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ABSTRACT

This paper addresses the problem of optimally allocating single-lot stockers, also called bins, to machines
in an Automated Material Handling System (AMHS) of a semiconductor wafer manufacturing facility. A
Mixed Integer Linear Programming (MILP) model is proposed that assigns single-lot stockers to groups of
machines performing the same types of operations. Two criteria are minimized: The maximum travel time
from bins to machines and the maximum utilization of bins. An important characteristic of the problem is
that the number of changes from the original allocation is limited. Computational experimental on industrial
data with more than 2,000 bins and 40 machine groups are conducted. The solutions of the MILP are
analyzed with regard to the trade-off between the two criteria and the impact of the allowed number of
changes.

1 INTRODUCTION

Semiconductor wafer manufacturing consists of hundreds of complex operations on wafers, generally
grouped in lots of 25 wafers. Operations of various processes are performed on hundreds of machines.
Wafer manufacturing facilities (fabs) have re-entrant product flows, which contribute to the complexity of
managing the production, transport and storage of lots. A 300mm wafer approximately travels 10 to 16 km
during its processing, and typically visits more than 300 machines to undergo several hundred process steps.
Efficient material handling is therefore critical and, in the most recent wafer fabs, Automated Material
Handling Systems (AMHSs) are used to prevent operators from transporting excessively heavy lots.

Originally, most large AMHSs were segregated, i.e. with two types of transports: Interbay, where
vehicles move lots from one process bay to another, and Intrabay, where vehicles move lots between
machines in the same bay. In a segregated AMHS, some vehicles are dedicated to Interbay transports
and others to Intrabay transports, and intermediate stockers are necessary to store lots that move from an
interbay vehicle to an intrabay vehicle, or vice-versa. In this work, we are interested by the more recent
unified AMHSs, where vehicles can transport lots from any point to any point in the fab. Our use case
is the 300mm wafer fab of STMicroelectronics located in Crolles, France. A unified AMHS avoids the
unnecessary storage of lots in intermediate stockers when lots are directly transferred from one machine
to another. However, most lots must be stored when they have completed an operation, until a machine
that can (or the machine that should) process the next operation of the lot is available. To accelerate the
transfer of a lot that is stored to the machine on which it will be processed, and thus the machine to
potentially be idle, single-lot stockers (called bins or Overhead Hoist Buffers, OHBs) are available in the
ceiling with a very short retrieval time. However, an AMHS never has enough bins to store all lots in the
Work-In-Process, and thus large stockers (that can store several hundreds lots) are also used, but with a
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retrieval time of a lot which is significantly larger than the retrieval time of a lot in a bin. Hence, using the
bins as effectively as possible is critical. Generally, semiconductor manufacturing facilities are organized
such that machines that can perform the same type of operations are assigned to the same group, and bins
are assigned to machine groups. The set of bins assigned to a machine group is called its “default stocker”.
Hence, when a lot must be processed on one of the machines in a group, then the AMHS tries to store it in
an empty bin of the default stocker of the machine group. If all bins are occupied, i.e. the default stocker
is “full”, then the lot is sent to alternate locations, which correspond to extra bins and the large stockers.

In this paper, we propose a Mixed Integer Linear Programming (MILP) model to optimize the allocation
of bins to machine groups, i.e. to design the default stockers. Both the location and the number of bins
in the default stockers are important, and thus two criteria are minimized. The distance from the bins in
a default stocker to the machines in the corresponding group should be minimized, to quickly transport
lots to machines and avoid the machines to wait and be idle. The number of bins, i.e. the size, of a
default stocker is important for two reasons. An undersized default stocker will often be full, and lots
will be stored in alternate locations and thus will take more time to be retrieved. On the other hand, an
oversized default stocker will lead to bins being underused, and thus other default stockers to be penalized.
Optimizing the allocation of bins to machine groups is complex due to the large size of instances (several
thousands of bins), the variability of the Work-In-Process (WIP) and the fact that the schedule of the lots
on the machines is not known beforehand. In our industrial context, the unbalance of the allocation of bins
to machines groups in the AMHS can be explained by various reasons, including:

• The fact that machines in the same group are not always close to each other in the fab complicates
the optimal assignment of storage locations. Indeed, when storing a lot, most often, only the next
machine group in the route of the lot is known, but not precisely the machine to which the lot will
later be assigned. Hence, the lots that must be processed on a machine group will be dispatched
at the different locations in the fab of the machines in the group,

• And the lack of a decision support tool that automatically updates the allocation (number and
location) of bins assigned to machine groups due to changes in the flows, types or quantities of
products.

The paper is organized as follows. A short literature review is presented in Section 2 to position our
work. The Mixed Integer Linear Program (MILP) is introduced in Section 3. Section 4 analyzes the results
of computational experiments on industrial instances. Finally, some conclusions and perspectives are given
in Section 5.

2 LITERATURE REVIEW

The research on Automated Material handling Systems (AMHS) mostly focuses on the layout design of
the system and on the management of vehicles. Regarding the layout design, the problems tackled consist
in determining the configuration of the rails, the number of vehicles (Chang et al. 2014), the positioning
of the machines to be served by the vehicles, as for instance in (Ben-Salem et al. 2017) and (Ndiaye
2018). Vehicle management primarily aims at determining vehicle policies for delivering lots efficiently to
machines. This issue is addressed either by studying the management of empty vehicles or the management
of loaded vehicles. To manage empty vehicles, one can act on the parameters of the AMHS control system,
such as the number of vehicles that should be available in bays at any time, as for example in (Chaabane
et al. 2013), (Johnson 2001) and (Schmaler et al. 2017), or by proposing algorithms to find the best path to
follow to deliver a lot to the right machine while avoiding traffic jams and congestion, such as in (Bartlett
et al. 2014). In fact, many studies on transport and vehicle management (see e.g. (Aresi et al. 2019))
focus on optimization criteria such as minimizing machine idle times and maximizing service rate.

Large stockers are generally bottlenecks due to the required loading, unloading and internal transfer
times. Most 300mm fabs have overhead single-lot stockers, which are close to the tracks and which allow
shorter delivery times to machines than large stockers. However, the number of single-lot stockers is limited
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by the structure of the transportation system. Hence, it is not possible to store all the lots waiting to be
processed in a factory in single-lot stockers. Managing the storage space is thus essential to avoid the risk
of overusing some single-lot stockers and under-using others. The challenge is to best allocate the right
single-lot stockers (both in terms of location and number) to the machines, since the single-lot stockers will
be used to store a lot before it is transported to one of the machines on which the lot might be assigned
next. Very few studies cover overhead storage issues in semiconductor manufacturing, although we can
find some studies dealing with large stockers.

An efficient configuration of the storage management system is essential, and in particular the allocation
of single-lot stockers to machines. Allocating single-lot stockers that are close to machines ensures short
travel times and thus machines to continue processing, and allocating the right number of single-lot stockers
helps to avoid lots to be redirected to a large stocker if a single-lot stocker is overused, and to prevent
a single-lot stocker to be often empty if it is underused. Reducing travel times contribute to minimizing
machine idle times and thus to a better machine throughput. This was showed in (Kiba et al. 2009) using
simulation and different vehicle travel policies. (Jimenez et al. 2002) select the rail with the minimum
travel distance between the source and destination stockers in a segregated factory to improve productivity.
The productivity gain is then evaluated using discrete event simulation. (Mackulak and Savory 2001)
study the impacts caused by different uses of stockers by evaluating the average delivery times on several
configurations of the storage system. The results obtained by simulation show the consequences of storage
on transport and production. The optimal location of stockers is studied in (Pillai et al. 1999) in several
rail configurations. (Cardarelli and Pelagagge 1995) use probabilistic methods to optimize and design the
storage of inter-bay systems. Their study show the difficulty to manage this problem due to the dynamics
of the system and the uncertainty brought by the traffic. It also illustrates the interaction between transport,
production and storage. This idea is also highlighted in (Wiethoff and Swearingen 2006), which deals with
the integration of production rules in the management of stockers. Our work is in line with the work of
(Dauzere-Péres et al. 2012), where the allocation of single-lot stockers to groups of machines is optimized
to reduce transport times. In (Dauzere-Péres et al. 2012), a Mixed Integer Linear Programming model is
proposed and tested on an industrial instance. We extend the model, and we use more industrial instances
to analyze the trade-off between the two criteria that are optimized and the impact of the allowed number
of changes from the original allocation.

3 MATHEMATICAL MODEL

This section presents a Mixed Integer Linear Programming (MILP) model which is an extension of the
model proposed by (Dauzere-Péres et al. 2012). The differences are that we introduce a new variable
modeling the waiting times to compute the sizing and that we limit the number of changes, which helps to
solve the model for large instances. The model assigns bins to machine groups in a unified fab. However,
changing the assignment of a bin to a machine group is time-consuming in the industrial setting, as changes
must be manually done (bin per bin), which could lead to mistakes. Thus, a limit on the number of changes
compared to the original situation is defined. Two criteria are minimized: (1) The maximum travel time
from any bin to any machine and (2) The maximum gap between the required number of bins for each
machine group (determined based on the transportation history) and the proposed number of bins.

The following parameters are needed:

• B: Number of bins,
• M: Number of machines,
• G: Number of machine groups,
• ym,g ∈ {0,1}: Is equal to 1 if machine m is in group g, and 0 otherwise,
• di,m: Travel time between bin i and machine m,
• ci,g ∈ {0,1}: Is equal to 1 if bin i is originally allocated to group g, and 0 otherwise,
• ug: Total waiting time on the horizon (in seconds) of lots in the storage locations before being sent

to a machine in group g,
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• umax =
∑

G
g=1 ug

B : Maximum waiting time for a machine that can be covered by a bin,
• Nbchanges: Allowed number of changes, used to limit the number of changes from the original

allocation of bins.

Note that the machine groups are given in our industrial context and cannot be redefined, since each
group includes the machines that can perform the same types of operations. More precisely, two machines
are in the same group if they can both perform at least one operation. The lot transportation history
(extracted from fab data) is used to calculate the total waiting time ug required for machine group g,
which corresponds to the sum of the waiting times of lots in single-lot stockers before being transported
to machines in g. The maximum waiting time umax corresponds to the sum of ug divided by the number
of bins B.

The following decision variables are used:

• Xi,g ∈ {0,1}: Is equal to 1 if bin i is assigned to machine group g, and 0 otherwise,
• T Tg: Maximum travel time (in seconds) to any machine in group g,
• Ui,g: Waiting time covered by bin i for machine group g,
• T max: Maximum travel time from a bin assigned to a group to any machine in the group,
• Gmax: Maximum gap between the required waiting time of machine group g (sum of the lot waiting

times, calculated using historical data) and the waiting time associated to the proposed allocation
of bins.

The Mixed Integer Linear Programming (MILP) model is formalized below:

minαT max +Gmax (1)

subject to
G

∑
g=1

Xi,g = 1 ∀i = 1 . . .B (2)

T Tg ≥ di,mym,gXi,g ∀i = 1 . . .B, ∀g = 1 . . .G, ∀m = 1 . . .M (3)

T max ≥ T Tg ∀g = 1 . . .G (4)

Gmax ≥ ug−
B

∑
i=1

Ui,g ∀g = 1 . . .G (5)

Ui,g ≤ umaxXi,g ∀i = 1 . . .B, ∀g = 1 . . .G (6)
B

∑
i=1

G

∑
g=1

ci,gXi,g ≥ B−Nbchanges (7)

Xi,g ∈ {0,1}, Ui,g ≥ 0 ∀i = 1 . . .B, ∀g = 1 . . .G (8)

T Tg ≥ 0 ∀g = 1 . . .G (9)

T max, Gmax ≥ 0 (10)

The objective function (1) minimizes the sum of T max, corresponding to the maximum travel time
(location of bins), and of Gmax, corresponding to the maximum use of a bin (number of bins). However,
T max and Gmax do not have the same order of magnitude, this is why the weight α is used to balance the
two criteria. Following preliminary experiments (see also Section 4.2), it was established that α = 5,000
balances the two criteria with the four instances. Constraints (2) ensure that each bin is assigned to one
and only one machine group. Constraints (3) determine, for each machine group g, the maximum travel
time from any bin assigned to g to any machine in g. Constraints (4) determine the maximum travel time
for all groups. Constraints (5) determine Gmax. Constraints (6) limit the waiting time of a bin. Constraint
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(7) ensures that the number of changes is lower than the allowed number of changes. Finally, constraints
(8)-(10) are the binary and the non-negativity constraints.

4 COMPUTATIONAL EXPERIMENTS

Section 4.1 details how the experiments were conducted. With a limit of 50 on the allowed number of
changes compared to the original allocation, i.e. Nbchanges = 50, the trade-off between both criteria in
the objective function is analyzed in Section 4.2. This limit is chosen because, in our industrial context,
more allocation changes would be constraining to set up operationally simultaneously. Indeed, the software
setting the parameters of the AMHS only enables to change the allocation of one bin at a time. Also, each
bin priority must be updated without mistake. Thus, this requires double-checking which is time-consuming
for a large number of bins. Moreover, it is important to limit the number of changes to avoid the risk of
deteriorating performance indicators that are not explicitly modeled in our objective function. For instance,
it is preferred not to assign bins in the same area to many different machine groups to avoid congestion.
Section 4.3 discusses the impact of the allowed number of changes.

4.1 Design of Experiments

We have conducted computational experiments on industrial instances using IBM ILOG CPLEX 12.7.1
as the standard solver to solve the MILP model. The experiments were performed on a 2.7 GHz PC
with 8 GB of RAM and 4 processors, with a maximum running time of one hour. Computational times
were always smaller than 10 minutes when the allowed number of changes is lower than or equal to 125,
i.e. Nbchanges ≤ 125. However, the maximum running time was reached with Nbchanges = 2138 in the
experiments of Section 4.3.

Each industrial instance includes around 600 machines aggregated in 46 machine groups, about 2,100
bins, and there are more than two weeks between the data of each instance. The distances between machines
and bins, the number of processed wafers of machines and the utilization of stockers by machines are
extracted from the information systems of the factory. The utilization of stockers depends on how the bins
are allocated. Therefore, changing their allocation can impact their utilization and, at this stage, it cannot
be predicted. Single-lot stockers used as alternate locations are not considered in the optimization because
they are originally not assigned to machines. Even if alternate bins are not considered, they do not impact
the study because we only focus on the deliveries on “default stockers”. However, enabling the model to
also assign alternate bins to default stockers is a relevant topic for future research.

1704



Aresi, Dauzère-Pérès, Yugma, Ndiaye, and Rullière

4.2 Analysis of the Trade-Off between the Criteria

This section studies the balance between the two optimization criteria by changing the weight α . The
following scenarios were used: α ∈ {0,500,1250,2000,3000,5000,7500,12000,20000,45000} and a last
scenario where only T max is optimized or equivalently α→ ∞. The numerical results can be visualized in
Figure 1, where a different color is associated to each instance. Note that duplicates are deleted, the same
number of experiments was carried out on each instance.

Figure 1: Balancing the two criteria

The detailed values of T max and Gmax in Figure 1 can be found in Tables 1 through 4. The MILP model
does not give the same number of distinct optima for each instance when changing the values of α . This
is why multiple scenarios, i.e. multiple values of α , may lead to the same optimal objective function, i.e.
the same values of T max and Gmax. Hence, the value of α is only given for one scenario for each pair of
optimal values of T max and Gmax in the tables.

Table 1: Instance 1, values of T max and Gmax for different values of α

Scenarios
1 2 3 4 5 6

α 0 5 000 12 000 20 000 45 000 ∞

T max 186 179 172 165 162 162
Gmax 695 170 695 170 739 475 864 251 968 231 1 411 879

Table 2: Instance 2, values of T max and Gmax for different values of α

Scenarios
1 2 3 4 5 6

α 0 5 000 12 000 20 000 45 000 ∞

T max 186 176 172 165 162 162
Gmax 703 281 703 772 744 806 881 586 984 171 1 421 867

Table 3: Instance 3, values of T max and Gmax for different values of α

Scenarios
1 2 3 4 5

α 0 5 000 20 000 45 000 ∞

T max 186 172 165 162 162
Gmax 742 155 742 155 859 829 963 659 1 406 668
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Table 4: Instance 4, values of T max and Gmax for different values of α

Scenarios
1 2 3 4 5

α 0 5 000 20 000 45 000 ∞

T max 185 172 165 162 162
Gmax 778 566 778 566 902 232 1 005 312 1 445 120

The solutions of the MILP model are fairly consistent in all instances. This is partly due to the
two-month instances we have considered, in which the WIP variation is limited. However, these results
show that the proposed settings are stable despite the changes in transport requests to the machines. It can
be observed that, even if we may have to modify the balance between the criteria in certain cases, using
α = 5,000 (second scenario in the tables) already leads to a good compromise between the criteria. Indeed,
the following scenarios in Tables 1 through 4 are acceptable with a good balance between the sizing (Gmax)
and location (T max) of bins:

• Instance 1: Scenarios 2, 3 and 4,
• Instance 2: Scenarios 2, 3 and 4,
• Instance 3: Scenarios 2 and 3,
• Instance 4: Scenarios 2 and 3.

From an industrial point of view, Scenarios 2 and 3 in each instance are probably the most relevant,
since the time lost when a set of allocated bins is full is generally much larger than the few seconds lost
in regular transport. Indeed, if the storage settings lead to short travel times to the machines in a group
but the bins allocated to the group are often full, the AMHS cannot actually benefit from the short travel
times because many lots will not actually be stored in the allocated single-lot stockers.

As observed in Figure 1, some instances flatten more than others. This is due to the history of the
transport requests to machines, that changes the minimization of Gmax but not of T max, which on the other
hand is impacted by the allowed number of changes (50 in the experiments of this section). Indeed, in the
four instances, T max is equal to 185 or 186 for the original allocation of bins, and the lowest value that
can be obtained for T max is 162. Let us now compare Gmax for Instances 1 and 3. In Instance 3, Gmax is
equal to 1,406,668 for the original allocation of bins while, in Instance 1, it is equal to 1,411,879 and thus
larger than in Instance 3. The opposite is true for the lowest value that can be obtained for Gmax, which
is equal to 742,155 in Instance 3 and 695,170 in Instance 1. Therefore, Gmax in Instance 3 flattens more
than in Instance 1.
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4.3 Analysis of the Impact of the Allowed Number of Changes

This section studies how the objective function of the MILP model evolves with the allowed number of
changes Nbchanges, which was varied in the following set: {0, 5, 10, 20, 50, 80, 100, 125, 2138}. The
last value of 2138 actually corresponds to the case where there is no limit on the number of changes, i.e.
Constraints (7) are removed from the optimization model. The results can be visualized in Figure 2, where
a different color is used for each instance. The experiments were conducted with α = 5000.

Figure 2: Evolution of objective according to number of changes

The detailed values of the objective function in Figure 2 can be found in Tables 5 through 8.

Table 5: Instance 1, objective functions for different values of allowed number of changes Nbchanges

Nb. Changes 0 5 10 20 50
Objective 1 869 913 1 835 253 1 800 593 1 731 273 1 589 120

Nb. Changes 80 100 125 2138
Objective 1 497 145 1 438 489 1 371 222 956 625

Table 6: Instance 2, objective functions for different values of allowed number of changes Nbchanges

Nb. Changes 0 5 10 20 50
Objective 1 885 760 1 851 565 1 817 370 1 748 980 1 585 272

Nb. Changes 80 100 125 2138
Objective 1 471 515 1 417 698 1 335 630 711 122

Table 7: Instance 3, objective functions for different values of allowed number of changes Nbchanges

Nb. Changes 0 5 10 20 50
Objective 1 865 331 1 830 721 1 796 111 1 739 135 1 601 405

Nb. Changes 80 100 125 2138
Objective 1 475 519 1 392 455 1 328 745 922 257

Table 8: Instance 4, objective functions for different values of allowed number of changes Nbchanges

Nb. Changes 0 5 10 20 50
Objective 1 906 933 1 872 574 1 838 214 1 775 596 1 638 616

Nb. Changes 80 100 125 2138
Objective 1 519 422 1 430 115 1 354 524 996 322
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As in the previous section, the behavior of the solutions given by the MILP model are fairly consistent in
all instances. The decrease of the objective function is almost linear from Nbchanges = 0 to Nbchanges = 125,
although the values differ from one instance to another. This shows that, even for (almost) the same machine
configuration, the changes of the Work-in-Process influence the optimal allocation of bins to machine groups.
For example, the objective function for Nbchanges = 80 ranges from 1,471,515 for Instance 2 to 1,519,422
for Instance 4, a difference of more than 3%. Although Nbchanges = 50 is preferable in our industrial context,
the results show that allowing more changes might be interesting, in particular when there are significant
changes in the factory, such as new machines being added or machines being moved.

However, we believe that, if the proposed allocation changes are implemented regularly, the allowed
number of changes might be reduced to less than 50, allowing for faster resolution times of the MILP
model. Moreover, it could be relevant to only allow bins to be changed for a limited number of machine
groups.

5 CONCLUSIONS AND PERSPECTIVES

We addressed the problem of optimizing the allocating of single-lot stockers, or bins, to machine groups
in an Automated Material Handling System (AMHS) of a semiconductor wafer manufacturing facility. A
Mixed Integer Linear Programming (MILP) model has been proposed with two criteria to minimize: The
maximum travel time from any bin to any machine and the maximum utilization of any bin. Computational
experiments were conducted on industrial instances. The compromise between the two criteria and the
impact of the allowed number of allocation changes were analyzed.

Different research perspectives have been identified. A first idea we are investigating is to also consider
the allocation of alternate stockers, mainly single-lot stockers not already allocated to machine groups.
Another very relevant perspective is to develop a robust optimization approach to take the variations of
the number of transport requests to machines into account. In the practical implementation, investigating
how often the total waiting time ug needs to be adjusted (and thus the MILP to be solved) is important, in
particular to take into account changes in the product quantities and the Work-In-Process in the factory.
Also, although the machine groups are given in the current industrial setting, advanced schedulers are being
implemented in some work-centers, thus enabling the next machine for some lots to be known in advance.
This will help to improve the assignment of bins for the corresponding machines and avoid unnecessary
travel times.
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