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ABSTRACT

The paper proposes a simulation-based hyperheuristics approach to generate schedules for a two-stage hybrid
flow shop scheduling problem with sequence-dependent setup times. The scheduling problem is derived
from a company that is assembling printed circuit boards. A genetic algorithm determines sequences of
standard dispatching rules that are evaluated by a discrete-event simulation model minimizing a multi-criteria
objective composed of makespan and total tardiness. To reduce the computation time of the algorithm
a dispatching rule-based chromosome representation is used containing a sequence of dispatching rules
and time intervals in which the rules are applied. Different experiment configurations and their impact on
solution quality and computation time are analyzed. The optimization model generates efficient schedules
for multiple real-world data sets.

1 INTRODUCTION AND LITERATURE REVIEW

A hybrid flow shop or flexible flow shop is a well-known scheduling problem that requires the sequencing
of n jobs onto m machines with the objective of minimizing a certain objective function. The hybrid flow
shop consists of c production stages in series with identical parallel machines on each stage. Each job j
has to be processed on one of the parallel machines on every stage in the same order (Pinedo 2016; Baker
and Trietsch 2009). Hybrid flow shop scheduling problems belong to the class of NP-hard optimization
problems (Garey and Johnson 1996; Gupta 1988). Hence, no polynomial time algorithm exists to solve the
problem and metaheuristics are often an appropriate tool to find feasible solutions (Talbi 2009). Genetic
algorithms, introduced by Holland (1975) and Goldberg (1989), are common metaheuristics that have been
applied for solving scheduling problems frequently. They transfer principles of the evolutionary theory to
mathematical optimization problems.

Recently, the new class of hyperheuristics evolved which intelligently administrates and assigns low-
level construction heuristics to search the solution space of combinatorial optimization problems (Burke et al.
2013). The most frequently used simple construction heuristics in production scheduling are dispatching
rules due to their ease of implementation and fast computation time. Dispatching rules make a scheduling
decision whenever a machine becomes idle by computing a priority value and picking the job with the
minimal value from the corresponding queue (Blackstone et al. 1982; Haupt 1989). Therefore, many
hyperheuristic approaches in production scheduling are based on dispatching rules that are administrated by
high level metaheuristics like genetic algorithms. Genetic algorithms for assigning dispatching rules need
specific chromosome representations to deal with scheduling problems (Talbi 2009). Cheng et al. (1996) list
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multiple possible representations for genetic algorithms and separate them in direct and indirect approaches.
The permutation representation or job-based representation is the most common direct representation for
scheduling problems which depicts the order of jobs for every machine. Each job can only appear exactly
once in the permutation representation (Talbi 2009; Cheng et al. 1996). The dispatching rule-based
representation was first used by Dorndorf and Pesch (1995) and forms the basis for the implementation
of hyperheuristics. In the dispatching rule-based representation, solutions are represented as sequences of
dispatching rules that are called one after another by the simulation model to transform them into a job
schedule (Vázquez-Rodrı́guez and Petrovic 2010; Glass and Potts 1998; Cheng et al. 1996). It has been
successfully applied to various scheduling problems.

Huang and Süer (2015) developed an hybrid simulation-based genetic algorithm with dispatching rules
and fuzzy satisfaction levels and used it to generate schedules for various artificial data sets with 5-10
machines and 10-20 jobs in a job shop. The chromosomes of the genetic algorithm are composed of
individual sequences of dispatching rules for each machine. A discrete-event simulation model evaluates
the sequences of dispatching rules and switches them in predefined and fixed time intervals. When the
sequences finish, they start all over again. Additionally, the authors used fuzzy satisfaction levels to
determine the conformity of a schedule to four different objectives.

Vázquez-Rodrı́guez and Petrovic (2010) proposed a genetic algorithm using an advanced version of
the dispatching rule-based representation to generate schedules in a job shop scheduling problem. They
additionally introduced an integer value for each dispatching rule in the sequence that indicates the number
of jobs that the machine has to process using the called dispatching rule. This representation is able
to dynamically assign dispatching rules and find good schedules for various multi-objective scheduling
problems. They also compared the solutions to the permutation representation and concluded that their
approach obtains higher quality solutions. Ochoa et al. (2009) analyze four artificial instances of a
hybrid flow shop with 50-100 jobs and 5-20 stages with a similar genetic algorithm as Vázquez-Rodrı́guez
and Petrovic (2010). They also concluded that the dispatching rule-based representation outperforms the
permutation representation.

Zhang et al. (2013) developed a hyperheuristic genetic algorithm focusing on minimizing due date
related performance measures and generating non-delay schedules. Their genetic algorithm searches for
good sequences of dispatching rules in a job shop environment involving eight different dispatching rules and
a discrete-event simulation model. They used the algorithm on several benchmark data sets and compared
the results to other algorithms.

This paper is structured as follows. Section 2 deals with the definition of the scheduling problem including
the machine environment, the job characteristics and the objective function for the genetic algorithm. The
following section presents our simulation-based genetic algorithm with the implemented dispatching rule-
based representation. Furthermore, the parameters of the simulation model for the experiment and genetic
algorithm configuration and the output parameters are shown. In section 4 we conduct experiments by
varying certain parameters of the simulation model and present exemplary solutions of the scheduling
problem. Finally we conclude our findings in section 5 and shortly discuss future research directions.

2 PROBLEM DEFINITION

This paper solves the hybrid flow shop scheduling problem at the example of an electronics manufacturing
services company that produces printed circuit boards (PCB). The company provided us with four data
sets with n = 150-200 jobs. The setup times are sequence-dependent. The following sections describe the
machine environment, job characteristics and objectives of the scheduling problem.

2.1 Machine Environment

The hybrid flow shop production system (Figure 1) consists of two production stages with four identical
parallel machines on the first stage and five identical parallel machines on the second stage (m = 9). The
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surface mounting devices (SMD) on the first stage perform the main assembly process using surface mounting
technology (SMT). The machine first places the PCBs, applies soldering paste and finally fabricates the
solder connection.

Figure 1: Two-stage hybrid flow shop of an electronics manufacturing services company

The suppliers of the company deliver the raw materials for the SMT process on material rolls which
must be placed on setup carts before processing on the first production stage. Due to the enormous number
of about 700 PCB variants and the limited number of setup carts the material roll and the tools on the
setup carts have to be changed frequently. To reduce the number of possible setup cart configurations the
company clustered similar variants into about 50 product families. Each setup cart is always prepared for
the manufacturing of all jobs of a product family. Switching the setup cart configuration is considered as
the setup process of the SMT production stage. This process depends on the sequence of jobs respectively
the family that was previously processed. Therefore we have to consider sequence-dependent setup times
with two possible scenarios on the SMT production stage:

1. Job j has the same product family f j as the previously processed job k ( f j = fk). The configuration
of the setup cart remains the same. We define this situation as a minor setup. For a minor setup
the worker provides the PCBs of the new job to the machine, changes the soldering paste template
and loads the machine program. The minor setup process takes s j,k = 20 minutes in total.

2. Job j has another product family f j as the previously processed job k ( f j 6= fk). The worker has
to change the configuration of the setup cart. We define this situation as a major setup. For a
major setup the worker additionally changes the setup cart configuration which takes additional 45
minutes. Therefore the major setup process takes s j,k = 65 minutes in total.

The five machines of the second production stage perform an automatic optical inspection (AOI) to
check the quality of each PCB. The machine setup on the AOI stage has to be done before each job
and includes the loading of the testing program and the validation of each PCB. The setup process takes
u j,k = 25 minutes and is sequence-independent.

2.2 Job Characteristics

The following attributes characterize each job:

1. The processing times pc j for job j on production stage c with c ∈ {SMT,AOI}.
2. The due date d j for job j.
3. The product family f j for job j.
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All jobs with their related due date, product family and processing times are previously known for the
next production period. However, our approach also works when jobs arrive continuously. Every time a
new job arrives, the new job is added to the production program and a new optimization run starts taking
into account the next possible point of time (e.g. next shift, next day), when the production schedule can be
actually changed. Furthermore, the simulation model which evaluates the schedule needs to be initialized
with the current production status. To represent the actual situation in the company we have to determine
some additional problem-specific restrictions. It is not allowed to mount the same product family on two or
more different machines at the same time because the company cannot setup two setup carts with the same
configuration simultaneously due to the limited equipment. Additionally, we assume that every machine is
setup for the family of the first job at time zero to match the assumptions of other authors that solved this
scheduling problem previously (Rolf et al. 2020; Aurich et al. 2017; Nahhas et al. 2016). The general
assumptions for static and deterministic scheduling problems of Rolf et al. (2020) also apply to this paper.

2.3 Objectives

The PCB company tries to optimize two goals with its scheduling policy which are a preferably minimal
makespan and the adherence of all due dates. Currently the schedulers of the company try to reach this
goals with a pure family setup policy which aims to keep the major setups of the SMT stage at an absolute
minimum. This policy occasionally leads to a violation of job due dates.

We want to reconsider the scheduling policy to a more flexible approach that is not necessarily based
on a strict major setup avoidance, so the number of major setups is not included in the objective function.
Furthermore, the genetic algorithm should use the objective function as its fitness function. Hence, it
needs to be a numerical objective that states the quality of a schedule and can be quickly computed by a
simulation model.

Well-known numerical objectives are the makespan and the total tardiness. The makespan Cmax is
widely used for scheduling problems and is defined as the maximum completion time C j of all jobs

Cmax = max{C j| j = 1, ...,n}.
The total tardiness T is also a commonly used objective which minimizes the tardiness of jobs in a

schedule. It is defined as the sum of tardiness of all jobs with the tardiness being the difference between
completion time C j and due date d j of job j

T =
n

∑
j=1

max{0,C j−d j}.

In our case, the main objective of the PCB company was to reduce the tardiness as far as possible and at
the same time to have a low makespan. Our Experiments have shown that using the sum of makespan and
total tardiness as the fitness function for the genetic algorithm achieved the best results. Additionally, the
permitted tardiness Tper determines the maximum tardiness a schedule can contain without being penalized
in the objective function. The fitness F of an individual I, or more specifically, a schedule is defined as

F(I) =Cmax +max{0,T −Tper}.

3 SIMULATION-BASED GENETIC ALGORITHM

The optimization model proposed in this paper comprises a genetic algorithm, a discrete-event simulation
model and multiple standard dispatching rules. The genetic algorithm serves as a hyperheuristic that is
hierarchically superordinate to the simulation model and controls the evolution process. The simulation
model takes the evaluation function in the optimization process and evaluates the candidate solutions
specified by the genetic algorithm (Gosavi 2015; Banks et al. 2010). The standard dispatching rules are
used as low level construction heuristics for an easy and efficient representation of feasible solutions. The
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entire solution approach is based on the idea that each standard dispatching rule is superior to others in
certain situations. If the hyperheuristic switches the dispatching rules at the right points in time even
complex multicriteria objectives can be optimized.

Contrary to similar papers of Huang and Süer (2015), Zhang et al. (2013), Vázquez-Rodrı́guez and
Petrovic (2010) and Ochoa et al. (2009) we address a real-world machine environment with sequence-
dependent setup times that needs a specific set of dispatching rules. We implemented both parts of the
optimization model with the discrete-event simulation software Tecnomatix Plant Simulation using the
standard material and information flow libraries and the genetic algorithm library.

3.1 Dispatching Rule-based Representation

Scheduling problems in genetic algorithms may be encoded in different representations such as the permu-
tation representation or the dispatching rule-based representation. The permutation representation comes
with the disadvantage of a lot of genes resulting in a long computation time for datasets with a lot of
jobs (Vázquez-Rodrı́guez and Petrovic 2010; Ochoa et al. 2009). Therefore, the permutation representa-
tion is not feasible to tackle the complexity and size of real-world datasets with a few hundred jobs in
terms of computation time. Instead, we implemented an advanced version of the dispatching rule-based
representation that consists of a sequence of dispatching rules to reduce the number of genes respectively
the computational complexity. The genetic algorithm hyperheuristic chooses dispatching rules out of a
predefined set of rules. The algorithm determines a dispatching rule for the SMT stage and a dispatching
rule for the AOI stage and changes the rules flexibly during the time of job processing. Figure 5 shows an
example of the flexible switching points and the sequence of dispatching rules. The sequence of dispatching
rules defines the sequence of jobs indirectly by computing priority values for each job in the buffer and
picking the job with the minimal value. We used the following eight dispatching rules, subdivided into
job-based and family-based dispatching rules:

• EDD: Earliest Due Date (job-based)
• MST: Minimum Slack Time (job-based)
• CR: Minimum Critical Ratio (job-based)
• SPT: Shortest Processing Time (job-based)
• SST & EDD: Shortest Setup Time & Earliest Due Date (family-based)
• SST & MST: Shortest Setup Time & Minimum Slack Time (family-based)
• SST & CR: Shortest Setup Time & Minimum Critical Ratio (family-based)
• SST & SPT: Shortest Setup Time & Shortest Processing Time (family-based)

Rolf et al. (2020) defined all used dispatching rules mathematically in their previous work. The
job-based rules are four commonly used standard dispatching rules without any modifications while the
four family-based rules are specifically designed to deal with the sequence-dependent setup times of the
scheduling problem.

To create the family-based rules, we use the dispatching rule shortest setup time (SST) and combine it
with the four job-based rules serving as tiebreakers. At first, the SST rule separates all jobs in the buffer by
their product families into two groups: Jobs that need a minor setup and jobs that need a major setup. Only
when multiple jobs have the same setup time or more specifically the same product family the tiebreak
rules subdivide the jobs to make distinct scheduling decisions. Generally, the family-based dispatching
rules prefer jobs of the mounted family over jobs of different families to minimize the number of major
setups and to reduce the total setup time.

The set of dispatching rules for the SMT stage contains job-based and family-based dispatching rules
while the genes associated with the AOI stage can only take the job-based rules because sequence-independent
setup times cannot be minimized. The setup times on the AOI stage always remain the same.
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Figure 2 shows an example of the rule-based representation of the genetic algorithm. Every set refers
to one time interval and needs three genes to define the interval distinctly. The switching point determines
the point in time where the dispatching rules are switched and the dispatching rule combination contains
the dispatching rules for both stages which are introduced at that point in time. The first set exceptionally
consists of only two genes because it defines the initial dispatching rule combination that always has to
be introduced at time zero. Therefore, the first set is called ”Set 0” and the switching point is not in the
genes of the genetic algorithm.

Figure 2: Dispatching rule-based representation of the genetic algorithm.

3.2 Model Configuration and Output

The configuration parameters are split into two groups. The experiment configuration contains all parameters
that define the specific scheduling problem in detail and form the basis for the optimization. The genetic
algorithm configuration uses the given parameters of the Plant Simulation library to define the general
optimization procedure. The following list shortly describes all input parameters that can be used to adjust
the experiment configuration:

1. The permitted tardiness Tper (min) determines the maximum tardiness that the schedule can contain
without triggering a penalty in the objective function.

2. The switching period Speriod (min) is the maximum time period in which a rule can be switched.
If the approximate makespan of the data set is known this parameter can be used to decrease the
solution space and speed up the optimization run.

3. The length of the planning period t (days) defines the number of days that the genetic algorithm
should find a schedule for. The input data set has to be provided in a separate table. If the data set
contains a lot of jobs this parameter can filter the jobs to schedule only the first few of them.

4. The number of switching points n (number) defines the number of sets that is used in the representation
of the genetic algorithm, see Figure 2. A high number of switching points leads to more genes and
longer computation time.

5. The saving points Gsave (table) define the generations of the genetic algorithm in which the currently
best solution is saved in the result table.

The configuration of the genetic algorithm uses the default parameters of the GAAssistant and GAAl-
location objects of Plant Simulation. These include the number of generations Gnum, the crossover rate
pc, the mutation rate pm and the selection operator ps. Chambers (2001) and Goldberg (1989) explain the
theoretical principles of genetic algorithm operators and their impact on the optimization process while
Rolf et al. (2020) described the implementation of the common operators in Plant Simulation in their
previous work.
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During the optimization the simulation model automatically saves the outputs of the iterations specified
in the table of saving points. This step in the optimization process is referred as documentation in Figure
3 and also checks if the termination criterion is reached. The model saves not only the makespan, total
tardiness and number of tardy jobs for every so far found solution but also a complete schedule for all
machines that is ready for usage in the production system of the PCB company. The GanttWizard object
of Plant Simulation can also convert the table to a schedule in the form of a Gantt chart quickly.

Figure 3: Flow chart of the optimization process of the simulation-based genetic algorithm.

4 COMPUTATIONAL RESULTS

We took the simulation-based optimization model presented in section 3 and used it on various experiment
configurations and optimization tasks on real-world datasets of the PCB assembly company. All experiments
were conducted on a PC with standard hardware (CPU: i5-4670, 4 x 3.40 GHz, RAM: 16 GB) using distributed
simulation of Plant Simulation for running simulations on four kernels simultaneously. The four datasets
contain jobs for a production period of three weeks with their product families, due dates and processing
times for the SMT and AOI stages.

In this experiment we investigated the relation between the number of switching points, the quality
of the obtained solutions in terms of the multicriteria objective function and computation time. Table 1
shows the experiment configuration and table 2 shows the configuration of the genetic algorithm. The
experiments aim to optimize four real-world datasets of the PCB manufacturing company that have been
studied intensively in the past in Rolf et al. (2020), Aurich et al. (2017) and Nahhas et al. (2016). Hence,
the approximate outputs of the final solutions are known and the switching periods can be adapted to
reduce the solution space. Tardy jobs are completely forbidden because the PCB company requires on-time
delivery for all jobs.

The experiments were conducted with four different numbers of switching points (i = 5, i = 10, i =
20, i = 50) for each data set resulting in 16 optimization runs. Table 3 shows the solutions after 400
generations with the corresponding makespan, total tardiness and number of major setups. The results
make clear that a genetic algorithm with more genes respectively a higher number of switching points
finds better solutions with respect to the objective function. The solutions also prove that few major setups
are not necessarily needed to find a solution that has a minimal objective function value and fulfills the
restrictions.

To show the relationship between the objective function value and the required computation time we
exemplary analyze data set 1. Table 4 shows the number of needed genes in the representation and the
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Table 1: Configuration of the experiment.

Parameter Configuration (Experiment)
Permitted tardiness (min) Tper = 0

Switching period (min) Speriod = 17,000 for dataset 1
Speriod = 20,000 for dataset 2
Speriod = 19,000 for dataset 3
Speriod = 18,000 for dataset 4

Length of the planning period (d) t = 21
Switching points (number) i = 5 (Setup 1)

i = 10 (Setup 2)
i = 20 (Setup 3)
i = 50 (Setup 4)

Saving points (number) Gsave = (25,50,100,200,400)

Table 2: Configuration of the genetic algorithm.

Parameter Configuration (Genetic Algorithm)
Number of generations Gnum = 400

Generation size Gsize = 100
Fitness function F(I) =Cmax +max{0;T −Tper}

Crossover rate pc = 0.8
Mutation rate pm = 0.01

Selection operator ps = 1of2

computation time to process 400 generations in the simulation model depending on the number of switching
points. The number of switching points and the number of genes are in a direct relation to each other
because each switching point requires one set with three genes and additionally two genes for the initial
dispatching rule combination. Determining the relationship between the number of switching points and the
computation time is more difficult because not all impacts are known. For our experiments the relationship
in the tested interval seems to be roughly linear so whenever the number of switching points doubles the
computation time also doubles. Knowing this, the user is able to create a configuration that is appropriate
to the available hardware and time.

Figure 4 shows the development of the objective function value compared to the computation time
for all four investigated switching point setups. Each graph represents a switching point setup and ends
after the genetic algorithm successfully processed 400 generations. We decided to display the computation
time on the abscissa instead of the generations because a single generation needs different amounts of time

Table 3: Solutions with makespan, total tardiness and number of major setups after 400 generations.

Switching points (number) 5 10 20 50
Data set
1

Makespan (min) 16,705 16,467 16,314 16,223
Major setups (number) 94 71 72 67

Data set
2

Makespan (min) 20,118 19,724 19,722 19,581
Major setups (number) 102 118 116 114

Data set
3

Makespan (min) 18,677 18,425 18,285 18,085
Major setups (number) 104 101 93 85

Data set
4

Makespan (min) 17,567 17,526 17,600 17,400
Major setups (number) 78 74 90 84
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Table 4: Relationship between number of switching points, number of genes and computation time.

Switching points (number) 5 10 20 50
Genes (number) 17 32 62 152

Computation time (min) 15 40 75 180

in each setup. Due to the real-world origin of the scheduling problem the required computation time to
reach a certain level of solution quality is much more important than the required number of generations.
The figure shows that each graph starts with great improvements in the first generations but converges
to a limiting value after some time. The setups with less switching points are converging faster than the
setups with more switching points but tend to converge to a lower objective function value. The results
for the other data sets in table 3 confirm this observation. The setup with i = 5 switching points seems to
be unsuitable for finding a schedule for this data set because it is dominated by the other graphs for every
point in time. All other setups are suitable in certain intervals which are defined by the intersections of the
graphs. Setup 2 and setup 3 intersect after approximately 20 minutes and setup 3 and setup 4 intersect after
100 minutes. Hence, a setup with i = 10 switching points is most effective when the available computing
time is below 20 minutes while the second setup is most effective for situations with a mediocre time
availability and the third setup for situations with a high availability of time. The results of the other data
sets are nearly similar.

Figure 4: Computation time requirement for different switching point setups for data set 1.

Figure 5 illustrates the switching points and the sequence of dispatching rules of the best solution
with i = 20 switching points. The bars represent the two production stages and both together make up
a dispatching rule combination for each point in time. Each color represents one of the eight standard
dispatching rules. The abscissa shows the time and its maximum value refers to the makespan Cmax = 16,314
minutes of the shown solution. Although the switching period is limited (Smax = 17,000) the value of one
switching point is higher than the makespan of this solution. Hence, figure 5 contains only 19 switching
points even though 20 switching points were given by the experiment configuration. This cannot be
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prevented in the current version of the simulation model but is not decisive for a good solution. Most of
the eight dispatching rules are used frequently or at least once so this solution shows that our approach
works as expected and every dispatching rule is superior to others in certain situations. Also the flexible
determination of switching points through the genetic algorithm is successful as there are longer and shorter
periods of rule assignment.

Figure 6 additionally shows the distribution of job-based and family-based dispatching rules for the
same solution as in figure 5. Blue color represents job-based and orange color represents family-based
dispatching rules. As stated in section 3 the genetic algorithm only assigns job-based dispatching rules to
the AOI stage while the SMT stage uses both groups because of the sequence-dependent setup times. It is
striking that job-based and family-based rules constantly alternate in the sequence for the SMT stage which
is due to the contrary effects of both groups of dispatching rules. The family-based rules are particularly
effective when multiple jobs of the same product family are currently in the buffer while the job-based rules
are useful when the composition in the buffer is mixed. Checking the Gantt chart of the solution confirms
that in the periods in which family-based rules control the dispatching the machines process families with
a lot of jobs.

Figure 5: Distribution of dispatching rules with i = 20 switching points.

Figure 6: Distribution of job-based and family-based dispatching rules with i = 20 switching points.

The setup with i= 5 switching points of our dispatching rule-based approach generates already schedules
of a similar quality compared to the solution approaches of Aurich (2017) and Nahhas et al. (2016). With
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more than five switching points the quality of the schedules is visibly superior to their approaches. The
makespan is 500-1500 minutes lower than in their best schedules for all four data sets. In terms of
computation time all approaches are similar except the integrated simulation-based optimization (ISBO)
approach of Nahhas et al. (2016) which can generate schedules in a few seconds. The ISBO is faster
because it is specifically designated to the mentioned scheduling problem while all other approaches are
adapted versions of general use metaheuristics.

The behavior of the different switching point setups also corresponds to the observations of Ochoa et al.
(2009). They conducted experiments with dispatching rule-based representations of 10, 30 and 50 switching
points as well as the permutation representation for instances of different sizes. In their experiments all
dispatching rule-based representations outperformed the permutation representation and the representation
with a medium number of switching points always performed best considering limited computation time.
In our experiments the setups with i = 5 and i = 50 switching points also perform worse if a solution is
needed quickly.

5 CONCLUSION AND FUTURE RESEARCH

The paper has shown that alternating standard dispatching rules with a genetic algorithm embedded in a
simulation model can solve a complex real-world hybrid flow shop scheduling problem with sequence-
dependent setup times. The simulation-based genetic algorithm found solutions that are feasible, fulfill
the requirements of the company and achieve a good objective function value. The newly implemented
flexible configuration of the simulation model is helpful to speed up the optimization process and to adapt
it to the given data set.

The different switching point setups in figure 4 show that each setup is most effective during a certain
time interval. An even more flexible optimization model could take the intersections of the graphs into
account and adapt the configuration within the optimization run. For example, the model could automatically
increase the number of switching points whenever the limiting value is nearly reached and use the current
solution as the initial solution for the new configuration. In this approach the genetic algorithm would
always stay at the bottom of the curves and would possibly find good schedules even faster. Implementing
this is beyond the technical possibilities of the genetic algorithm library of Plant Simulation and needs a
totally new implementation in a more flexible programming language.
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state of the art”. Journal of the Operational Research Society 64(12):1695–1724.
Chambers, L. (Ed.) 2001. The practical handbook of genetic algorithms: Applications. 2. ed. ed. Boca Raton, Fla.: Chapman

& Hall/CRC.
Cheng, R., M. Gen, and Y. Tsujimura. 1996. “A Tutorial Survey of Job-Shop Scheduling Problems Using Genetic Algorithms:

I. Representation”. Computers & Industrial Engineering 30(4):983–997.
Dorndorf, U., and E. Pesch. 1995. “Evolution Based Learning in a Job Shop Scheduling Environment”. Computer & Operations

Research 22(1):25–40.

1594



Rolf, Reggelin, Nahhas, Müller, and Lang

Garey, M. R., and D. S. Johnson. 1996. Computers and intractability: A guide to the theory of NP-completeness. 27. Auflage
ed. A series of books in the mathematical sciences. New York: Freeman.

Glass, C. A., and C. N. Potts. 1998. “Machine scheduling”. In Local Search in Combinatorial Optimization, edited by E. H. L.
Aarts and J. K. Lenstra, Wiley-Interscience series in discrete mathematics and optimization, 361–414. Chichester: John
Wiley & Sons.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison-Wesley.
Gosavi, A. 2015. Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning, Volume 55

of Operations Research Computer Science Interface Series. Boston: Springer.
Gupta, J. N. D. 1988. “Two-Stage, Hybrid Flowshop Scheduling Problem”. Journal of the Operational Research Society 39(4):359–

364.
Haupt, R. 1989. “A Survey of Priority Rule-based Scheduling”. OR Spektrum 11(3):3–16.
Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: MIT Press.
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