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ABSTRACT

Improving accuracy is cornerstone for ballistic rockets. Using inertial navigation systems and Global
Navigation Satellite Systems (GNSS), accuracy becomes independent of range. However, during the
terminal phase of flight, when movement is governed by non-linear and highly changing forces and
moments, guidance strategies based on these systems provoke enormous errors in attitude and position
determination. Employing additional sensors, which are independent of cumulative errors and jamming,
such as the quadrant photo-detector semi-active laser, can mitigate these effects. This research presents a
new non-linear hybridization algorithm to feed navigation and control systems, which is based on neural
networks. The objective is to accurately predict the line of sight vector from multiple sensors measurements.
Non-linear simulations based on real flight dynamics are used to train the neural networks. Simulation
results demonstrate the performance of the presented approach in a 6-DOF simulation environment showing
high accuracy and robustness against parameter uncertainty.

1 INTRODUCTION

Navigation signals from Global Navigation Satellite Systems (GNSS) are commonly used nowadays in
aerospace applications. Unfortunately, reliability decreases inversely proportional to the requirement of the
application for which it is designed. Note that attenuation and loss of the GNSS signal result in reduced
signal / noise relationship. To lessen these effects and defend against jamming, independent sources of
navigation information are needed.

Although Inertial Navigation Systems (INS), such as Inertial Measurement Units (IMUs) are inde-
pendent of external perturbations, they present important deficiencies, such as inertial sensor (gyro and
accelerometer) imperfections which are source of cumulative errors, incorrect navigation system initializa-
tion, and imperfections in the implemented gravity model. However, INS are excellent source of navigation
information when combined with GNSS receivers, which can minimize errors in INS (de Celis, Cadarso,
and Sánchez 2017).

Cost and precision have always been set as fundamental attributes of projectile performances. However,
they are counter-posed objectives. Precision aims at minimizing “collateral damage”. Low values for this
damage can suppress the feasibility of military action. (Hamilton 1995). In order to reduce costs while
maintaining an acceptable precision level, expensive inertial navigation systems can be replaced with less
precise devices as long as the accessibility and persistence of the GNSS signal are guaranteed, to update
the inertial system in order to limit the growth of errors. However, many scenarios feature high uncertainty.
An approach to lower costs and collateral damage is to merge signals of several low-cost sensors, which
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enables improvement of overall accuracy. The benefits of integrated data fusion has been shown in many
antisubmarine, strategic air, and land warfare applications (Waltz and Buede 1986). Data fusion algorithms
for 6 degrees of freedom missiles are described in (Nguyen, Tyan, and Lee 2016). The advantages and
issues in utilizing diverse sorts of INS expanded with GNSS updates have been considered by (Schmidt
and Phillips 2011). In addition to INS/GNSS hybridization, a group of nonlinear observers are described
by (Bryne, Hansen, Rogne, Sokolova, Fossen, and Johansen 2017). On the off chance that different sensors
are accessible, they might be extra contributions to a filter, e.g., the Kalman filter (de Celis, Cadarso, and
Sánchez 2017).

Similarly to (de Celis, Cadarso, and Sánchez 2017), the need to develop new Guidance, Navigation and
Control (GNC) systems has motivated research on stability and controllability of these aerial platforms.
Based on missile proportional navigation, (Zhao and Zhou 2015; Creagh and Mee 2010) presents cooperative
strategies for multiple missiles based on the traditional Proportional Navigation (PN). An attitude control-
system design for a spinning sounding rocket, which features a proportional, integral, and derivative (PID)
type controller, is developed in (Lee, Sun, Tahk, and Lee 2001). Proportional-derivative navigation guidance
laws for the terminal phase are proposed in (Lechevin and Rabbath 2012; Wang, Wang, and Gao 2015).
The line of sight is reconstructed in (Nesline and Zarchan 1985). In (Zhang, Sun, and Chen 2012), a
finite-time convergent sliding-mode guidance law with terminal impact angle constraint is presented. A
complete design concerning the guidance and autopilot modules for a class of spin-stabilized fin-controlled
projectiles is presented in (Theodoulis, Gassmann, Wernert, Dritsas, Kitsios, and Tzes 2013).

But even in GNSS/IMU integrated systems, there exist unknown disturbances and abnormal mea-
surements, which may be extremely dominant during terminal guidance for low-cost devices. Therefore,
development of new algorithms which may satisfy the needed accuracy levels at low cost during terminal
guidance is a cornerstone in research on ballistic projectiles. For example, modern laser guided ballistic
rockets are integrating IMU, GPS and laser guidance capability, offering high precision and all-weather
attack capability (de Celis and Cadarso 2019; Zhang, Yang, Sun, Yang, Han, and Hu 2017).

Semi Active Laser Kits (SAL) have been developed to improve precision in guided rockets. SAL are
currently applied in many engineering ambit, for example in determining rotational velocity of objects or
in measuring slight movements of laser spots (Zeng, Zhu, and Chen 2016; Esper-Chaı́n, Escuela, Fariña,
and Sendra 2015). One of the greatest advantages of this equipment is its high performance in terms of
guidance, typically during the last phases of the trajectory, as compared to its low cost.

Sensor hybridisation methodologies and algorithms which aim at proposing effective and robust measures
that allow for a high level of autonomy and precision at a low cost are a current need. In this sense, a
promising methodology is what is known as Machine Learning (ML). It offers innumerable possibilities
and revolutionary solutions of special interest for GNC applications, where its foray is still recent and
shallow, but undoubtedly promising. Indeed, the use of ML methods for the estimation of parameters
based on the dynamics of aerospace vehicles presents the advantage that once the algorithm is trained or
calibrated, it is not necessary to know the physical-mathematical foundations that govern dynamics, but
it is the algorithm that, for the input data, returns the information that can later be used within the GNC
algorithm (Solano-López, de Celis, Fuentes, Cadarso, and Barea 2019), (Mohamed and Dongare 2018).

The aim of this paper is to improve the existing methods for terminal guidance applying an effective
hybridization algorithm, which is based on a neural network. The objective is to obtain an accurate vector
between rocket and target to be employed on a guidance, navigation, and control system from a combination
of different sensors measures.

1.1 Contributions

The main contribution of this scientific research is the proposal of neural networks to hybridize GNSS /
IMU and semi-active laser quadrant photo-detectors signals. The objective is to predict the line of sight, i.e.,
the vector linking the target and the rocket mass center, during terminal guidance, consequently improving
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accuracy at the point of impact. It should be noted that the advantage of such a combined system over the
GNSS / IMU one is the ability to avoid distortion and modify final impact angles.

The presented approach is based on two neural networks which predict the movement of the terminal
line of sight. Inputs for neural networks are GNSS / IMU and semi-active laser quadrant photo-detectors
signals. Line of sight is then integrated on a modified proportional navigation law and on a rotatory control
technique. As controller, a robust double-input double-output controller is proposed, which can deal with
the substantial coupling between the lateral and normal rocket nonlinear dynamics.

The utilization of a flight dynamics model reproducing a highly spinning rocket, which considers
non-linearities in aerodynamic forces and moments, is proposed to build up a realistic simulation campaign.
Simulation results exhibit the exactness and applicability of these algorithms under nondeterministic
environment, launch and projectile conditions.

This paper is organized as follows: in Section II the system modeling is described in detail. Section
III describes navigation, guidance, and control algorithms. Section IV exposes simulations results. Finally,
discussion and conclusions are presented.

2 SYSTEM MODELING

This section focuses on the description of the plant, the non-linear flight mechanics model, actuation and
sensor models, and hybridization used for navigation purposes.

2.1 Rocket Definition

The proposed guidance, navigation and control approach is applied to a 140 mm axis symmetric rotary
rocket with wrap-around stabilizing fins as shown in Figure 1. Launch speed is supersonic and initial spin
rate is approximately 150 Hz. The maneuvering mechanism consists of a roll-decoupled fuse attached to the
tip of the rocket. The fuse is made up of four canard surfaces, decoupled 2 by 2, to generate control force
modulus and argument in an orthogonal plane to the rocket section, and its associated moment (de Celis,
Cadarso, and Sánchez 2017).

Figure 1: Rocket configuration.

Thrust, mass and aerodynamic characteristic parameter values for the rocket are shown in Tables 1 and
2. They are based on experimental measurements, fluid dynamics numerical simulations and wind tunnel
verification. A cubic spline interpolation has been used to keep continuity and derivability on thrust and
aerodynamic coefficients at intermediate points.

Table 1: Thrust and mass rocket parameters.

Parameter Maximum thrust Burn-out time Initial mass Propellant mass Ix0 Iy0 XCG0 Caliber
Value 29160.00 N 2.70 s 62.40 kg 21.00 kg 0.19 kgm2 18.85 kgm2 1.13 m 0.14 m

Time (s) 0 0.02 0.10 0.20 0.70 1.70 1.75 1.95 2 2.15 2.30 2.70
Thrust (kN) 0 25 22.5 23 24 28.5 29.1 15 10 5 2.5 0

2.2 Flight Dynamics Model

Before going into model details, three axes systems are defined to express forces and moments: body axes,
earth axes and working axes. Body axes are defined by sub index b. xb pointing forward and contained
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Table 2: Aerodynamic rocket parameters.

M CD0(M) CD
α2 (M) CLα

(M) CL
α3 (M) Cm f (M) CNq(M) CMα

(M) CM
α3 (M) CMq(M) Cmm(M) Cspin(M) CNαw(M)

0,00 0,27 10,74 8,01 19,82 -0,59 50,81 -35,58 -16,65 -225,73 3,02 -0,04 0,00
0,60 0,24 11,10 8,43 19,12 -0,70 57,43 -36,00 -20,39 -245,32 3,57 -0,04 0,43
0,80 0,23 11,40 8,79 18,49 -0,75 63,80 -36,51 -23,39 -264,85 3,84 -0,03 0,44
0,90 0,23 11,45 8,98 17,28 -0,78 67,93 -36,57 -18,48 -276,57 3,98 -0,03 0,45
1,00 0,41 15,12 8,93 44,05 -0,81 71,38 -35,99 15,39 -287,82 4,12 -0,03 0,45
1,10 0,48 15,09 8,99 43,00 -0,83 76,53 -35,54 19,12 -302,58 4,25 -0,03 0,45
1,50 0,41 13,99 8,10 41,97 -0,94 86,55 -27,05 26,25 -289,17 4,80 -0,03 0,40
2,00 0,35 13,02 7,28 41,27 -1,07 110,51 -17,62 24,77 -267,48 5,49 -0,02 0,35

in the plane of symmetry of the rocket, zb perpendicular to xb pointing down and contained in the plane
of symmetry of the rocket, and yb forming a clockwise trihedron. The origin of body axes is located at
the center of mass of the rocket and they are severely coupled to the roll-decoupled fuse. Earth axes are
defined by sub index e. xe pointing north, ze perpendicular to xe and pointing nadir, and ye forming a
clockwise trihedron. Working axes are defined by sub index w. xw pointing to the target, yw perpendicular
to xw and pointing zenith, and zw forming a clockwise trihedron. AZ0 is the initial azimuth between xe and
xw. Next, flight dynamics and actuation equations are introduced.

Total external forces and moments for the rocket are given in 1.[ −→
Fext ,

−−→
Mext

]
=
[ −→

D +
−→
L +
−→
M +
−→
P +
−→
T +
−→
W +

−→
C ,

−→
O +
−→
PM +

−→
MM +

−→
S
]
, (1)

where
−→
D is drag force,

−→
L is lift force,

−→
M is Magnus force,

−→
P is pitch damping force,

−→
T is thrust force,

−→
W

is weight force,
−→
C is Coriolis force,

−→
O is overturn moment,

−→
PM is pitch damping moment,

−→
MM is Magnus

moment and
−→
S is spin damping moment.

Rocket forces in working axes are described in 2 and 3. They include contributions from drag, lift,
Magnus, pitch damping, thrust, weight and Coriolis forces:

[ −→
D ,

−→
L

−→
M ,

−→
P

]
=−π

8 d2ρ

 (CD0(M)+CD
α2 (M)α2

)
‖−→vw‖−→vw ,

(
CLα

(M) ·α +CL
α3 (M)α2

)(
‖−→vw‖2−→xw− (−→xw ·−→vw)

−→vw)

d Cm f (M)
Ix

(−→
Lw ·−→xw

)
(−→xw×−→vw) , −d CNq(M)

Iy
‖−→vw‖2

(−→
Lw×−→xw

)  (2)

[ −→
T ,

−→
W ,

−→
C
]
=
[

T (t)−→xw , m−→gw , −2m
−→
Ω ×−→vw

]
, (3)

where d is rocket caliber, ρ is air density, CD0(M) is drag force linear coefficient, CD
α2 (M) is drag force

square coefficient, α is total angle of attack, CLα
(M) is lift force linear coefficient, CL

α3 (M) is lift force

cubic coefficient, Cm f (M) is Magnus force coefficient,
−→
Lw is rocket angular momentum in working axes,

Ix and Iy are rocket inertia moments in body axes, CNq(M) is pitch damping force coefficient, −→xw is rocket
nose pointing vector in working axes, −→gw is gravity vector in working axes,

−→
Ω is earth angular speed

vector, and −→vw is rocket velocity in working axes. Note that all these expressions are deeply nonlinear
as aerodynamic linear, quadratic, and cubic coefficients depend on Mach number, which varies along the
rocket flying performance.

Rocket moments, defined in 4, include overturning, pitch damping, Magnus, and spin damping moment:

[ −→
O ,

−→
PM−→

MM ,
−→
S

]
= π

8 d3ρ

 (
CMα

(M)+CM
α3 (M)α2

)
‖−→vw‖2 (−→vw×−→xw) , 1

Iy
CMq(M)‖−→vw‖

(−→
Lw−

(−→
Lw ·−→xw

)−→xw

)
− d

Ix
Cmm(M)

((−→
Lw ·−→xw

)
((−→vw ·−→xw)

−→xw) − −−→vw) , d
Ix

Cspin(M)‖−→vw‖
(−→

Lw ·−→xw

)−→xw

 , (4)

where CMα
(M) is overturning moment linear coefficient, CM

α3 (M) is overturning moment cubic coefficient,
CMq(M) is pitch damping moment coefficient, Cmm(M) is Magnus moment coefficient and Cspin(M) is spin
damping moment coefficient. Non-linearities are once again considered.
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Fuse mass is assumed to be negligible, which involves no reactions between fuse and aft part. Then,
aft-fuse interactions can be expressed as an addition of external forces and moments, which are shown
in equation 5. This simplification is obtained from Euler equations,

−→
Fext =

dm−→vb
dt +−→ωb×m−→vb on where

gyroscopic contributions of the aft part are moved to the left part of the expression and operated separately.

[ −→
Mr ,

−−→
MMr−→

Gr

]
=

[
−π

8 d3ρ

[
Cm f (M)

Ix

(−→
Lb ·−→xb

)
(−→xb ×−→vb ) , d

Ix
Cmm(M)

((−→
Lb ·−→xb

)
((−→vb ·−→xb )

−→xb )−−→vb

) ]
− ¯̄I d

dt

(−→
ωb + pr

−→xb
)
+−→ωb× ¯̄I

(−→
ωb + pr

−→xb
] ]

(5)

−→
Mr is Magnus force of the rotating part of the rocket,

−−→
MMr is Magnus moment of the rotating part

of the rocket,
−→
Gr is gyroscopic moment of the rotating part of the rocket, p,q and r are angular speed

components of the rocket, pr is angular speed of the rotating part of the rocket,
−→
Lb is rocket angular

momentum in body axes, −→vb is rocket velocity in body axes and −→xb is rocket nose pointing vector in body
axes.

Given the force and moment models above, the equations of motion for the rocket are formulated
using a Newton-Euler approach, which is shown in 6. Note that the inertial, flat-Earth coordinate system
(denoted by frame e) and the body-fixed coordinate system b are related by Euler roll (φ ), pitch (θ ), and
yaw (ψ) angles.

[ −→
CF +

−→
Fext +

−→
Mr ,

−→
CM+

−−→
Mext +

−−→
MMr +

−→
Gr

]
=
[

dm−→vb
dt +−→ωb×m−→vb , d

−→
Lb
dt +−→ωb×

−→
Lb

]
(6)

Note that the control force (
−→
CF) and moment (

−→
CM) for each fin are given in equation 7:

[ −→
CF
−→
CM

]
= ∑

i=4
i=1

[ 1
8 sign(αe f fi)d

2ρπ‖−−→ve f fxi
‖2(CNαw(M)cos(αe f fi)+

2
d2π

Sexpsin2(αe f fi))(
−−→uFNicosδi−−→xb sinδi)

(dax(M)−→xb +dlat
−→ubi)× 1

8 sign(αe f fi)d
2ρπ‖−−→ve f fxi

‖2(CNαw(M)cos(αe f fi)+
2

d2π
Sexpsin2(αe f fi))(

−−→uFNicosδi−−→xb sinδi),

]
(7)

where CNαw(M) is the aerodynamic coefficient of the normal force for a fin, Sexp is the characteristic surface
of the airfoil, αe f fi is the effective angle of attack (de Celis and Cadarso 2018), dax(M) is the longitudinal
distance, parallel to xb, of airfoil center of pressure (CP) to rocket center of mass (CG), which depends on
the Mach number (M) and introduces another source of non-linearity. dlat is the lateral distance, which is
orthogonal to xb and parallel to ubi for each fin, from airfoil center of pressure to rocket center of mass. It
is assumed to be constant in this model.

2.3 Sensors

Two different sensor sets are introduced. A GNSS/IMU system and a semi-active laser quadrant photo
detector.

The GNSS/IMU system is modeled to permit good performance for intermediate trajectories. A bias
and a random noise are added to the calculated position and attitude. Note that these hybridized systems’
accuracy is on the order of magnitude of 1 m for position and 0.1 degrees for attitude. Equation 8 shows
the vector between rocket and target (line of sight

−−−−−−→
XpwGNSS/IMU ):

−−−−−−→
XpwGNSS/IMU =

[
xwTGNSS/IMU

− xwRGNSS/IMU
, ywTGNSS/IMU

− ywRGNSS/IMU
, zwTGNSS/IMU

− zwRGNSS/IMU

]
, (8)

where [xwTGNSS/IMU
,ywTGNSS/IMU

,zwTGNSS/IMU
] is the position of the target in working axes, and [xwRGNSS/IMU

,

ywRGNSS/IMU
,zwRGNSS/IMU

] is the position of rocket center of gravity at each instant in working axes, as
measured by the GNSS/IMU system.
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In terminal flight guidance, 1 m errors in rocket and target positioning induce huge angular errors in
the line of sight vector. An accurate terminal guidance sensor such as a semi-active laser quadrant photo
detector may be used to mitigate this drawback (de Celis and Cadarso 2019). To calculate laser footprint
centroid coordinates, the electric intensities generated in the photo diodes (I1, I2, I3 and I4) are used, which
depend on the illuminated area. These coordinates can be calculated as [ln I4

I2
, ln I1

I3
], and from them the

measured radial distance, rquad , can be obtained. However, real coordinates differ from the previous ones,
although the transformation is conformal (de Celis and Cadarso 2019). Relationship between rquad and
real radial distance, rc, i.e., rc = f (rquad), is shown in Table 3. These radial measurements are interpolated
using cubic splines to calculate real spot center coordinates (de Celis and Cadarso 2019):

Table 3: Interpolation between measured radial distance, rquad , and real radial distance, rc.

rquad =
√

ln I4
I2

2
+ ln I1

I3

2
0.48 0.99 1.50 2.01 2.67 3.68 5.88

rc 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−→
Xpb =

Rquadrc

rquad

(
d2

pCG +

(
ln

I4

I2

)2

+

(
ln

I3

I1

)2
)− 1

2

·
(

dpCG
−→xb +

Rquadrc

rquad
ln

I4

I2

−→yb +
Rquadrc

rquad
ln

I3

I1

−→zb

)
(9)

where Rquad is the physical radius of the quadrant detector. Therefore, the line of sight vector, expressed
in body axes, shall respond to the expression in 9, where dpCG is the distance from the quadrant detector
to the center of mass of the rocket. The combination of these sensors may provide an accurate definition
of the line of sight vector if their signals are correctly hybridized. Next navigation, guidance and control
algorithms are introduced. At their core, neural networks are introduced to fuse semi-active laser kit and
GNSS/IMU sensor signals to increase projectile accuracy.

3 NAVIGATION, GUIDANCE AND CONTROL

This section describes the proposed navigation, guidance, and control algorithms.

3.1 Navigation

Navigation process refers to the determination, during the whole trajectory, of the rocket and target positions
and rocket attitude. The aim is to obtain the line of sight between them, which can be calculated in earth
axes by subtracting rocket position, determined by GNSS/IMU sensors, from target position, but as it was
previously explained, this method induces enormous angular errors during final phases of flight. Semi-active
laser quadrant detector may provide an accurate line of sight in body axes during last stages of flight.
Line of sight vector, both in working and earth axes, (

−→
Xpw) and (

−→
Xpe) respectively, can be obtained from

hybridized signals of GNSS/IMU and semi-active laser kit sensors.

3.1.1 Hybridization Algorithm

The hybridization process is based on Neural Networks (NN). The aim is to recover a high accuracy on
the line of sight determination process by combining the measurements from the quadrant detector, the
IMU/GNSS and the potential offered by NNs.

Among the many applications that ML offers to classic and modern GNC problems (see (Yu, Zhang,
and Gu 2004), (Jankovic, Paul, and Kirchner 2016), (Mohamed and Dongare 2018), (Villa, Taipalmaa,
Gerasimenko, Pyattaev, Ukonaho, Zhang, Raitoharju, Passalis, Perttula, Aaltonen, et al. 2020)), the main
advantage of NNs against other approximations lies in their possibility to learn flight dynamics equations,
which enables flight prediction without the need of knowing the physical problem (Yadav, Yadav, and
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Kumar 2015). This feature makes possible to replicate the determination process of a line of sight from
sensor data. The use of NN to solve the evolution of non-linear equations has been proved before (Yadav,
Yadav, and Kumar 2015), even if they feature uncertainty.

Two neural networks are utilized to estimate xc and yc, which are the real spot center coordinates.
They both are employed in the proposed hybridization approach. They feature two-layers with one hundred
standard sigmoid hidden neurons and a linear output neuron. The choice of the number and shape of neurons
(e.g., sigmoid activation function), and the selected amount of training and validation data are based on the
literature review (specially from (Yadav, Yadav, and Kumar 2015)) and on a hyperparametric study. As a
result, the approximate numbers of 100 and 50 were obtained to be significant as the number of neurons.
Other experiments using 50 neurons and 75 neurons have been performed and results are significantly
worse as compared to the provided results (more than 10%). Further research will be performed to precisely
determine the optimal working point. But, it is not the objective of this paper to formalize this statement.

The input vector is composed of 3 components, the signals from the GNSS/IMU and SAL, and a binary
signal which is 1 if SAL receives data, and 0 otherwise. The target is the line of sight. Consequently,
NN are trained replicating the flight dynamics. Table 4 shows an example of the available 3 ·108 rows of
data, which are obtained from 24000 simulations, where flight mechanics initial and contour conditions are
varied to minimize bias and avoid overfitting. The architecture of neural networks are showed in Figure 2.

Levenberg-Marquardt backpropagation algorithm (Kanzow, Yamashita, and Fukushima 2005) is used
to train the network with a 70% of the available data. And a representative amount of sensor data and its
corresponding line of sight are left aside for validation purposes. In this case, a 15% of the available data.

The performance of the training algorithm can be quantified by means of the Mean Squared Error
(MSE) and the Regression (R) parameter values. The MSE is the average squared difference between
outputs and targets. Lower values are better, and zero means no error. R values measure the correlation
between outputs and targets. An R value of 1 means a close relationship, and 0 a random relationship.
Other indicators (such as Mean average error, MAE) can also be used to monitor and validate the training
while overfitting is avoided. The training process is considered complete when the MSE stops improving.

After 1000 iterations and a validation process, a MSE value of 3.1 · 10−5 for xc, 2.1 · 10−5 for yc,
and a parameter for regression of 0.98 for xc, and 0.99 for yc are obtained. As showed in the numerical
simulations, these results are good enough for the studied application. In addition, the trained NN is tested
with the independent data (15% of the collected data), producing similar MSE and R values.

Table 4: Neural Network Input and Target values.

GNSS/IMU Inputs SAL Inputs Target
xc yc xc yc xc yc

0.012 0.006 0.012 0.006 0.025 0.002
0.011 0.006 0.011 0.006 0.024 0.001

... ... ... ... ... ...

Figure 2: Neural Network scheme.

As an example, for a nominal shot (de Celis, Cadarso, and Sánchez 2017), a typical error on GNSS/IMU
sensors of 1 m on each of the three position components, and a random white noise for the quadrant detector
of 0.001 on each of the two measurements, the results for the proposed hybridizing algorithm are shown
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in Figure 3, where x and y coordinates for the line of sight are shown. Note that z coordinate is known
as it is measured from the center of mass of the rocket. As it is shown in the figure, the GNSS/IMU
measurements (black line) degrade during the last stages of flight, while the hybridized solution (red line)
keeps fidelity to the real line of sight (blue line) during the whole trajectory. Here, the physical radius of
quadrant detector, Rquad , has been set to 8 mm.
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Figure 3: Results for the hybridization algorithm: x and y coordinates for the line of sight.

3.2 Guidance Law

Guidance is provided in two phases. The first one consists of a constant angle glide trajectory, while the
second one consists of a modified proportional law.

3.2.1 Constant Angle Glide Trajectory

The proposed law (equation 10) is elected to maximize projectile range. It aligns longitudinal rocket axis
(xb) with a vertical flight plane, perpendicular to ground, parallel to the line joining the rocket center of
mass and the target and containing the rocket center of mass. Vector

−→
Xpw = [xpw ,ypw ,zpw ], which represents

the line of sight, is expressed in working axes by its three components. Vector −→xbw = [xb1w ,xb2w ,xb3w ],
which represents xb in working axes, is again expressed by its three components. The first component of
equation 10 represents the lateral correction (ψdem) and the second component represents correction in the
vertical plane (θdem) with respect to a constant glide angle trajectory given by C1 (de Celis, Cadarso, and
Sánchez 2017). This constant angle glide guidance is only activated when the rocket is after apogee, which
is determined by the pitch angle (θ ), and flight time is long enough to thrust be off.

[
ψdem , θdem

]
=

{ [
(atan zpw

xpw
−atan xb3w

xb1w
) , C1

]
if t > 5 and θ ≤ 0[

0 , 0
]

else
(10)

3.2.2 Modified Proportional Law

The terminal phase consists of a modified proportional law governed by equation 11. Equation 12 estimates
time to impact, tgo. Guidance is only activated when the vertical component of line of sight vector is higher
than a given constant (C2) (de Celis, Cadarso, and Sánchez 2017).

[
ψdem , θdem

]
=


−−→
Xpw−

−→vwtgo
t2
go

·
[ −→

kw , −−→iw
]

if atan zpe√
x2

pe+y2
pe
≤C2[

0 , 0
]

else
(11)

tgo = max
[

1
g

(
−→vw ·
−→
jw +

√
(−→vw ·
−→
jw)2 +2gypw

)
, 1

g

(
−→vw ·
−→
jw−

√
(−→vw ·
−→
jw)2 +2gypw

) ]
(12)

where −→vw is rocket speed vector expressed in working axes and g is the gravity constant.
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3.3 Control System

The control law introduced in (de Celis and Cadarso 2018) is integrated in the current system. Two control
parameters are introduced in the actuation system: the angle and the modulus for the rotating force. Control
is processed by a double loop feedback system. The inner loop is only used as a system of stability
augmentation. The control angle (φc) and modulus (τc) of the rotating force are defined in equation 13,
taking pitch (θdem) and yaw (ψdem) errors as inputs. L1 and L2 are experimental gains, Ki, Kd and Kp are
the integral, derivative, and proportional constants of the controller, and Kmod is a constant to adjust force
module. In (de Celis, Cadarso, and Sánchez 2017), the process to determine these constant values, which
are shown in Table 5, is explained.

[
φc

τc

]
=

[
Kp (E1−E2)+Ki

∫
(E1−E2)dt +Kd

d
dt (E1−E2)+E1

Kmod
√

(θdem−L1θ)2 +(L2(ψdem−L1ψ))2

]
where

{
E1 = atan θdem−L1θ

L2(ψdem−L1ψ)

E2 = atan acczb
accyb

(13)

Table 5: Values for the constants on each flight phase.

Parameter C1 C2 Ki Kp Kd Kmod L1 L2

Value for phase 1 -7.5 deg -21 deg 0 0.5 0 0.08 0.01 100
Value for phase 2 -7.5 deg -21 deg 1 0.25 0.05 0.08 0.01 1

[accxb,accyb,acczb] is the acceleration of the rocket in body axes and [φ ,θ ,ψ] are the Euler angles as introduced
before. Roughly speaking, the controller calculates the needed pointing angle of the aerodynamic force
calculating the arctangent of the quotient of the pitch and yaw error. This gives an angle at which the
aerodynamic force, in the yb− zb plane, must point to reach the target. However, the gyroscopic effect due
to the spinning part of the rocket makes the response difficult to govern, i.e., pointing the control force
upwards will not make the rocket to respond upwards. Therefore, we also need to measure the acceleration
of the rocket, without accounting for gravity, and make the difference between the angle of the projection
of the aerodynamic force in the yb− zb plane with yb and φc zero (de Celis, Cadarso, and Sánchez 2017).

These control parameters are translated into fin deflections, i.e., δ1,δ2,δ3 and δ4, which are managed
by two actuators, by means of equations 14.[

δ1 , δ2 , δ3 , δ4
]
= τc

[
sinφc , cosφc , sinφc , cosφc

]
(14)

4 NUMERICAL SIMULATIONS

The previous nonlinear equations of motion are integrated forward in time using a fixed time step Runge-
Kutta scheme of fourth order to obtain a single flight trajectory. The validation of this modelling and
solving approach for ballistic flights is shown in (de Celis, Cadarso, and Sánchez 2017). To demonstrate the
accuracy of the results provided by the novel approach presented here, which is based on neural networks,
they are compared to the results obtained in (de Celis, Cadarso, and Sánchez 2017) and (de Celis and
Cadarso 2018). The approach in (de Celis, Cadarso, and Sánchez 2017) features a control based on a
GNSS/IMU system while the one in (de Celis and Cadarso 2018) features a Kalman based hybridization
of a GNSS/IMU system and a semi-active laser quadrant photo-detector. MATLAB/Simulink R2020a on
a desktop computer with a processor of 2.8 GHz and 8 GB RAM is employed in the simulations.

4.1 Ballistic Trajectories

To test the algorithms developed, three nominal trajectories will be employed. They differ in their initial
pitch angle: 20◦, 30◦ and 45◦. Impact points are at 18790 m, 23007 m, and 26979 m, respectively. Initial
lateral correction is set to compensate Coriolis and gyroscopic forces: 0.15◦, 0.19◦ and 0.31◦, respectively.
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4.2 Monte Carlo Simulations

Monte Carlo analysis is conducted to determine closed-loop performance across a full spectrum of uncertainty
at initial conditions, sensor data acquisition, atmospheric conditions, and thrust properties. Uncertainty
model details for sensors are defined in previous sections and the rest are shown in Table 6. A set of 2000
shots is performed for each of the following combinations: ballistic shots, Kalman hybridization guidance,
neural network hybridization guidance and ideal shots. Then, a total of 24000 simulations are performed
at the end of simulation campaign. Note that this simulation campaign is different from the training one.

Table 6: Monte Carlo simulation parameters.

Parameter (deg) Initial φ Initial Pitch Wind Speed Wind Direction Thrust Initial azimuth
Mean 0◦ Nom. 10 m/s 0◦ T(t) Nom.

Standard Deviation 20◦ 0.01◦ 5 m/s 20◦ 10 N 0.01◦

4.3 Discussion

Results for ballistic trajectories and comparisons between different approaches are shown in Figure 4. It is
composed of four columns and three rows of sub-figures. Each row features a different initial pitch angle.
The first column of sub-figures compares ballistic flights against Kalman hybridization assisted flights, the
second one compares Kalman hybridization against Neural Network hybridisation, the third one Neural
Network hybridization against ideal controller, and the last one ballistic flights against Neural Network
hybridization assisted flights. Note that, even with an ideal controller, which features perfect information
on the line of sight, there are still errors associated to the aerodynamic response of the rocket. As a general
remark, controlled flights exhibit tighter impact groupings, getting similar results for both hybridizations
and ideal controller. Note that improvements or reductions on the CEP of a 95% are obtained. The circular
error probable (CEP) for each of the initial pitch angles and ballistic and controlled flights is shown in
Table 7.

Table 7: Circular Error Probable for different algorithms.

Initial Pitch (deg) Ballistic (m) Kalman Hyb. Control (m) Neural Network Hyb. Control (m) Ideal Control (m)
20 169.34 1.28 1.29 1.18
30 239.37 1.18 1.17 1.06
45 281.59 0.91 0.93 0.83

5 CONCLUSIONS

A novel approach, which is based on an innovative hybridization between GNSS/IMU and semi-active laser
quadrant photo-detectors, has been developed. Small errors of 1 m in GNSS/IMU systems may induce
significant errors in line of sight vector calculation. Note that when distance to target is small, these errors
may result in high angular errors in line of sight. The proposed approach can improve the precision of line
of sight determination during the terminal guidance, therefore ameliorating the precision on impact point.

A two-phase guidance algorithm and a novel control technique for high-rate spinning rockets are
proposed. The guidance algorithm is based on a constant angle glide and on a modified proportional
law while the control algorithm is based on a simple but effective and robust double-input double-output
controller. Several algorithms are proposed for fusing signals of different sensors in the terminal trajectory.
The novel proposed approach shows that levels of accuracy can be improved or matched as compared
against other methodologies.
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Figure 4: Detailed shots for different algorithms.
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