at the system continuously, is considered. We have illustrated how the DQN algorithm can
be adopted to solve this dynamic JSP based on discrete-event simulation. The proposed approach radically
improves the scheduling cost and delay time of jobs according to the initial position. The model performance
was further tested by comparing it with two common dispatching rules. The results are promising when
considering the long-term outcome. The foundations of this study provide a basis for further studies. Our
future work will aim at exploiting the new advancements of RL researches for obtaining better solutions
to the dynamic JSP. Moreover, we will investigate the other dynamic events, such as cancellation of the
order, machine breakdowns.
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