
Proceedings of the 2020 Winter Simulation Conference 
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds. 

SIMULATION EVALUATION OF AUTOMATED FORECAST ERROR CORRECTION BASED 
ON MEAN PERCENTAGE ERROR 

 
 
 

Sarah Zeiml Thomas Felberbauer 
Ulrich Seiler 

Klaus Altendorfer   

  
Dep. for Production and Operations Management Department of Media and Digital Technologies 

University of Applied Sciences Upper Austria University of Applied Sciences St. Pölten 
Wehrgrabenstraße 1-3 Matthias Corvinus-Str. 15 

Steyr, 4400, AUSTRIA St. Pölten, 3100, AUSTRIA 
  

 
ABSTRACT 

A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts 
that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related 
to periods before delivery. The paper presents a decision model to decide whether a recently presented 
forecast correction model should be applied or not. The introduced dynamic correction model is evaluated 
for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower 
demand, and changing planning behaviors, where the systematic bias changes over time. The study shows 
that the application of the developed dynamic forecast correction model leads to significant forecast quality 
improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy. 

1 INTRODUCTION 

To manage their production facilities, companies usually use forecasts to create production orders. The 
order generation process is relevant for the logistical performance of a company, which means on-time 
delivery simultaneously with a minimum of stock. In their hierarchical planning approach of the companies 
either classical forecast, prediction models are used to predict demand, or they use customer provided 
forecast, which is usually transmitted and updated in a rolling horizon using Electronic Data Interchange. 
For both possibilities to estimate the demand, the information quality, i.e., the accuracy of the forecast is 
critical to efficient production and the competitiveness of the companies. In this paper, we focus on the 
situation where customers provide and update forecast regularly and investigate the developed forecast 
correction model for different threshold values, which define whether to apply the correction or not. 

To compare different forecast methods, i.e. independent forecast distribution, forecast evolution, and 
moving average Zeiml et al. (2019) present a simulation model with focus on the modelling of forecast 
behaviors. The results of the latter paper leads the authors to the development of a working paper that 
focuses on the analysis of production order accuracy in a biased forecast evolution system and a first 
evaluation of the performance of the developed static correction model. First preliminary results of this 
working paper show that for a broad range of demand settings the correction model is beneficial in scenarios 
with systematic forecast errors. 

Nevertheless, this shows that the previous studies are limited in the way that the correction model is 
either applied or not applied, which brings us to the main contribution of this paper, where a decision model 
is developed and evaluated for an adaptive correction model. Additionally, both recent papers (Zeiml et al. 
2019) and the working paper we assume a stochastic but constant demand setting, which brings us to the 
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second main contribution of this paper, where the performance of the correction model is tested for seasonal 
demand and changing planning behavior. 

The above-explained motivation stated before brings us to the three-research question stated below: 

 

• RQ1: How can an automated decision whether to apply a forecast correction or not be modeled? 
• RQ2: What is the performance of the developed automated forecast correction model in scenarios 

with a forecast bias, and how well is it able to identify scenarios without forecast bias? 
• RQ3: What is the performance of the automated forecast correction model for seasonal demand 

and changing planning behavior? 
 

In RQ1, the decision model and the criterion to apply the forecast correction method or not is developed. 
RQ2 studies stable demand streams and compares the cases with no forecast correction, continuous forecast 
correction, and the adaptive forecast correction model. In RQ3, several scenarios with higher and lower 
demand periods are evaluated, and one scenario with a change in forecast bias is investigated. 

2 LITERATURE REVIEW 

As stated in the introduction, we focus on the customer-provided forecasts behavior where the demand 
forecasts are received directly from the customers on a rolling horizon. A general suggestion for an 
appropriate forecast model is impossible, as the method is related to the forecast generation process (Fildes 
and Kingsman 2011). Forslund and Jonsson (2007) point on the importance of forecast information and its 
strong impact on how the forecasts can be used. The latter authors identify collaboration as basic block to 
increase information quality. In the simulation study of Zeiml et al. (2019), the two different forecast 
behaviors, independent forecast distribution, and a forecast evolution model are compared to discuss the 
performance of different forecast error measures in a setting of customer-provided forecasts in comparison 
to a simple moving average forecast prediction method. The main findings of Zeiml et al. (2019) are the 
identification of the appropriate forecast error measures for scenarios with and without systematic errors.  

Altendorfer et al. (2016) study the effect of forecast errors when material requirements planning is used 
as the planning method. They find an impact of the forecast errors on required capacity and costs. For a 
production system with customer provide forecast Enns (2002) investigates the influence of demand 
uncertainty, and forecast bias. He summarizes that demand uncertainty, and forecast bias are critical to the 
performance of the production system. He also identified that uncertainty in timing and demand impacts 
the efficiency of the planning process (Enns 2002). The influence of the timing decision is also studied by 
Güllü (1996). He analyzes a forecast evolution process for customer provided forecasts and compares a 
production system without forecast information and with forecast information. Results show a significant 
improvement in production system performance for the scenario with a forecast update. 

Lee et al. (1997) identify four sources of information distortion. The “Rationing Game” describes the 
situation that in shortage situations the customers issue an order that exceeds in quantity what the customer 
would order in a situation without the constraint. Before delivery the customer cancels the unneeded orders. 
Cheung and Zhang (1999) show that the order cancellations increase total system costs. The authors find 
that the influence of cancelations on costs depends on the probability of cancellation and the respective 
cancellation time.  

In comparison to our study, the forecast update is limited to one update two periods before delivery 
(Güllü 1996). The martingale model of forecast evolution models the improvement of forecast quality with 
respect to the decreasing time before delivery (Heath and Jackson 1994). Their additive model is applied in 
the paper to generate the customer-provided forecast data in the forecast evolution scenarios. For a 
streamlined production system Felberbauer and Altendorfer (2014) compare the forecast-evolution-model 
with a customer-required-lead-time model and they discuss their performance on costs (inventory, 
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tardiness, and capacity costs), utilization, and service level. Nevertheless, Felberbauer and Altendorfer 
(2014) do not present an in-depth analysis of the forecast quality. 

Zhang et al. (2011) analyze seasonal demand for a stochastic production system. They state that in order 
to use such a production planning model, production planners should proactively address demand 
uncertainties and randomness. Matsumoto and Komatsu (2015) investigate demand forecasting by time 
series analysis for a remanufacturing system. They test two forecasting methods which can cope with 
seasonal demand and do not need information regarding the time distribution of new products. Both 
methods used in order to improve the forecast especially considering seasonal effects show the desired 
results of improvement.  

The literature review above shows that many authors are dealing with the parameterization of their 
production planning methods and coping with uncertainties. Nevertheless, the literature about the 
adaptation of forecasts is limited. Therefore, the focus of this paper is the development and evaluation of a 
forecast correction model for demand scenarios with seasonal demand and changing planning behavior. 

3 MODEL DESCRIPTION 

Next, we describe the forecast generation process, the applied forecast error measures, and the developed 
correction model with the respective threshold. 

3.1 Forecast generation process 

The forecast process used in this model has the following structure. We assume that customers provide 
forecasts on a rolling horizon basis, i.e., forecasts are available for a long forecast horizon into the future 
and are periodically updated. The long-term forecasts 𝑥𝑥�𝑖𝑖  are based on agreement contracts (Shen et al. 
2019), which imply regular orders. The index 𝑖𝑖 represents the due date. In this paper, we do not assume for 
all scenarios constant forecast amounts for periods far in the future, which enables the investigation of 
different market scenarios. When the due date comes closer, the customers start to update their forecasts 
for periods before delivery 𝑗𝑗. The first information arrives 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 10 

 periods before delivery. For example, 𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖=15,𝑗𝑗=2=793 means that the forecast amount for due date 
𝑖𝑖 = 15 two periods before the delivery (i.e., 𝑗𝑗 = 2) is 793 pieces. The actual period, where this forecast 
information was sent, can be calculated by 𝑖𝑖 − 𝑗𝑗 = 15 − 2 = 13. In this paper, we analyze two forecast 
generation methods: original forecast evolution and forecast bias. To parameterize original forecast 
evolution scenarios, we use the variable 𝛼𝛼, and for the parameterization of the forecast bias scenario, we 
use the variables 𝛽𝛽 and b. 

3.2 Original Forecast Evolution 

The original forecast evolution model is based on the idea of a random walk (Güllü 1996). In this model, 
each forecast update is modeled by adding a random term to the previous forecast amount, as shown in 
Equation (1). 

𝑥𝑥𝑖𝑖,𝑗𝑗 =  𝑥𝑥𝑖𝑖,𝑗𝑗+1 + 𝜀𝜀𝑗𝑗(𝑥𝑥�𝑖𝑖, 0,𝛼𝛼) 
𝜀𝜀(𝑥𝑥�𝑖𝑖, 0,𝛼𝛼)~𝑁𝑁(0,𝛼𝛼𝑥𝑥�𝑖𝑖) 

(1)  

 

This random variable 𝜀𝜀 is normally distributed with expected value zero and standard deviation 𝛼𝛼𝑗𝑗𝑥𝑥𝚤𝚤� . The 
long term forecast 𝑥𝑥�𝑖𝑖 for the due dates, 𝑖𝑖 can be constant or variable. The variable 𝛼𝛼, which determines the 
standard deviation in the forecast evolution scenario, is constant for all due dates 𝑖𝑖 and all periods before 
delivery 𝑗𝑗. 
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3.3 Forecast bias 

Original Forecast Evolution implies unsystematic forecast errors. The Forecast bias model mimics 
systematic errors. The forecast bias behavior states that the forecasted amounts from the customers are, on 
average, significantly too high or too low. In this paper, the forecast bias changes for periods before delivery 
𝑗𝑗 and for due date 𝑖𝑖. This opens various possibilities to investigate different forecast behaviors and changes 
in the forecast behaviors for different periods. Equation (2) shows how the forecasts are updated in this 
method. 

𝑥𝑥𝑖𝑖,𝑗𝑗 =  𝑥𝑥𝑖𝑖,𝑗𝑗+1 + 𝜀𝜀𝑗𝑗(𝑥𝑥�𝑖𝑖,𝛽𝛽, 0) 
𝜀𝜀(𝑥𝑥�𝑖𝑖 ,𝛽𝛽, 0) = 𝛽𝛽𝑏𝑏𝑗𝑗𝑥𝑥�𝑖𝑖 

(2)  

 
Table 1 shows the parameterization of the Forecast bias scenario for periods before delivery 𝑗𝑗. For the 

better analysis of the order behavior scenarios in the result section the parameterization of the systematic 
forecast, bias is divided into a scaling factor 𝛽𝛽 and the shape factor 𝑏𝑏𝑗𝑗. Table 1 shows the shape of the 
predefined planning behavior. In this forecast behavior, there are no changes 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 10 and 𝑗𝑗 = 9 periods 
before delivery. The customer starts the systematic change of the forecast eight periods before delivery 𝑗𝑗 =
8. Form periods before delivery eight to six, the customer overbooks his forecast. From periods before 
delivery five to three, the customer cancels orders again. 

Combining the forecast bias shape factor 𝑏𝑏𝑗𝑗 according to Table 1, with the scaling factor 𝛽𝛽 = 0.05, and the 
longterm forecast 𝑥𝑥�𝑖𝑖 = 800 gives the planning behavior illustrated in Figure 1. In supply chain literature, 
this specific behavior is also referred to as ration gaming, where customers overbook and cancel afterward. 
Other different planning behaviors can also be defined similarly, as explained above, using Table 1. 
Nevertheless, in this paper, we focus on an advanced forecast correction model and do not investigate other 
planning behaviors. 

According to Equation (3), you see the modeling of the forecast process for the combination of 
unsystematic (Original Forecast Evolution) and systematic forecast (Forecast bias) errors.  

 

𝑥𝑥𝑖𝑖,𝑗𝑗 =  𝑥𝑥𝑖𝑖,𝑗𝑗+1 + 𝜀𝜀𝑗𝑗(𝑥𝑥�𝑖𝑖 ,𝛽𝛽,𝛼𝛼) 
𝜀𝜀(𝑥𝑥�𝑖𝑖,𝛽𝛽,𝛼𝛼) = 𝑁𝑁(𝛽𝛽𝑏𝑏𝑗𝑗𝑥𝑥�𝑖𝑖 ,𝛼𝛼𝑥𝑥�𝑖𝑖) 

(3)  

 
 
 
 
 
 
 
 
 

 
 

Figure 2:  Forecast evolution of 𝑥𝑥𝑖𝑖𝑖𝑖 with respect to periods before delivery 𝑗𝑗, forecast bias shape factor 𝑏𝑏𝑗𝑗, 𝛽𝛽 =
0.05, and long term forecast 𝑥𝑥�𝑖𝑖. 

Table 1:  Forecast bias shape factor 𝒃𝒃𝒋𝒋 with respect to periods before delivery 

𝑗𝑗 0 1 2 3 4 5 6 7 8 9 10 
𝑏𝑏𝑗𝑗 0 0 0 -1 -1 -2 2 1 1 0 0 
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Note that 𝛽𝛽  and 𝛼𝛼 can be directly compared between scenarios because they are unscaled. We summarize 
that 𝛼𝛼 describes the unsystematic noise of the forecast and 𝛽𝛽  Identifies the forecast behavior of booking 
systematically too much or too little (forecast bias).  

3.4 Forecast accuracy 

To evaluate the forecast accuracy and later apply the correction model, two forecast error measures (Hopp 
and Spearman 2008; Hyndman and Koehler 2006; Shcherbakov et al. 2013; Zeiml et al. 2019) are 
introduced. First, the mean-percentage-error MPEj is introduced to measure systematic effects, and second, 
the standardized root-mean-squared-error RMSE*j is applied to measure unsystematic effects. The 
following Equation (4) introduces the respective forecast error measures. According to the definition below, 
the forecast is more accurate when the forecast error is lower. 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖,𝑗𝑗 =
∑  (𝑥𝑥𝑘𝑘,𝑗𝑗 − 𝑥𝑥𝑘𝑘,0)𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑚𝑚

∑  𝑥𝑥𝑘𝑘,0
𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑚𝑚

 ;  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖,𝑗𝑗∗ =
�1
𝑚𝑚∑  �𝑥𝑥𝑘𝑘,𝑗𝑗 − 𝑥𝑥𝑘𝑘,0�

2𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑚𝑚

1
𝑚𝑚∑  𝑥𝑥𝑘𝑘,0

𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑚𝑚

 (4)  

 

For both equations, the index 𝑖𝑖 represents the current period in which the forecast errors are calculated 
based on historical data. Note that both forecast measures are calculated for periods before delivery 𝑗𝑗. For 
the forecast error measure calculation, the number of historical data 𝑚𝑚, which is used to calculate the 
respective error measures, has to be defined. For the calculation of the error measures for the period 𝑖𝑖 and 
the respective periods before delivery 𝑗𝑗 the forecast history of all final orders where 𝑖𝑖 𝜖𝜖 {𝑖𝑖 + 1 −𝑚𝑚, … , 𝑖𝑖} is 
used. The two error measures are calculated separately for each period before delivery 𝑗𝑗. The larger the 
number of historical data used, i.e., 𝑚𝑚 is higher, the more robust the error measures are. The smaller the 
number 𝑚𝑚, the more the forecast measures are sensible against current changes. 

3.5 A decision model for forecast correction 

Below, the decision model for forecast correction is given. 𝑥𝑥�𝑖𝑖,𝑗𝑗 represents the corrected forecast based on 
the original forecast 𝑥𝑥𝑖𝑖,𝑗𝑗  provided by the customer and the correction model. The original customer-
provided forecasts 𝑥𝑥𝑖𝑖,𝑗𝑗  are adapted with the mean percentage error 𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖  which is calculated for 𝑚𝑚 
historical forecast streams according to Equation 4.  

 

𝑥𝑥�𝑖𝑖,𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗

1 + 𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖
=

𝑥𝑥𝑖𝑖,𝑗𝑗 ∑ 𝑥𝑥𝑙𝑙,0𝑖𝑖
𝑙𝑙=𝑖𝑖+1−𝑚𝑚

∑ 𝑥𝑥𝑙𝑙,0𝑖𝑖
𝑙𝑙=𝑖𝑖+1−𝑚𝑚 + ∑ �𝑥𝑥𝑙𝑙,𝑗𝑗 − 𝑥𝑥𝑙𝑙,0�𝑖𝑖

𝑙𝑙=𝑖𝑖+1−𝑚𝑚
= 𝑥𝑥𝑖𝑖,𝑗𝑗

∑ 𝑥𝑥𝑙𝑙,0𝑖𝑖
𝑙𝑙=𝑖𝑖+1−𝑚𝑚

∑ 𝑥𝑥𝑙𝑙,𝑗𝑗𝑖𝑖
𝑙𝑙=𝑖𝑖+1−𝑚𝑚

 (5)  

 
In this paper, the forecast correction is not automatically applied for each period before delivery 𝑗𝑗, but 

we introduce a threshold value 𝛿𝛿 and a variable 𝐷𝐷𝑖𝑖,𝑗𝑗 to decide whether to apply the correction or not (𝑥𝑥�𝑖𝑖,𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗). The variable 𝑛𝑛 defines the number of historical 𝑀𝑀𝑀𝑀𝐸𝐸𝑙𝑙,𝑗𝑗 values that are considered for the calculation. 
The decision variable 𝐷𝐷𝑖𝑖,𝑗𝑗 represents the coefficient of variation for the last historical 𝑛𝑛, 𝑀𝑀𝑀𝑀𝐸𝐸𝑙𝑙,𝑗𝑗 values. The 
decision variable 𝐷𝐷𝑖𝑖,𝑗𝑗 is calculated as follows: 

 

𝐷𝐷𝑖𝑖,𝑗𝑗 =
�1
𝑛𝑛∑ �𝑀𝑀𝑀𝑀𝐸𝐸𝑙𝑙,𝑗𝑗 −

1
𝑛𝑛∑ 𝑀𝑀𝑀𝑀𝐸𝐸𝑘𝑘,𝑗𝑗

𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑛𝑛 �

2
𝑖𝑖
𝑙𝑙=𝑖𝑖+1−𝑛𝑛

1
𝑛𝑛∑ 𝑀𝑀𝑀𝑀𝐸𝐸𝑘𝑘,𝑗𝑗

𝑖𝑖
𝑘𝑘=𝑖𝑖+1−𝑛𝑛

 (6)  
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Whenever 𝐷𝐷𝑖𝑖,𝑗𝑗 value is lower than the threshold value 𝛿𝛿, i.e., the forecast correction is applied for the 
specific period before delivery 𝑗𝑗. 𝐷𝐷𝑖𝑖,𝑗𝑗 is calculated at each time point 𝑖𝑖 for the period before delivery 𝑗𝑗. The 
application of the forecast correction is decided independently for each period before delivery 𝑗𝑗. This 
decision model for correcting forecast answers research question one.  

3.6 Simulation model 

To evaluate the performance of the developed correction model, we use a discrete event simulation model 
built in AnyLogic©. The predefined forecast behaviors with systematic and unsystematic forecast errors, 
the forecast error measures, as well as the forecast correction model, are implemented in the simulation. 
The runtime of the simulation is 2080 periods, which results in approximately 2050 independent forecast 
evolutions. The first 30 periods (runtime of 2080 and 2050 complete forecast streams) are neglected from 
the analysis due to the fact, that for the first thirty final orders no complete historical forecast information 
is available for the analysis. The simulation is conducted with 20 replications to account for the stochastic 
behavior of the forecast processes. We assume that the periods are weeks because weekly forecast updates 
are frequent. With this assumption, the simulation time would lead to an evaluation of forecast streams of 
40 times one year. For the calculation of the coefficient of variation, we define the number of historical data 
to 𝑛𝑛 = 8. For the calculation of the forecast error measures, we define 𝑚𝑚 = 12. For the determination of 
these values a preliminary test was conducted, however the analysis of the different values was limited, as 
this is an extensive topic and suited for future research. 

4 NUMERICAL STUDY 

The previous section describes the investigated forecast processes, the developed correction model, and the 
built-up simulation model. The parameters 𝛼𝛼 and 𝛽𝛽 to scale the forecast process enable the investigation of 
the scenarios A to E, according to Table 2. For all scenarios, the effectiveness of the correction model is 
discussed. Therefore, different threshold values 𝛿𝛿 are tested. We test 𝛿𝛿𝝐𝝐{0, 0.025, 0.1, 0.4,∞}, where 𝛿𝛿 =
0 represents the case where no correction is applied and 𝛿𝛿 = ∞ mimics the situation where correction is 
always used. Next, different scenarios are introduced. 

Scenario A is the original forecast evolution behavior that mimics unsystematic forecast errors.  In this 
scenario, we investigate different levels of pure uncertainty by testing the set 
𝛼𝛼𝛼𝛼{0.025, 0.05, 0.1, 0.15, 0.2}. Scenario B comprises the application of the original forecast evolution with 
a systematic forecast bias behavior. In order to simulate systematic forecast behavior 
𝛽𝛽𝛽𝛽{−0.15,−0.05, 0, 0.05, 0.15} is used. In scenario C, scenario B is expanded with a seasonal behavior 
where the long-term forecast 𝑥𝑥�𝑖𝑖 changes with period 𝑖𝑖. In this scenario 𝑥𝑥�𝑖𝑖  is changed in a periodic manner, 
where the first 26 weeks of a year the long-term forecast is 100%, and the second 26 weeks of the year, the 
long-term forecast is decreased to 25%. This behavior is repeated for all simulated forty years. Additionally, 
for scenario C, an increase from 100% to 200% is investigated, while monitoring the effectiveness of the 
developed correction mechanism. The seasonal demand pattern is common in practice. For example, the 
automotive industry has demand peaks in spring and lowest sales in the winter month. In scenario D the 
scenario B is extended by a dynamic forecast bias change 𝛽𝛽𝑖𝑖. In Scenario B, we used a triangle-shaped 
planning behavior as shown in Table 1 and Figure 1 and change 𝛽𝛽𝑖𝑖 to 200% of its initial value for the second 
26 weeks of the year. The same periodic behaviors are used as in scenario C, where every 26 weeks 𝛽𝛽𝑖𝑖 is 
increased to 200% and reduced back to 100% after another 26 weeks. In scenario E, original forecast 
evolution, periodic forecast bias, and seasonal demand are investigated conjunct. 
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Table 2: Scenario overview 

Scenarios Scenario description Parameters 
A Original forecast evolution with random step size only α 
B Original forecast evolution with random step size combined with a 

systematic forecast bias behavior 
α,β 

C Original forecast evolution combined with forecast bias behavior and a 
seasonal demand behavior 

α,β, 𝑥𝑥�𝑖𝑖 

D Original forecast evolution combined with a periodic forecast bias α,  β𝑖𝑖 
E Original forecast evolution combined with a periodic forecast bias and a 

seasonal demand behavior 
α,  β𝑖𝑖 , 𝑥𝑥�𝑖𝑖 

 

In order to compare those different scenarios, we introduce the Correction Effectiveness indicator 𝐸𝐸 to 
measure the effectiveness of the developed correction procedure. We calculate the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 of 𝑥𝑥𝑖𝑖,𝑗𝑗 overall 𝑖𝑖 
to get a measure of prediction quality for every time interval 𝑗𝑗 before delivery. That is done for the original 
uncorrected set of predictions 𝛿𝛿 = 0 and again for the with various 𝛿𝛿 𝜖𝜖 {0; 0.025; 0.1; 0.4; ꝏ} corrected 
predictions. This way we obtain 𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑗𝑗(𝛿𝛿 ) for different 𝛿𝛿 . As we do all scenarios for those different δ´s, 
we chose δ0=0 as the basis for comparison. δ0 is the situation where the predictions are never corrected, 
while with δꝏ all the predictions 𝑥𝑥𝑖𝑖,𝑗𝑗 are corrected to a new matrix 𝑥𝑥�𝑖𝑖,𝑗𝑗 as defined in Equation 5. To get a 
quality measure for the effectiveness of this correction procedure, we define the correction effectiveness E. 
This measure can be calculated for all 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿 ) for the given thresholds 𝛿𝛿  as:  

 

𝐸𝐸𝑗𝑗(𝛿𝛿) =
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑗𝑗(𝛿𝛿0) −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿0)  (7)  

 
Figure 2 shows a typical evolution of the Correction Effectiveness E with the timeline towards the 

delivery date for a solely random walk scenario A. There are two reasons why the correction mechanism 
keeps constant Effectiveness E while approaching the delivery date (lower j) and why E is worse with 
higher 𝛿𝛿 : 

• Typically, RMSE itself gets smaller towards the delivery date, but this behavior is eliminated in 
Equation 5 having chosen E as a relative measure. 

• The more often correction are applied (high 𝛿𝛿 ) the more often additional random terms are added, 
which will follow in higher 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿 ) , leading to an E measure that is worse than without 
correction. 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 3: Correction Effectiveness as a function of the periods before delivery for various thresholds 
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The effectiveness of the correction gives the percentual advantage of the correction compared to the 
original uncorrected prediction. As lower RMSE indicates a better prediction, a higher E resulting from a 
lower 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿) indicates a better performance of the correction procedure and vice a versa. In this 
formulation 𝐸𝐸𝑗𝑗(𝛿𝛿) can be calculated for every period 𝑗𝑗 before delivery. In order to decide on the quality of 
a complete timeline of predictions, in the following, we use the average correction effectiveness E over all 
periods 𝑗𝑗 before delivery. 

4.1 Scenario A: Forecast evolution that is driven by a random step size for the predictions only 

In order to decide on the usefulness and quality of the correction mechanism, the first approach is made 
with scenario A. Prediction evolves only by random normally distributed step sizes. The level of 
randomness is kept fix for all (i), and also starting with a fixed average initial start prediction  𝑥𝑥�𝑖𝑖. With 
various 𝜶𝜶𝜶𝜶{0.025;  0.05;  0.1;  0.15;  0.2} we get various matrixes 𝑥𝑥𝑖𝑖,𝑗𝑗  and their corresponding corrected 
versions 𝑥𝑥�𝑖𝑖,𝑗𝑗 as a basis to get various 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(𝛿𝛿) to calculate 𝐸𝐸𝑗𝑗(𝛿𝛿) to decide on the quality of the correction 
procedure. Figure 3 shows the effectiveness of the correction in these cases. As expected with higher 𝛿𝛿 and 
higher 𝛼𝛼 the correction effectiveness gets worse, due to the additional randomness that is introduced by 
these factors. Note that all correction effectiveness values in this setting are negative, i.e. correcting a non-
biased forecast stream leads to a worse performance. 

 

4.2 Scenario B: Forecast evolution that is driven by a combination of a given peak like step path 
(modifying β) and superimposed randomness (modifying α) 

Having the weighting factor α for the level of randomness and β for the level of the systematic path 
deviation of the predictions we modify both in this scenario. α and β are kept constant for all 2080 (i), and 
correction effectiveness is compared to several combinations of these two factors. 

Figure 4a shows that the higher the absolute level of the given path (factor β) is, and the lower the 
randomness (factor α) of this path is, the better the correction mechanism works. These results can be 
directly summarized to a dependency of the correction effectiveness factor from the ratio β/α (see Figure 
4b). The higher the absolute value of that ratio, the better the correction works. This behavior is apparent if 
there is little noise compared to a primary significant systematic signal, the correction is applied more often, 
and hence better results are given with higher β/α. Figure 4b shows a light unsymmetrical behavior because 
we correct prediction resulting from outliers that produce negative predictions, that in our model are carried 
forward to the next period in (i). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Correction Effectiveness for solely random forecast evolution 
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Having evaluated the Scenarios A and B, we can answer RQ2: What is the performance of the developed 
automated forecast correction model in scenarios with a forecast bias, and how well is it able to identify 
scenarios without forecast bias as follows: 

 

• Using the correction algorithm as described is not useful in cases of only random behavior and even 
give worse result with high original randomness in the predictions. 

• In contrast to that: in cases of repetitive planning behavior with a regular over or under booking in 
defined periods, the correction procedure is useful. The degree of making a better forecast depends 
mainly on the ration of the regular repetitive deviation of planning to the random component 
defined as the ratio β/α. The bigger β or, the smaller α, the more the correction procedure will 
influence the predictions. In our case an absolute ratio β/α higher than slightly less than 1 starts to 
give a positive influence on the predictions. 

• The correction mechanism works best, if there are sufficient components of β, and it makes 
situation worse when there are only random components.  

4.3 Scenario C: Forecast evolution with changing demand (changing 𝒙𝒙�𝒊𝒊 ) 

In scenario C we changed 𝑥𝑥�𝑖𝑖 with rising (i=1, …, 2080) in a periodic manner as described above. This 
scenario mirrors a typical seasonal behavior that may be agreed upon between customer and supplier for a 
longer run. In this case, we change 𝑥𝑥�𝑖𝑖 every 26 weeks from 100% to 25% or 200% to see the effectiveness 

a.) b.) 

Figure 4: a.) Correction Effectiveness E for the level factor β, and b.) Correction Effectiveness as a 
function of the ratio β/α 

 
 
 
 
 
 
 
 
 

 

Figure 5: Correction Effectiveness 𝐸𝐸 for different seasonal demand levels and with respect to the 
randomness factor α 
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of the correction mechanism in these situations. The quality of the resulting correction depends mainly on 
the randomness of the prediction (Figure 5). There is only a small dependency from the course of the initial 
demand 𝑥𝑥�𝑖𝑖. This is valid for all δ, though still, δ=ꝏ gives better results for the predictions when randomness 
α is comparatively small to the level step path factor β. This can be understood, as the factor for 𝑥𝑥�𝑖𝑖 as a 
factor for seasonality had been chosen to be constant for 26 intervals, a long time compared to the four 
intervals chosen to build the matrix of MPEi,j. Outside this area of four intervals, the demand building factor 
can be shortened when building MPEi,j. 

4.4 Scenario D: Forecast evolution with changing planning behavior 

In Scenario D, we look at a changing planning behavior on the timeline towards delivery. Starting with 
𝑗𝑗 = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 10 periods before delivery, typically with an average value that is valid for a longer time. The 
predictions develop towards delivery often in a typical pattern as used in scenario B. And the typical pattern 
may change, similar to the seasonal demand behavior in its level. In Scenario B, we used a triangle-shaped 
pattern (see Table 1 and Figure 1) with a defined height of the peak. Additional to scenario B, we change 
the peak height by 200% depending on the index variable (i) along the course of time. The same periodic 
rhythm is used as in scenario C, where every 26 weeks 𝑥𝑥�𝑖𝑖  is increased to 200% and reduced back to 100% 
after another 26 weeks. Figure 6 gives the corresponding results.  

It could be imagined that the situation with half of the year a 100%-peak and another half of the year a 
200%-peak should be similar to an average behavior like a year through 150%-peak. However, it is 
different. The peak within RMSE is considerably higher for the periodic change in peak heights. This is 
due to the additional random aspect added by these repeated periodic changes. Additionally, the 
effectiveness of the correction mechanism decreases, which is, as seen before, typical for increasing 
randomness. 

4.5 Scenario E: Forecast evolution with seasonal demand and changing planning behavior  

As the last scenario, we looked at the influence on the Correction Effectiveness by changing α 
(randomness) and β (step path variation) in their level height and with a given seasonal (changes of the 
initial demand in i) or periodic (changes in prediction bias level in j) behavior. We found by analyzing the 
calculations that higher randomness gives fewer gains by the correction algorithm and using the correction 
always (δ=ꝏ) is better than using a small threshold value. On the other side, calculations show that it is the 
other way around with β. High absolute β gives better corrections than lower. Again, also in this variation 
of parameters, a higher threshold value gives better results. Having evaluated the Scenarios C, D, and E, 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: RSME for a periodic prediction behavior compared to a stable nonperiodic prediction behavior 
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we can answer RQ3 - What is the performance of the automated forecast correction model if seasonal 
demand occurs and forecast bias is not stable? – as follows: 

 

• With a lower random aspect of the forecast (low α), the correction algorithm works more effectively 
if at least a part of the prediction has a systematic bias component β in the size of the noise 
component α. With no such systematic component, predictions get worse. 

• In the case of a higher systematic part of the forecast bias (high β), the gains by the correction 
algorithm get better. 

• Both aspects lead to a higher ratio of β/α. This ratio indicates the possibility to distinguish between 
random noise and meaningful information, thereby allowing better correction through the 
algorithm. 

• These general findings do not change in a complex situation. Using the correction algorithm in 
more complex situations leads to better predictions. However, it has to be taken into account that 
the additional changes in time and level of parameters introduce more randomness and, therefore, 
a decrease in correction effectiveness. 
 

5 CONCLUSION 

In this paper, a discrete event simulation model is developed to investigate the performance of a decision 
model for the application of a forecast correction. The forecast generation process models systematic and 
unsystematic forecast errors for a system with periodic forecast updates. The forecast error measure mean 
percentage error is used to set up a forecast correction model to mitigate systematic forecast errors. 
Additionally, to answer RQ1, we introduce a decision model that can be used to adaptively use the 
correction model, which is a significant contribution compared to past publications where either the 
correction model is applied continuously or not. We test the correction model for different levels of 
systematic and unsystematic forecast errors, seasonal demand scenarios, and scenarios where the planning 
behavior changes with time. Answering RQ2, the study shows that the correction model is advantageous in 
all our scenarios where there is a systematic bias of a comparable value as the pure random component and 
its correction effectiveness was up to 30%. Notably, in scenarios where the systematic effect was 
significantly higher than the unsystematic error, the effectiveness of the correction model is best. We find 
that the adaptive correction model is not beneficial in situations without systematic error. Concerning the 
performance of the forecast correction model in situations with demand disruptions and unstable forecast 
bias, i.e. RQ3, results confirm in our case its benefit which was up to 17% also in complex situations and 
it’s increasing effectiveness: the higher the ratio of systematic error compared to the unsystematic error is 
(β/α) the better are the results. Nevertheless, the numerical study shows that in case of systematic bias it is 
better to run the correction model more often, than not. For further research, the risk of applying the 
correction model especially the importance of the ratio β/α should be discussed in more detail and we will 
provide a more comprehensive study on different demand patterns and planning behaviors. 
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