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ABSTRACT

Workforce populations are often modeled under a memory-free attrition assumption. This simple theoretical
model, which corresponds to an exponential survival time distribution, allows population trajectories to be
forecast, for example, by using a discrete time Markov model or the related differential system. However, in
practice the distribution of survival times for a given population is often poorly described by an exponential.
Here we present a study where different populations in the Canadian Armed Forces are considered. We
contrast empirical survival time distributions with the matched exponential, and find distributions ranging
from being close to exponential (e.g., Reserve Force) to distinctly non-exponential (e.g., Regular Force).
We perform numerical experiments to determine how population dynamics diverge from the assumed
Markovian dynamics, finding moderate error levels for the populations studied. On a coarse level the
Markovian assumption appears remarkably valid, but with sufficient error (ca. 5–10%) to warrant caution.

1 INTRODUCTION

Markovian approaches have long be used for analysis of workforce populations (Young and Almond 1961;
Bartholomew and Forbes 1979) and remains state-of-the-art (Bartholomew, Forbes, and McClean 1991;
Nguyen 1997; Wang 2004; Škulj, Vehovar, and Štamfelj 2008; Guerry and De Feyter 2009; Boileau
2012; Zais and Zhang 2016; Jnitova, Elsawah, and Ryan 2017). The distinguishing aspect of Markovian
approaches is the attrition process is memoryless, which corresponds to an exponential survival time
distribution (Hoel, Port, and Stone 1971) describing the workforce, leading to an analytically tractable
approach. However, in practice it is unlikely that real populations will be well described with an exponential
survival time distribution and so modeling error is expected. Here we investigate and quantify this modeling
error for several sub-populations of the Canadian Armed Forces (CAF), via a methodology readily applied
by practitioners to their populations of interest. We find moderate levels of forecasting error, of roughly
5–10%, which is large enough to be operationally significant in some contexts (for example, in the CAF an
occupation is labeled “critical” if the Trained Effective Strength is below 10% of the Preferred Manning
Level, and labeled “caution” when between 5 and 10%).
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2 MARKOVIAN THEORY

We discuss the differential equation associated with a Markovian population (Section 2.1), modify to a
specialized form suited for our numerical experiments (Section 2.2), and consider the transient time as the
population responds to a sudden impulse (Section 2.3).

2.1 Markovian population dynamics

A simple continuous differential model describing the change of a homogenous population P(t) over time
due to attrition at a rate of αP(t) (outflow volume per unit of time) and a constant intake at a rate of in at
time t (inflow volume per unit of time) is

dP(t)
dt

=−αP(t)+ in,

where α is the attrition rate parameter. This ordinary differential equation has the exact solution

P(t) =
in
α
+

(
P0−

in
α

)
e−αt , (1)

where P0 is the initial population, as can be verified by plugging this solution back into the originating
differential equation. As t → ∞ the second term goes to zero and we have the steady state population
PSS =

in
α

. This differential model is related to the approximate discrete time Markov model, a standard
approach taken in workforce modeling (Bartholomew, Forbes, and McClean 1991); these two Markovian
approaches are identical in the limit of diminishing time steps.

It should be noted that a matrix generalization of Equation 1, where flows occur between sub-components,
can be obtained (Henderson and Bryce 2019) and exactly solved (Higham 2008) which allows one to consider
transitions between military ranks, occupation groups, or other flows between sub-components. Here we
focus on single component populations and the differential model in Equation 1 to eliminate complicating
factors, allowing us to highlight modeling error accrued due to making a Markovian assumption.

2.2 Markovian population dynamics: specialized form

We want to recast Equation 1 into terms that will map directly to our numerical experiments (as described
in Section 3).

We will evolve populations under a given intake level to steady state and then impose a sudden impulse
consisting of a step increase in intake, which will, after a transient transition period, lead to a new (higher)
steady state. The ratio of final to initial intake is denoted β and captures the magnitude of impulse to which
the system is exposed. For example, β = 1.1 corresponds to a 10% increase in intake and will (eventually)
result in the population growing by 10%. The average survival time, 〈t〉, is inversely related to the attrition
rate parameter, α; 〈t〉 = 1

α
. As PSS defines the natural population scale we will consider the normalized

population, and eliminate P0 by use of β , to get

P(t)
PSS

= 1−
(

1− 1
β

)
e−

t
〈t〉 . (2)

The
(

1− 1
β

)
term is simply the normalized population step increase, as (PSS−P0)

PSS
=
(

1− P0
PSS

)
=
(

1− 1
β

)
.

Equation 2 describes how a Markovian population evolves under an intake step increase of size β . We
will be contrasting this Markovian theory against real populations that we characterize by measuring their
empirical probability distribution functions (PDFs). The residual between the population trajectories given
by theory (i.e., Equation 2) and numerical simulations will allow modeling error to be quantified.
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2.3 Transient time

A Markovian population asymptotically approaches steady state; a tolerance for “reaching” steady state
must be set in order to fix measurements of transient time. We consider a relative threshold so our results
do not depend on specifics of the population size. The left-hand side of Equation 2 suggests using the k-th
e-folding time to fix thresholds, and we have

P(t∗)
PSS

= 1− e−k = 1−
(

1− 1
β

)
e−

t∗
〈t〉 ,

where t∗ is the transient time. For example, a 3 e-folding time is the time taken for the population to reach
1− e−3 ≈ 0.95 of PSS.

Solving the above equation for normalized t∗ we find

t∗

〈t〉
= k+ ln

(
1− 1

β

)
. (3)

Note that as β → 1 the logarithmic term goes to −∞. Negative values in Equation 3 are due to P0
being already above the threshold. For any given k we therefore have a minimum β that can considered,
which we can find by setting t∗ = 0 in Equation 3

βmin =
1

(1− e−k)
. (4)

3 STUDYING MODELING ERROR

We investigate the scale of modeling error associated with assuming an exponential survival distribution
for CAF sub-populations with attrition profiles that range from visually near-exponential to distinctly non-
exponential (Sections 3.1 and 3.2). We compare simulated population dynamics for growth under attrition
behavior, as given by empirical survival time distributions, to “equivalent” exponential fit and Markovian
theory, for a range of steady state growth scenarios (Section 3.3). Error is then quantified using two
measures: maximum gap during the growth phase between populations with differing attrition behaviors
(Section 3.4), and transient time to steady state for various values of e-folding time (Section 3.5).

3.1 Survival time distributions

We use a normalized histogram with annual bins as a simple non-parametric estimator for the empirical
PDFs. This choice is pragmatic, selected as it is a simple way to capture and visualize PDFs. One advantage
of this choice is per annum time scales correspond to standard institutional planning, and so annual bins and
frequency are commonly used, making our empirical bins intuitive and comparable to other studies. For
example, the CAF characterizes attrition rates by Years of Service (Serré 2019), and such an annual-centric
scale is the standard choice in workforce analysis (Bartholomew, Forbes, and McClean 1991).

One can also fit data to parametric distributions. Here we are interested in the equivalent exponential
fit in order to match an empirical population with a Markovian one. However, we do not fit the exponential
to the raw data via the Maximum Likelihood Estimator (MLE), a standard approach, for the following
reason: there is estimation error associated with using a histogram to capture a PDF and so if we estimate
both the histogram and the exponential from the raw data, in general, we will expect a small difference
between them. Specifically, the choice of bin sizes and number will affect a histograms expectation value
and so, in general, the expectation value determined by the MLE will differ from that determined by the
histogram. A difference in the average lifetime between the histogram and exponential will introduce error
that will affect trajectories which, for example, will lead to different steady states. The trajectories of the
empirical and exponential will differ due to both differing shape (which we want to probe here), as well
as differing average lifetime (an artificial estimation error). In order to eliminate this error, and find an
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“equivalent” matching exponential, we instead determine the average lifetime by finding the expectation of
the normalized histogram. This expected value will correspond to the α parameterizing the exponential.
This procedure simplifies interpretation. Essentially we are defining the population by the histogram and
finding the matched Markovian population, so that any differences in trajectories can be attributed to
differences in PDF shape (versus being due to both differences in shape and a shift in central location,
which complicates interpretation).

3.2 Canadian Armed Forces sub-populations

The two largest sub-populations of interest within the CAF were chosen for analysis: the Regular Force
(Reg F), comprised of military members under full-time contract, and the Primary Reserve Force (P Res)
comprised of military members under part-time contract. Figure 1 includes the empirical PDFs for these
two groups calculated using historical data on career duration (in that group) for all those who attrited within
a 15-year period (1 January, 2004 to 31 December, 2019). The mean survival time, 〈t〉, was calculated
for each PDF (15.98 and 6.08 years for Reg F and P Res respectively) and used to build the equivalent
exponential model (dotted curve of Figure 1).

The difference between the survival time profiles of these two groups is stark, with the P Res appearing
very close to exponential and the Reg F with clearly non-exponential structure. The exponential-like profile
of the P Res suggests a constant year-over-year hazard for separation (attrition), which is consistent with
the separation at will Terms of Service (TOS) for the Reserves in Canada. The more complex structure
for the Reg F is reflective of a more complex TOS regime in the Reg F, with various fixed term contracts
and a historic 20 year pension point and current 25 year pension point (Serré 2019).

A third group, the Reg F sub-population of the Naval Warfare Officer (NWO) occupation (middle panel
of Figure 1), was chosen as the Royal Canadian Navy (RCN) has been studying this occupation during
the current period of fleet modernization and recapitalization. An on-going program of NWO population
modeling began in 2017 and so we are interested in further understanding of this occupation. We find the
NWO group presents as a middle-ground between these two extreme cases, both in terms of the distribution
structure and it’s average survival time of 〈t〉= 10.14 years.

It should be noted that the Reg F and P Res data sets are comprised of all records of attrition, including
releases and transfers between the two components, for the time period stated, indiscriminate of rank or
employment state, with sizes on the order of 105. The analogous NWO data set additionally takes into
account occupation transfers and is comprised of officer ranks only with an approximate size of 3000.

Recall that we have chosen to define the sub-populations by their histograms in order to focus on the
effect of PDF shape on growth trajectories (Section 3.1). To get a sense of the difference between 〈t〉, as
detemined by the MLE (〈t〉MLE) versus that derived from the histogram (〈t〉hist), consider the measured
values and their ratio for each sub-population: P Res: 〈t〉hist/〈t〉MLE = 6.082/6.079 = 1.0006. NWO:
〈t〉hist/〈t〉MLE = 10.140/10.049 = 1.009. Reg F: 〈t〉hist/〈t〉MLE = 15.977/15.878 = 1.006. Use of the MLE
gives results that are only marginally different from our chosen approach, for our sub-populations. We
eliminate this effect, on principle. For smaller populations, where estimation error is greater, this effect
could lead to practical consequences.
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Figure 1: Empirical survival time PDFs (filled areas) and equivalent exponential models (dotted curves)
for three groups of military personnel: (left panel) Primary Reserve Force (P Res), (middle panel) Regular
Forces - Naval Warfare Officer (NWO), and (right panel) Regular Force (Reg F). Mean survival times, 〈t〉,
for the PDFs are shown for comparison (solid curves).

3.3 Population dynamics

Each sub-population under study was grown under a constant intake corresponding to the steady state
solution of Equation 1 and career durations drawn randomly from the empirical and exponential PDFs of
Figure 1. Simulated populations were first grown to a steady state population size of P0 = 1000 individuals
over a simulation time of 300 years before applying a growth impulse to a new PSS. A range of population
growth scenarios were created by increasing P0 by 1% up to 1000%, corresponding to an impulse set
β = (1.01,1.05,1.1,1.25,1.5,2,10). Typical personnel increases could be in the range of 5-25% (i.e.,
β = 1.05− 1.25). For example, Strong, Secure, Engaged, Canada’s Defence Policy (circa 2017) details
increases to a target that is ∼ 7% higher than the 2016/2017 year end size for for the Reg F and ∼ 13% for
the P Res. Under the same Defence Policy, Canada’s Special Forces Command is to grow by ∼ 30%, a
larger increase underscoring the special capability and utility of that command. For practical considerations
we are interested in β values in the ballpark of this range, and therefore consider larger values (i.e., β > 2)
to ensure we bracket such values. An additional advantage accrued by looking at larger impulses is that
stochastic noise concerns are suppressed at large β values enabling the underlying trends being studied to
be more clearly examined.

Resulting population trajectories, Psim(t), for each sub-population under each survival distribution and
impulse scenario, were averaged over 1000 runs and compared with Markovian theory (Equation 2). As a
diagnostic to probe finite-sample estimation error we look at the steady state population for each simulated
population, PSS

sim, which was calculated over the final 100 years of simulation time with a maximum standard
error of the mean (SEM) of 0.4 corresponding to the largest impulse β = 10 for the NWO population. To
simplify analysis, we measure Psim(t) with an annual frequency.

In order to concretely illustrate the effect of survival distribution on population dynamics, the population
trajectories for β = 1.25 are shown in Figure 2 where the left-hand panel illustrates the growth phase to
PSS over the next 300 simulation years. The left-hand inset focuses on the contrast in growth dynamics
between populations of differing survival PDFs. We find that Psim(t) from the exponential fits (dotted
curves) follow the Markovian theory (thick solid curves) closely, as expected, while Psim(t) evolving under
empirical PDFs differ in trajectory. All of the populations are shown in the left-hand panel, to facilitate
comparison.

The right-hand panels showcase the scale of the difference between models during the “arrival” of
Psim(t) to PSS. The P Res trajectories (upper panel) closely follow Markovian theory while those for NWO
(middle panel) and Reg F (lower panel) increasingly diverge from the Markovian prediction. The scale of
these differences, the gap between the simulated trajectory, Psim(t), and the Markovian trajectory, Ptheory(t),
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denoted here as ∆, and the transient time, t∗, to reach the steady state target, will be discussed in Sections
3.4 and 3.5, respectively.

Figure 2: (Left panel) Growth phase for a 25% increase in population size. Simulated (normalized)
populations defined by the empirical PDF (solid curves) and equivalent exponential model (dotted curves)
are compared to Markovian theory (thick solid curve) for P Res (blue), NWO (green), and Reg F (rose).
(Right panels) Mean population, Psim(t), as it approaches the target steady state population, Pss. A scale
of 10 individuals is shown for comparison.

3.4 Maximum gap, ∆

As the name implies, the maximum gap is calculated as the largest difference between the simulated
population, Psim(t), and the Markovian theoretical population, Ptheory(t), at a single time step during the
growth phase

∆ = max(|Psim(t)−Ptheory(t)|). (5)

Figure 3 shows ∆ normalized by PSS and scaled by the normalized step increase (1− 1
β
) as a function

of β for each scenario. The amplitude of the max gap curves for the exponential models (dashed curves)
indicate the scale of stochastic noise for each β , as divergence from Markovian theory is due to finite
sample effects (residual stochastic fluctuations as well as convergence from below, see (Henderson and
Bryce 2019)). This “noise floor” drops towards zero as the impulse size increases, as the size of fluctuations
becomes small relative to the population step size. On the other hand, the scaled maximum gap for simulated
populations undergoing attrition according to the empirical PDFs appear to plateau at values of ∼ 12% for
Reg F , ∼ 5% for NWO, and ∼ 3% P Res. We summarize this as ≈ 5–10%, in order to distill our findings
into a memorable “rule of thumb” which quantifies the general magnitude of error we are observing for
CAF populations. Note how all the populations collapse to a common curve as β becomes small, this is
the effect of measurements being lost in the noise floor. As β increases we pull out of the noise floor and
see a plateau for each population.
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Figure 3: Maximum gap, ∆, between Markovian theory and simulated populations using empirical PDFs
(solid marked curves) and equivalent exponential models (dashed curves) for P Res (blue), NWO (green)
and Reg F (rose). Note that the maximum gap values shown have been normalized by Pss and scaled by
(1−1/β ). Impulse sizes, β , are labeled as their percent increase from P0.

3.5 Transient time, t∗

Figure 4 illustrates the time for the simulated population, Psim(t), to reach steady state PSS, as characterized
by the transient time t∗, within a particular threshold defined by the e-folding time (Section 2.3). Results
are scaled by Markovian theory, t∗theory from Equation 3. Each panel displays the results according to a
different e-folding time for k = 4 (upper), k = 3 (middle), and k = 2 (lower). Note that the exponential
models follow the Markovian theory as expected, with deviation attributed to residual stochastic noise.
The empirical models, however, deviate from the Markovian path, with faster transient times in the case
of Reg F and NWO, and slower transient times for P Res. The fractional difference between t∗ and t∗theory
increases with increased impulse, and in the case of the Reg F up to twice as fast as theory (t∗ = 0.5 t∗theory)
for β = 10 at the most stringent threshold of k = 4. This is also seen in Figure 2 where the Reg F simulated
population (rose solid curves in all panels) reaches PSS well before the exponential model and Markovian
theory. While less dramatic, this is also seen in the “middle ground” case of the simulated NWO population
whose analogous transient time is 1.5 times faster (t∗ = 0.74 t∗theory) and the near-exponential case of the
P Res which is a fifth slower (t∗ = 1.18 t∗theory).

As discussed in Section 2.3, note that for small values of β and small values of k, measured t∗ will be
zero as P0 is above the set threshold. Indeed, a 1% impulse (β = 1.01) is below βmin, for all k considered
here according to Equation 4. Note that slightly above βmin we expect stochastic noise to drive t∗ towards
zero; this can intuitively be understood as the population step size will be small relative to fluctuations,
and so fluctuations will tend to prematurely push the population above threshold.

The annual frequency at which we measure Psim(t) will introduce a small positive bias of roughly
0.5/〈t〉 when measuring the transient time. This is a small bias for our sub-populations, as 〈t〉 is in the
6–15 year range (Figure 1), and will be counteracted by the negative bias due to fluctuations triggering
threshold detection early. Looking at simulated results for the exponential models in Figure 4 we see a small
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negative bias relative to Markovian theory, which suggest that the stochastic fluctuation bias dominates
this frequency bias.

4 DISCUSSION

4.1 Utility and adequacy of a Markovian assumption

The Markovian assumption is attractive as it makes analysis tractable. As examples, in the CAF the
steady state rank profile for occupations is determined by solving a Markov model in an Excel based
software tool (Boileau 2012) and population trajectory forecasting is performed in another Excel based
software tool (Okazawa, Straver, and Arseneau 2018): both tools are facilitated by making a Markovian
assumption. Verification (that software components operate as intended) can be made by comparing output
with analytic predictions, as in Henderson and Bryce (2019) where a Discrete Event Simulation developed
for modeling RCN occupations is precisely verified. Validation (that models adequetly capture reality)
requires comparison of empirically rich representations against model predictions—the simple scenario
outline here, where a population is subject to a sudden intake increase, allows us to isolate and consider
the implications of making a Markovian assumption.

By exposing an empirically described population to shocks (quantified by β in our notation) that
are reflective of “what if ” questions to be asked, one can determine the error associated with making a
Markovian assumption. For the specific groups considered here we find moderate errors in population
level (≈ 5−10% as explored in Section 3.4) which, depending on the application, either validate simple
Markovian models as being sufficiently accurate or highlight a need for more in-depth and refined models.

We should note that modeling the steady state is much more robust than modeling dynamics, as the
average survival time (equivalently, the attrition rate parameter, α), rather than details of the shape of the
empirical survival PDF, determines the population levels—thus a properly parameterized Markovian model
will capture the correct steady state. See the right-hand panels of Figure 2 where the approach to steady
state is not captured by a Markovian model, but the final steady state is. The implication is that (steady
state) occupation structure models (e.g., those described in Boileau (2012)) are more robust to assumptions
than dynamic models (e.g., Okazawa, Straver, and Arseneau (2018)). Approach to steady state can be
faster, or slower, than a Markovian model implies, depending on the details of the empirical survival time
distribution, as can be seen in Figure 2 and Figure 4.

If questions of “when” an occupation or target group shortage will be rectified are asked then more
nuanced models, such as Discrete Event Simulations, may be required. As the costs of performing nuanced
simulations are non-trivial, the approach outlined here is an attractive means of probing when paying the
costs involved are warranted; by explicitly testing the modeling error associated with making a Markovian
assumption one can ascertain if a simple memoryless model has sufficient fidelity (or not).

4.2 Limitations and intent: validation

We have deliberately ignored many important factors in setting up our simplified numerical experiments.
For example, in practice we often are interested in modeling an occupation in the CAF for which ranks
and transitions between them are important, while here we consider a single component. We also use a
simple histogram with yearly bins to capture the empirical PDF and do not fully consider the modeling and
estimation errors associated with that choice. A sudden intake step increase is also highly stylized, as in
practice intake fluctuates year-to-year and any increases over time are limited by institutional capacity which
will tend to impose slow changes. We purposely strip these details away in order to isolate and identify
the modeling error associated with making a Markovian assumption. By isolating this single factor we can
probe the adequacy of a Markovian assumption. If population trajectories determined with empirical PDFs
do not follow Markovian predictions, within some set error tolerance, then the simplification obtained is
not justified. The intent is to allow a basic validation framework, which will highlight when more nuance
is required and when Markov models are sufficient, not to create a simulation schema. If validation fails,
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Figure 4: Transient time, t∗, for for several e-folding thresholds for k: (upper panel) k = 4, (middle
panel) k = 3, and (lower panel) k = 2. Results shown are from empirical PDFs (solid marked curves) and
equivalent exponential models (dashed curves) for P Res (blue), NWO (green) and Reg F (rose). Note that,
for each group considered, t∗ has been scaled by the Markovian theory, t∗theory, with unity (black curve) and
βmin (Equation 4) shown for comparison. Impulse sizes, β , are labeled as their percent increase from P0.

1991



Bryce and Henderson

then a simulation schema, such as Discrete Event Simulation, with all the important aspects and nuances
must be created.

The goal is to get a practical sense of the error associated with making a Markovian attrition assumption.
In one sense, the Markovian model is quite good as the maximum error is moderate, even for PDFs visually
far from being exponential (e.g., Regular Force). This can be qualitatively understood from a steady
state perspective. At steady state the average survival time, not the full details of the distribution shape, is
important. This suggests that “small” perturbations from steady state will have weak effects, with Markovian
trajectories being a good representation. As the intake is a linear forcing term which drives the ordinary
differential equation describing a population, it is perhaps not surprising that perturbations/forcings appear
to have limited (“small”) effects on the quality of predictions. That said, the error levels involved are large
enough that they can become meaningful. A 5−10% error level is a good “engineering approximation”,
but for some questions is insufficiently precise. As one example, the time for an occupation to become
healthy will be sensitive to such error levels which might justify more fulsome modeling and analysis than
a simple Markovian forecast.

5 CONCLUSION

In this work we have aimed to get a practical sense of the modeling error associated with making a Markovian
(memoryless) attrition assumption. Real world populations are not expected to be well described by an
exponential and so such modeling error is anticipated, the question is not “if ” but rather “how much?”.
Looking at several different sub-populations in the CAF we highlight examples which range from being
visually close to an exponential (Reserve Force), to being quite distinct (Regular Force), and something
in-between (Naval Warfare Officers); see Figure 1. By exposing a population to an intake shock we create a
simple setup to measure response, allowing us to compare Markovian and empirical population trajectories.
We find that, for the groups considered, error is visually distinctive (Figure 2) with empirical trajectories
differing from Markovian predictions. In the groups investigated moderate error is found in population
levels (roughly in the range of 5–10%; see Figure 3) during the transient response to the intake shock,
and we find the measured transient times to be notably different (Figure 4). For example, the Regular
Force reaches equilibrium roughly 2× faster than Markovian predictions while the Reserve Force, with
survival times visually well described by an exponential distribution, have a meaningful delay of about a
fifth of the Markovian time. The simple approach taken here allows probing modeling error via numerical
simulations, requiring only the empirical probability distribution of a population’s survival times. Two
measured parameters, the transient time and the maximum gap between empirical and equivalent Markovian
population trajectories, summarize the modeling error associated with a Markovian assumption, allowing
validation and a practical understanding of the error.
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