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ABSTRACT 

In the semiconductor industry a reliable delivery forecast is helpful to optimize demand planning. Very 

often cycle time estimations for frontend, backend production, testing and transits are used to predict 
delivery times on product level and to determine when products have to be started to fulfill customer 
demands on time. Frontend production usually consumes a big portion of the cycle time of a product. 
Therefore a reliable cycle time estimation for a frontend production is crucial for the accuracy of the overall 
cycle time prediction. We compare two different methods to predict cycle times and delivery forecasts on 
product and lot level for a frontend production: a Big Data approach, where historical data is analyzed to 

predict future behavior, and a fab simulation model. 

1 INTRODUCTION 

Demand planning is crucial for economic success. While this is true for any industry, maybe it is even more 
true for industries where the production process is complex and expensive. The semiconductor industry has 
a very complex production flow, consisting of frontend, backend, testing and storage facilities. Very often 
the facilities are not only logically but also physically distributed around the world. Apart from that 

increasing number of products, requiring different production steps, can be ordered by customers. A lot of 
challenging tasks can be derived from that. Accepting or rejecting new customer orders, decisions when 
and at which facility to start products, confirming delivery dates or communicating expected delays, 
creation of stock piles along the supply chain are only some examples of tasks within the demand planning 
process. A reliable delivery forecast of products within the supply chain is helpful to make some of these 
tasks at least easier (Nyhuis and Filho 2002; Geng and Jian 2009; Fowler et al. 2015; Seidel et al. 2017; 

Wang and Zhang 2016; Moyne and Iskandar 2017; Wang et al. 2018). 
 At Infineon Technologies AG, a German semiconductor company, a simplistic approach of using the 
estimated cycle times to calculate the expected delivery dates on product level is typically used. The 
estimations are derived by analyzing historical cycle times. Demand Planners need to make sure that 
confirmed customer orders can be completed in time. They use estimated cycle times to determine when to 
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start products. Very often they add a time buffer to an estimated cycle time for a product and/or create stock 
piles to ensure that due dates can be met. However, even that cannot always ensure that demands are met 
in time because boundary conditions can change, e.g. a frontend production can be overloaded, therefore 

the cycle time increases and predicted cycle times can no longer be met. A cycle time estimation calculated 
by using historical data will show the increase only after some time. A cycle time prediction by using a 
simulation model of a frontend production could help to mitigate this problem.  
 We decided to use the existing simulation models from different Infineon frontend production sites to 
predict product cycle times and lot delivery dates. We compared the simulation results with a Big Data  
approach and later on with the reality. 

 In Section 2 we provide some more details why a forecast could generate a benefit. Section 3 describes 
the simulation and Big Data approach and explains how to compare results. In Section 4 we present the 
actual results and Section 5 gives a conclusion and an outlook of possible further studies. 

2 BENEFIT OF A FORECAST 

Demand planning at a frontend production site requires often manual effort, especially in situations where 
the demand is higher than the supply. Urgently needed products are sometimes tracked on lot level. Demand 

planners and line control experts are busy tracking down and prioritizing lots to ensure on time delivery or 
at least minimizing expected delays. In recent years this task became more and more complex and time 
consuming because the number of products increased and often there was a shortage for many products 
simultaneously. Meanwhile, time buffers and stock piles were reduced because production costs can be 
optimized by reducing WIP. This more often results in situations where products cannot meet the demand 
due dates. For high volume products, lot priority lists change daily because lots of the same product can 

overtake each other and therefore lot demand assignments change overnight. Low volume products have to 
be prioritized after line incidents, e.g. a lot scrap or line performance issues. But updating these lists and 
changing priorities daily creates disturbances in the line, not to mention the psychological effect on people 
chasing the lots. Additionally it is well known that a high share of priority lots can cause line performance 
losses. 

A reliable lot and product delivery forecast can help to reduce the prioritized lot count, the daily changes 

and therefore also manual effort from planners and line experts. A decisive question is how good a forecast 
can predict fab out dates on a lot level or predict fab out on a product level. Only if we know the answer to 
these questions we can try to estimate possible benefits.  

3 APPROACHES FOR LOT LEVEL FORECAST 

3.1 Discrete Event Simulation 

Discrete event simulation has widely been used in the semiconductor industry for operational use cases 

such as early warning on forecasted WIP (work-in-progress) piling at production areas, allocation of 
operator resources based on forecasted incoming WIPs, synchronization of preventive maintenance with 
material flow, dynamic dedication adjustment to minimize non-value adding setup switches, and many 
more (Bagchi et. al. 2008, Gan et. al. 2004, Scholl et. al. 2011, Scholl et. al. 2012, Seidel et. al. 2017, Scholl 
et. al. 2018, and Seidel et. al. 2018). The aim of the production control paradigm has been shifted from a 
purely reactive approach to a proactive approach, avoiding (or at least minimizing the impact of) issues 

instead of fixing them only when the problems occur. Ultimately, such a proactive operations management 
approach would help to improve the linearity of the production lines, which in turn reduces cycle time 
variability and thus enhances predictability of the fab performance. 
 The use cases so far has been focusing primarily on aggregated KPIs (key performance indicators), 
which could achieve high accuracy. Based on our experiences, the forecast accuracy (Seidel et. al. 2017 
and Mosinski et. al. 2017) for fab level KPIs such as wafer out, WIPs, moves, and cycle time or dynamic 

flow factor, could go as high as 95%. The forecast accuracy for product level KPIs stay at approximately 
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95% for high volume products, and drops to around 70% for very low volume products (products with less 
than ten lots throughout the 8 weeks forecast period). The high forecast accuracy could be achieved with 
the precondition of good input data to the simulation model. Table 1 and Table 2 below give a summary 

overview of the modelling elements and the modelling fidelity required to achieve the forecast accuracy as 
described. The simulation model was built on a commercial simulation engine, D-SIMCON Forecaster (D-
SIMLAB Technologies 2020) that provides all the essential wafer fab modelling elements. 

Table 1: Modelling Elements and Considerations for High Accuracy Forecast Accuracy. 

Modelling 

Element 
Description 

Work-In-
Progress 
(WIP) 

The model is initialized with WIP in the production line, with all the lots and their 
associated information being captured. The essential lot information are its current step, 
current state: in queue, in process (current equipment and remaining processing time is 
required), in rework, or on-hold (estimated hold release time is required), priority, start 

and due date. 

Initial 
Equipment 
Down 

All equipment that are in down or non-productive state are initialized as down before 
simulation starts. An estimation of when the equipment is coming back online is 
required. This information is obtained from either historical data (average duration for 
the corresponding down type) or provided by the maintenance department.  

Wafer Start 
Plan 

A wafer start plan up to the lot level is required. Typically wafer fabs do not have lot 
level wafer start plan beyond a week. To address this constraint, a product level weekly 
volume start is obtained from the planning department, and a lot level wafer start plan 
is created. An algorithm of batching lots of the same product to start to enhance 
batching efficiency at furnaces is used for realistic wafer start plan generation.  

Process Flows 
All process flows required by the WIP and wafer start production lots are considered 
in the model. We do not choose representative process flows as we need to ensure lots 
are following the exact path that they will run in the reality. 

Rework 
Rework is modelled as a random event, where rework rate is derived from historical 

data for all production steps that could trigger a rework process. 

Hold 
Hold is modelled as a random event, where hold rate and hold duration distribution are 
derived from historical data for all production steps that could trigger lot hold. 

Split-Merge 

Some equipment type such as Chemical-Mechanical-Polishing (CMP) and 

Lithography require pilot runs from time to time. This is modelled with the split-merge 
function, where split rate is calculated from historical data. 

  
 In this paper, we would like to evaluate the accuracy that we could achieve in a lot-level fab out forecast 
using the same simulation model that was built for the above-discussed operational use cases. We used the 

same simulation model that was used to support the use case of development lot level journey forecast 
(Scholl et. al. 2016), and managed to achieve high accuracy as development lot was moved through the fab 
with higher level of priority than normal lots. It is easier to forecast because these higher priority 
development lots always overtake normal production lots. Dispatching will thus have much less impact on 
the lot journey through the fab. Extending the lot level forecast to all production lots poses a very different 
challenge even though the focus of the use case is only at the fab out date and not the day at which the lot 

will be arriving at a particular production step. Choice of lot selection at each dispatching decision could 
change the fab out date, and random events of hold/rework could significantly influence the cycle time of 
the lot. Our end users (demand fulfillment planners), however, do not require a forecast accuracy of up to 
daily granularity. A lot level fab out forecast for weekly time buckets will already be sufficient for their 
purposes. So the question is whether the simulation model can enable such a use case, or whether a 
combination with a Big Data approach will be a better solution. 
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Table 2: Modelling Elements and Considerations for High Accuracy Forecast. 

Modelling 

Element 
Description 

Equipment 
All equipment in the production line are considered. Each equipment is mapped based 
on its specific behavior such as: single lot, single wafer, batch, or cluster. 

Dedication 

Dedication is modeled at recipe and product-recipe combinations, depending on 

equipment type. Long term inhibits are also considered in the model to ensure 
constraint in production line are portrayed accurately in the simulation model. 

Process Time 

and 
Throughput 

Data for recipe or recipe-product based process time and throughput for each 
equipment is gathered. Process time is defined as the time duration that lots/batches are 
spending in the equipment, while throughput is defined as the rate at which lots/batches 

are processed by the tools. Cascading of lots/batches are thus modelled when the 
throughput is higher than the process time. Limping effect (losing process speed) of 
chamber down is also modelled. 

Setup 

Switching 

Setup switching is modelled at some of the relevant equipment such as implantation. 
We consider the time required to switch from one recipe class to another. This overhead 

is important to be modelled as it reduces the tool capacity.  

Equipment 
Down 

Equipment down is modelled as a random event, where the mean time to failure and 
mean time to repair distribution are derived from historical data. 

Reticle 

Reticles are modelled as an additional resource required before lots can start processing 

at lithography equipment. This is essential because lithography equipment are typically 
the key bottleneck of the production line, and reticle availability could alter the 
selection of lots for processing. discussed above. 

Dispatch Rules 
Only global dispatch rules are considered in the model, such as lot priority, queue time 
priority, operation due date, maximum wait time and same setup. Some local dispatch 

rules such as prefer fast equipment were also considered. 

Queue Time 
Constraint 

Typically queue time constraints are controlled with KANBAN based dispatch rules. 
It is thus essential to construct a simulation model with such consideration as lots could 
be held back and not moving to the next step due to unavailability of KANBAN even 
though equipment capacity is available. 

3.2 Big Data 

Big Data analytics methods have been developed and applied in semiconductor manufacturing operations 
in recent years on use cases like fault detection (Chien et al. 2014; Chen et al. 2017), predictive maintenance 
(Lee at al. 2017) and forecasting cycle time (Wang and Zhang 2016). The evolution of Big Data has been 
developed with data peculiarities, in terms of volume, velocity, variety, veracity and value (Wang and 

Zhang 2016; Moyne and Iskandar 2017; Lee et al. 2017).With the massive amount of data in semiconductor 
manufacturing, data is stored in staging areas of data analytic tools before data analysis. Different types or 
combination of data analysis methods such as data mining, predictive analysis, machine learning or deep 
learning are provided according to the corresponding data analytic tool packages.   
 In this paper, a Hadoop cluster was chosen as the data analysis tool for our study. Basis for the Big 
Data approach on lot level forecast is a data table which holds all transactions lots do see while they are 

processed in frontend facilities. The number of rows in such table, where each row is a transaction, is more 
than 200.000.000 for one year of data from several production facilities. Such a data table is updated daily 
from local data warehouses. It is held by a Big Data data-lake and investigated by a Hadoop cluster. Data 
analytics on such table is done by Spark SQL. 

Different lots of different products see different sequences of operations. Depending on the complexity 
of the product there are typically between 100 to more than 1000 operations for a lot in a frontend facility. 
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The operation identification number is unique in the sequence of the operations for one lot. The main 
transactions are the moves-out from the previous operation and the moves-in to the current operation. 

Therefore for each lot, that has already left the facility the time it took from each operation to leaving 

the facility can be calculated. This is the remaining cycle time of the lot at the time when it was at that 
operation. To do so we determine the date-time when the lot left the facility of interest and subtract the 
date-time when the lot was at each single operation.  

For a given product all the lots of such product can be used to make up a distribution of remaining cycle 
times for each operation. In Spark SQL it is straight forward to aggregate such distributions grouped by any 
operation on any product: we use percentile_approx() on a list of percentage values. This returns a vector 

holding the distribution of remaining cycle time. These distributions then can be used to forecast the time, 
when the facility will deliver a lot as a function of at which operation such lot currently is.  

To some extent also the actual recent overall speed performance of the facility can be taken into account, 
to become more independent from the overall facility loading situation. 

The accuracy of such predictions mainly depends on the level at which the aggregation of the 
distributions is calculated. We typically obtained a relative error of 8% for remaining lot cycle time over 

the complete life cycle of a lot.  

3.3 Qualitative Comparison of Approaches 

Both approaches have their strengths and weaknesses. The Big Data approach is easy to use and after the 
initial setup phase the effort to maintain it is small. However, there are limitations to overcome. The impact 
of changing boundary conditions on product cycle time, caused for example by fab ramping, a changing 
product mix, new incoming equipment or a change in tool dedications will not be reflected or only after 

some time, because historical data will be not related to this new environment. For new products no 
historical data will be available at all.  
 While there are some ideas to mitigate this risk, for example by using historical data from a similar 
product like the new one and then using speed factors to incorporate actual fab performance, this will be a 
tough challenge to solve. Furthermore, such mitigation strategies will increase the maintenance effort of 
the Big Data approach considerably. 

 In turn, maintaining a reliable simulation model typically requires a lot of effort. Data must be accurate, 
and continuous model validation is required. A bottleneck in the simulation caused by wrong input data 
that does not tally with reality can jeopardize all simulation results. On the other hand, a reliable simulation 
model can forecast product cycle time changes over time due to changing environment. New products’ 
cycle times can be predicted even if no historical data is available. 
 Forecast accuracy comparison is done in section 4.3.  

4 EXPERIMENTAL RESULTS 

4.1 Forecast Quality Measurement for Simulation 

To evaluate the usability of the simulation-based lot level fab out forecast, we need to measure the 
achievable forecast quality. This was done by choosing a time period where the fab was fully loaded in the 
past, running the simulation forecast to obtain each lot fab out week, and then comparing with the actual 
fab out week. Weekly buckets are used because demand planning at Infineon is done weekly. Therefore it 

is important to know how many wafer/lots of a particular product will be delivered within a certain week. 
The forecast quality was measured in two ways: (i) lot level, and (ii) product, as respectively illustrated in 
the equations below: 

 

𝑙𝑜𝑡 𝑙𝑒𝑣𝑒𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑛 𝑤𝑒𝑒𝑘𝑠)

=  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑓𝑎𝑏𝑜𝑢𝑡 𝑤𝑒𝑒𝑘 (𝑠𝑖𝑚𝑢 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙𝑖𝑡𝑦)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑏 𝑜𝑢𝑡 𝑓𝑜𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑟𝑒𝑎𝑙𝑖𝑡𝑦)
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𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑛 𝑤𝑒𝑒𝑘𝑠)

=  
∑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑏 𝑜𝑢𝑡 𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑤𝑒𝑒𝑘 𝑤 𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑏 𝑜𝑢𝑡 𝑖𝑛 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑤𝑒𝑒𝑘 𝑤 𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝 

𝑛
𝑤=1

𝑛
 

The lot level forecast quality is measuring the accuracy of forecasting whether a lot reaches fab out in 
both simulation and reality. A high accuracy at the lot level forecast is the most stringent measurement, and 
could provide us an insight into the usability/applicability of providing such forecast to the end users. 

The product forecast quality is measuring the accuracy of forecasting the fab out volume for each 

product, and aggregated across weeks with a simple average. We did not carry out any weighted average 
calculation across weeks as the product mix was stable for the chosen time period of the study. The product 
forecast is an alternative forecast granularity that we were exploring to provide to the end user because in 
a typical business process our end users are matching the lots to a demand order upon fab out. The demand 
lot assignment is usually not fixed and can be changed over time. Some flexibility of reallocation of fab out 
lots to orders is still possible. This is an important point because it is possible that during a simulation run 

the random events such as rework and hold could extend some specific lots fab out time, or vice versa. This 
is also one of the main reasons why high accuracy at lot level forecast is not easy to achieve. 

4.2 Forecast Quality Comparison: Actual Wafer Start vs Plan Wafer Start 

The accuracy of a simulation forecast is highly influenced by the approach being taken to model various 
aspects of the wafer fab. Equally important, the simulation model needs to be fed with good quality input 
data. For a use case such as the fab out forecast, an accurate wafer start plan is thus crucial. In fact, obtaining 

a high accuracy wafer start plan is posing an additional challenge to achieve good forecast quality. Typically 
wafer fabs only have high accuracy wafer start plan for one to two weeks. Any weeks beyond that are still 
volatile and subject to further changes. Thus, besides comparing the achievable forecast quality at lot and 
product level, we extended the experimental study to compare scenarios with and without high accuracy 
wafer start plan. This is possible as we chose a historical time period for which we already knew which lots 
had been started, hence we also knew the wafer start plan available at the beginning of the evaluation period. 

The forecast quality data was collected for a time period of 8 weeks, as this is the required forecast time 
horizon by the end users. 

Table 3 shows the lot level forecast quality achieved with simulation using the actual and plan wafer 
start. The actual wafer start forecast provided a 4% better forecast quality as compared to the plan wafer 
start. This forecast percentage is not very encouraging as it seems to indicate that we cannot use the 
simulation approach for lot level forecast use case. We thus added on another dimension to the evaluation 

of the applicability of the approach, i.e. to measure how much was the absolute deviation (in days) between 
the forecast and actual fab out day. 

Table 4 shows the summary of this comparison. We observed that for 10.0% and 9.2% of the cases the 
fab out day in simulation and reality was exactly the same, using the actual and plan wafer start respectively. 
For 82.1% and 78.0% of the lots we saw a maximum gap of 7 days between simulation and reality. This 
means that the forecast could still be useful (but not ideal) for the end users because for approximately 80% 

of the cases they can be sure that lots will reach fab out within plus/minus 7 days of the forecasted value. 
 
 
 

Table 3: Actual vs Plan Wafer Start Lot Level Forecast Quality. 

Actual Wafer Start Plan Wafer Start 

50% 46% 
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Table 4: Actual vs Plan Wafer Start Forecasted Day Gap. 

Forecasted Days 

Gap 
Actual Wafer Start Plan Wafer Start 

=0 10.0% 9.2% 

<=1 25.9% 25.1% 

<=2 40.4% 38.1% 

<=3 52.9% 49.3% 

<=4 62.9% 59.1% 

<=5 70.8% 66.9% 

<=6 77.7% 73.1% 

<=7 82.1% 78.0% 

 

Figure 1: Actual vs Plan Wafer Start Forecast Quality Comparison. 

Figure 1 shows the forecast quality achieved for product groups, sorted from highest to lowest volume. 
We presented the forecast quality at product group level instead of the product level because the number of 
products involved are more than 200 and it is not feasible to show them in a single chart. The product group 

forecast quality was calculated as a weighted average (by the product volume of the week) of the product 
forecast quality. As observed, high volume product groups (the first two product groups) achieved a forecast 
quality of above 90% for the runs with actual wafer start, and above 85% was achieved for the runs with 
plan wafer start. The forecast quality is steady between 78% and 75% for the next 11 product groups for 
runs with actual and plan wafer start respectively. Some of the extremely low volume products have shown 
very low forecast quality for plan wafer start. This is due to the fact that planned lot starts for low volume 

products are typically prone to high error. The observation for the product (group) level forecast quality is 
encouraging and shows that simulation can be used to forecast weekly product fab out with acceptable 
accuracy. 

4.3 Challenges to Increase Forecast Accuracy 

A detailed analysis on lot and product level revealed more reasons why the forecast accuracy was low, 
besides the wafer start forecast inaccuracy. Events that can cause a lot hold in production cannot be 

predicted for a particular lot. On the product level historical data is used to derive a distribution for lots on 
hold. The corresponding distribution is used in simulation to put lots on hold. Therefore it is possible to 
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reach a good forecast accuracy for e.g. product moves. But it is very unlikely that exactly the same lots are 
put on hold in simulation as in reality. Therefore the prediction for fab out on lot level can never be that 
accurate. 

 Manual prioritization done by line control on lot or product level not known by any data system is also 
a challenge. Any simulation that does not have this information will maybe still have an acceptable fab 
move prediction but fab out predictions on a detailed level will be off. This problem was especially obvious 
in fabs with a low automation grade. The higher the degree of fab automation the less likely it is that crucial 
logistics information is not available in data systems. 

Another challenge exists in fabs where the loading and unloading of tools is still done by operators. 

Very often operators do not follow the dispatch list for various reasons. Again, this is not necessarily a 
problem for a fab move prediction accuracy but it will impact any forecast accuracy on lot level. 

4.4 Simulation vs Big Data Comparison 

We compared the forecasts generated by two different fab simulation models with the respective Big Data 
results. One was a validated fab simulation model of an Infineon frontend facility in Europe, and the other 
one a validated simulation model of an Infineon frontend facility in Asia. 

 Figure 2 shows the gap between the forecasted remaining cycle time and the actual remaining cycle 
time for the European fab. Each data point represents the deviation for one lot. The lots are put into weekly 
buckets, dependent on the actual remaining cycle time of the lots. This means that data points in the first 
box plot of the figure represent lots where the remaining cycle time was less than 7 days from the respective 
simulation start time. The upper part shows the results obtained with Big Data, and the lower part the results 
obtained with simulation. Coloring indicates the deviation between forecasted value and reality. Red 

indicates a higher gap percentage as compared to green. The ideal result for a lot would be a dot with y 
value 0, indicating that the forecast met reality exactly. 
 The simulation showed better results within the first weeks of the forecasting period. Big Data 
overestimated the remaining cycle time at the beginning, simulation underestimated cycle time at the end 
of the forecast period slightly more than Big Data. The underestimation of cycle time with the simulation 
approach is caused by missing line disturbance modelling elements such as operator and production 

interference of changing lots priority. This could be mitigated through enhancement of the simulation model 
prior to delivery of the use case to the end users. 
 Figure 3 shows a similar box plots for the results from the Asian frontend facility, again with weekly 
buckets. The two leftmost boxplots show the results for all lots that finished processing within the first 
week from the simulation start time (remaining cycle time was less than 7 days). Again, each dot represents 
a lot. The blue boxplot represents results obtained with Big Data, the orange one results obtained with 

simulation. The results are similar for both frontend sites. Simulation prediction is more accurate at the 
beginning of the forecasting period. After some weeks simulation predicts shorter cycle times than reality, 
a similar effect can also be observed for Big Data although not as strongly. 
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Figure 2: Cycle time forecast deviation for an European frontend site (big data upper part, simulation lower 
part). 

 

Figure 3: Cycle time forecast deviation for an Asian frontend site (big data blue boxplots, simulation orange 
boxplots). 
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Figure 4 shows the correlation of Big Data based and simulation-based forecasting. Each dot represents 
the data for a lot. If the forecast is 100% accurate for both simulation and big data the data point will end 
up right in the origin of the graphic. If the simulation predicts a higher/lower cycle time for the lot than 

observed in reality the data point will have a larger/smaller y-value and if big data predicts a higher/lower 
cycle time for the lot the x-value of the data point will be larger/smaller. Coloring of data points indicates 
different product classes. 
Clustering of data points can be observed along the diagonal. This implies that for some lots cycle time 
predictions are tough to make. For example, lots going on hold or a change of lot priorities not known at 
the simulation start will be impossible to predict, irrespective of the method used. 

 Accuracy of cycle time predictions can also be dependent on process classes too as visible in Figure 4. 
For some product classes the spread of data points is higher as compared to others. 

Figure 4: Correlation of big data and simulation forecast for an European frontend site. 

5  CONCLUSIONS AND FUTURE WORKS 

Based on our study, the simulation forecast results have been slightly better than big data forecast results. 
Big data has the advantage of less effort to generate predictions. We are working on improving both 
methods. Simulation tends to underestimate cycle times because the simulation model is too fast. 
Disturbances in the fab such as lots are waiting for operators to load equipment are not considered in our 

models yet. 
 Big Data can be improved by adding factors to incorporate actual fab performance. One idea is to 
combine both methods in the future. Prediction of future fab performance can be done once a week by a 
simulation run. These results can then be used as a factor for Big Data analysis.  
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 This approach can reduce the effort for simulation because a weekly simulation run is sufficient. Big 
data can then be used for daily predictions. The question of whether this can improve forecast results and 
reduces the effort to generate the forecasts will be part of future studies. 
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