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ABSTRACT

Modeling & Simulation (M&S) techniques have proven their effectiveness for several intended uses, from
complex systems analysis to innovative training activities. The emerging M&S-as-a-Service (MSaaS)
paradigm deals with the adoption of service-orientation and cloud computing to ease the development
and provision of M&S applications. Due to its relevance for the military domain, the NATO MSG-164
is investigating how the MSaaS potential can be exploited to support NATO objectives. In this context,
this work proposes ArTIC-MS, a MSaaS architecture that aims at investigating innovative approaches
to ease the building of inter-cloud MSaaS applications. ArTIC-MS’s main objective is to provide an
effective interoperability among M&S services provided by different nations to seamlessly build complex
MSaaS applications. Specifically, the work addresses the use of the TOSCA (Topology and Orchestration
Specification for Cloud Applications) standard, and also discusses how ArTIC-MS may cope with the
orchestration of M&S services available on non-TOSCA infrastructures.

1 INTRODUCTION

In the last decade, Modeling & Simulation (M&S) has gained great relevance in both academia and industry
as an effective and valuable approach to support systems engineering activities (Gianni et al. 2014). A
M&S approach encompasses the specification of a simulation model that describes a system or process,
and the generation of a computer-based model implementation, which is eventually run so as to reproduce
the behaviour of the addressed system or process (Sokolowski and Banks 2009). M&S approaches have
proven their effectiveness in various application domains, ranging from the evaluation of systems design
alternatives, to the execution of innovative training activities that can be too costly or risky to be carried out
in a real environment. These approaches provide significant opportunities in the military domain also, in
order to address various operational activities including training, decision support, concept development and
experimentation (Ford et al. 2018). Emerging M&S-based technologies can be effectively used to develop
and deliver innovative training services to provide soldiers and leaders with the required competencies
(Caulkins et al. 2017). The M&S community may significantly benefit from the adoption of technologies
such as cloud computing and service-oriented architecture (SOA), so to build and provide M&S applications
through the composition of services available in the cloud, as addressed by the emerging M&S-as-a-Service
(MSaaS) paradigm (Cayirci 2013; Siegfried et al. 2018). Due to its relevance for the NATO, the MSaaS
paradigm is the subject of research activities undertaken by two Modeling and Simulation Groups: the
recently completed MSG-136 and the ongoing MSG-164, which aim at investigating how MSaaS can be
effectively adopted to support NATO’s objectives and goals (van den Berg and Cramp 2018).
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Unfortunately, the delivery of composite services in the cloud can be a non-trivial task. From an
application development perspective, a set of component services have to be identified and deployed, with
each component service providing an interface that meets the composite service requirements. Then, a
choreography-based or an orchestration-based approach has to be implemented to handle the execution flow
of the several component services. Differently, from an execution platform perspective, each component
service has to be deployed onto an execution platform which, in turn, requires the integration of a set
of hardware and software resources, such as computational nodes, containers, applications, networks
connections, databases, and middleware.

In such a context, this work illustrates a contribution that has been partially supported by a research project
that aims at investigating innovative architectures to ease the building of inter-cloud MSaaS applications in
the defence sector. Specifically, this paper introduces ArTIC-MS, an Architecture for TOSCA-based Inter
Cloud Modeling and Simulation. ArTIC-MS is a conceptual architecture that exploits the TOSCA (Topology
and Orchestration Specification for Cloud Applications) standard (OASIS 2019a) to show how advanced
M&S applications can be built by integrating simulation components provided by different partners, and
deployed onto heterogeneous cloud infrastructures, in order to maximise the reuse of existing components.

Since interoperability is the main concern of ArTIC-MS, this paper also investigates how the proposed
architecture may cope with the orchestration of M&S services available on non-TOSCA infrastructures.
In this respect, the paper illustrates a case study concerning the integration of ArTIC-MS with OCEAN
(Biagini et al. 2017), a MSaaS platform based on the open-source OpenStack cloud infrastructure (Openstack
Foundation 2019e).

The rest of this paper is structured as follows. Section 2 reviews existing literature and highlights
the novelty of the proposed contribution. Section 3 briefly summarizes the TOSCA standard. Section 4
illustrates the ArTIC-MS rationale and architecture, and Section 6 discusses a real-world application dealing
with the use of ArTIC-MS in an existing MSaaS platform. Finally, Section 7 gives concluding remarks.

2 RELATED WORK

As pointed out in (Tolk 2013), the adoption of simulation-based techniques in the military domain has
a long history. In this context, simulation has been widely used to support different operational needs,
ranging from strategic games, computer-assisted exercises (CAX), and training (Loper et al. 2012; Tolk
and Mittal 2014; Lorenz et al. 1997; Straßburger et al. 1998). The primary role of M&S in the military
domain has been underlined in (Siegfried et al. 2014), where M&S is recognized as a key enabler for the
delivery of capabilities to NATO in training, analysis and decision making. This contribution also argues
how the adoption of a MSaaS paradigm, e.g., the introduction of service orientation for building M&S
applications, may be a relevant opportunity to better utilize M&S capabilities in support of NATO critical
needs.

In this respect, the main objective of this paper is the definition of a MSaaS-based architecture that aims
at providing an effective tool to support NATO and allied nations in the discovery, deployment, integration
and orchestration of M&S services for building complex simulation applications.

As regards the development of MSaaS platforms, several contributions have been proposed that address
such an issue from different perspectives (Tolk 2013; Tolk et al. 2013; Hannay et al. 2020; Ford et al.
2018). In (Tolk 2013; Tolk et al. 2013), interoperability and composability have been identified as two of
the most relevant challenges for M&S systems. While interoperability is defined as the ability to exchange
data among simulation components, composability emphasizes the need of a conceptual alignment of data
among the components part of a simulation system. In this regard, the main objective of the proposed
architecture is twofold, namely the provisioning of an approach for the specification of the simulation
system conceptual model, so to identify the available existing M&S components, and the use of the TOSCA
standard for describing both the M&S components and the composed simulation, in order to address
interoperability issues.
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In (Hannay et al. 2020), it is argued that MSaaS-based applications should be easily composed by
integrating loosely coupled shared components (in other words, simulation services), in a cloud-based
environment. The pillars of the MSaaS ecosystem have been discussed in (Ford et al. 2018). According to
the proposed architecture, a MSaaS system should be composed of M&S Services, which are the building
blocks of simulation applications, Registries and Repositories, containing M&S Services descriptions and
implementations, respectively, Processes, which define how services are discovered, composed, deployed
and executed, an Infrastructure, which describes the Simulation Environment and, finally, a Portal, the
entry point to start the MSaaS process. Such contributions have inspired the essential building blocks
at the basis of the ArTIC-MS’s architectural design, which also introduces a step forward by addressing
interoperability in case of inter-cloud service composition.

Finally, existing literature also provides relevant examples of already available MSaaS platforms, such
as CloudSME (Taylor et al. 2018), Simulation Platform (Yamazaki et al. 2011), and OCEAN (Biagini et al.
2017). Due to their architecture and rationale CloudSME and Simulation Platform are largely different
form ArTIC-MS. CloudSME (Taylor et al. 2018) is a multi-cloud platform for developing and executing
commercial cloud-based simulations and its primary target audience includes commercial software vendors
and consultant companies in the IT domain, as well as Small and Medium-sized Enterprises (SMEs).

Simulation Platform (Yamazaki et al. 2011) consists of a cloud of virtual machines (VMs) upon which
a GNU/Linux OS runs. Various software including scientific software, compilers, libraries, and simulators
are pre-installed on each VM. The platform allows users to request the assignment of a set of VMs to build
and run a scientific simulation, according to the specific requirements.

Differently, OCEAN (Biagini et al. 2017) is a MSaaS platform based on Openstack and specifically
designed and developed for supporting training and simulation-based exercises in the defence sector. Simi-
larly to the ArTIC-MS platform, OCEAN’s architecture includes a cloud infrastructure, a service repository
and a portal which allows users to discover, select, compose and deploy M&S components. Moreover, it
also addresses the same target audience. The main difference is that OCEAN is not specifically designed to
support inter-cloud interoperability. Its orchestration engine (i.e., the Openstack HEAT (Openstack Founda-
tion 2019a)) requires the use of an implementation-specific technology, namely HOT (HEAT Orchestration
Template) (Openstack Foundation 2019d), for the description of a simulation application. Differently,
ArTIC-MS makes use of the TOSCA standard. Due to the relevance of OCEAN for the NATO and allied
nations, this paper also discusses how ArTIC and OCEAN can effectively cooperate.

Finally, the architecture proposed in (Bocciarelli et al. 2018) exploits model-driven techniques to
automate the application-level orchestration of M&S services according to an abstract composite service
specified by use of different notations (e.g., UML, BPMN, etc.). As further detailed in Section 4, ArTIC-MS
deals with the infrastructure-level orchestration, e.g., the execution of the actions required for deploying
and executing the several M&S services onto the required execution platform.

3 TOSCA OVERVIEW

The description of a cloud application’s topology and its deployment and configuration is a complex task
that cloud vendors address by adopting different approaches and technologies, such as Amazon AWS
CloudFormation (Amazon 2019) or HOT (Openstack Foundation 2019d).

In this context, in order to pursue the harmonization of existing approaches, the Organization for the
Advancement of Structured Information Standards (OASIS) has released the Topology and Orchestration
Specification for Cloud Applications (TOSCA), a standard language for describing cloud-based service
orchestrations (OASIS 2019a; OASIS 2019b).

TOSCA defines a YAML-based specification for describing an IT service in terms of both its computing
infrastructure and the required procedures for deploying, instantiating, executing and managing the service.
The standard also specifies a packaged file format, namely CSAR (Cloud Service Archive), which allows
one to store in the same package the YAML service description and the set of software artifacts (e.g., OS
virtual images, libraries, scripts, DMBS installation files, middleware, application software in executable
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Each Docker container packages the applications to run, along with whatever software support
they need (e.g., libraries, binaries, etc.). Containers are built by instantiating so-called Docker
images, which can be seen as read-only templates providing all instructions needed for creating and
configuring a container. Existing Docker images are distributed through so-called Docker registries
(e.g., Docker Hub [21]), and new images can be built by extending existing ones.

Docker containers are volatile, and the data produced by a container is (by default) lost when
the container is deleted. This is why Docker introduces volumes, which are specially-designated
directories (shared among containers) whose purpose is to persist data, independently of the
lifecycle of the containers mounting them. Docker never automatically deletes volumes when a
container is removed, nor it removes volumes that are no longer referenced by any container.

Docker also allows containers to intercommunicate. It indeed permits creating virtual networks,
which span from bridge networks (for single hosts), to complex overlay networks (for clusters of
hosts).

2.2. TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [32]) is an OASIS
standard whose main goals are to enable (i) the specification of portable cloud applications
and (ii) the automation of their deployment and management. TOSCA provides a YAML-based
and machine-readable modelling language that permits describing cloud applications. Obtained
specifications can then be processed to automate the deployment and management of the specified
applications.

Figure 1. The TOSCA metamodel [32].

TOSCA permits specifying a cloud application as a service template, that is in turn composed by a
topology template, and by the types needed to build such a topology template (Fig. 1). The topology
template is a typed directed graph that describes the topological structure of a multi-component
application. Its nodes (called node templates) model the application components, while its edges
(called relationship templates) model the relations occurring among such components.

Node templates and relationship templates are typed by means of node types and relationship
types, respectively. A node type defines the observable properties of a component, its possible
requirements, the capabilities it may offer to satisfy other components’ requirements, and the
interfaces through which it offers its management operations. Requirements and capabilities are also
typed, to permit specifying the properties characterising them. A relationship type instead describes
the observable properties of a relationship occurring between two application components. As the
TOSCA type system supports inheritance, a node/relationship type can be defined by extending
another, thus permitting the former to inherit the latter’s properties, requirements, capabilities,
interfaces, and operations (if any).

Node templates and relationship templates also specify the artifacts needed to actually realise their
deployment or to implement their management operations. As TOSCA allows artifacts to represent
contents of any type (e.g., scripts, executables, images, configuration files, etc.), the metadata needed
to properly access and process them is described by means of artifact types.

Copyright c� 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2625

Figure 1: Logical structure of a TOSCA Service Template.

form, etc.) that actually implement the service. The CSAR package is given as input to a TOSCA Engine,
which is responsible for processing the YAML description so as to oversee the deployment of the several
artifacts composing the IT service and to orchestrate the execution of the related managing procedures.

In TOSCA a service is specified in terms of a Service Template, which is a YAML description that
completely specifies the service structure and its related characteristics. A Service Template is composed
by different elements, as shown in Figure 1.

A Topology Template is the essential element of a service template as it describes the structure of the
service in terms of its building blocks. The service structure is specified by use of a direct graph in which
nodes represent the building blocks of a service (e.g., servers, network interfaces, virtual images, databases,
etc.), and edges represent the relationships between nodes (e.g., deployment relationship, connection
relationship, etc.). According to a hierarchical structure, TOSCA nodes and relationships are, in turn,
further specified by use of Node Templates and Relationship Templates, respectively. Moreover, a TOSCA
Service Template also allows the specification of Lifecyle Operations, i.e., the actions that a TOSCA engine
performs to deploy, execute, handle and undeploy nodes and relationships.

The use of TOSCA allows the specification of vendor-agnostic service orchestrations. In this paper
contribution, TOSCA is used as the reference notation for specifying reusable and interoperable service
descriptions.

4 ArTIC-MS CONCEPTUAL ARCHITECTURE

ArTIC-MS deals with the concept of orchestration, which is a term that needs to clearly defined, being
applied to different kind of activities. A MSaaS application is built by integrating different M&S services.
The application orchestration refers to methods and tools used to coordinate the execution flow and the
information exchange among those services, so as to meet the functional requirements of the MSaaS
application. Differently, as each M&S service has to be deployed on top of a given execution platform
(which consists of computing nodes, system and application software, databases, network connections,
etc.), the term infrastructural orchestration includes those activities needed to set up the execution platform,
and deploy, configure and eventually start the required M&S services.

This work focuses on the infrastructural orchestration, and exploits the TOSCA standard to improve
portability and interoperability of M&S services. This is achieved by specifying a YAML-based and vendor-
independent orchestration description, which can be automatically processed by any TOSCA-compliant
engine.
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The ArTIC-MS conceptual architecture is shown in Figure 2. The main objective is to ensure the
highest degree of interoperability among services provided by different partners, which potentially use
different underlying technologies and cloud infrastructures. This scenario is referred to as the inter-cloud
service orchestration.

In order to properly address the inter-cloud service orchestration scenario, ArTIC-MS is founded on
the following assumptions:

• Service Descriptions: to ensure the interoperable orchestration of services implemented by use of
different technologies, each partner shall provide an agnostic and technology-independent service
description. ArTIC-MS assumes service descriptions defined in terms of:

– Metadata: used to describe services and to allow users to identify the most suitable services
that are to be integrated in the MSaaS application. Metadata are stored in a Service Registry;

– Infrastructural Orchestration Description: the information required to deploy and execute
the service, as stored in a Service Repository. Even though ArTIC-MS assumes that such a
description is provided as a TOSCA CSAR package, Section 6 discusses the case of integrating
non-TOSCA compliant services.

• Service Discovery: in an inter-cloud orchestration scenario, users must be provided with a discovery
feature in order to retrieve services available on different cloud platforms, each under the responsibility
of a different partner. In this respect it is assumed that the Service Registry provides an API for
implementing inter-cloud service discovery.

• Service Availability: each partner is responsible of making available a given set of MSaaS services
which, in turn, other partners can retrieve and integrate to build more complex MSaaS applications.
In this respect, each service can be provided by a partner in two different configurations, according
to the preferred business model:

– running services: a partner might provide a running service which is deployed and configured
under the responsibility of the providing partner. In such a case, the service metadata includes
a service endpoint (e.g, an URI) and an interface description (e.g., by use of WSDL);

– deployable services: a partner might provide an instance of the service specified in terms of
artifacts and an infrastructural orchestration description (e.g, a TOSCA CSAR package). In
such a case, the service metadata include a reference to the Service Repository that stores the
CSAR package.

It should be underlined that it is not required that all partners adopt the whole ArTIC-MS platform as
shown in Figure 2. In an inter-cloud orchestration scenario it is unrealistic to impose the adoption of a
completely specified application platform. The main idea behind ArTIC-MS is that each partner shall just
provide service descriptions and discovery features.

5 ArTIC-MS USE CASES

This section describes the role and responsibilities of ArTIC-MS users when building and deploying a
MSaaS application resulting from the orchestration of a set of available M&S services.

The scenarios discussed in the following sections involves the following users:

• Simulation Expert: responsible for the elicitation and specification of MSaaS application require-
ments.

• Integrator: responsible for the MSaaS Application development. Specifically, the Integrator deals
with the identification and composition of the required M&S services, in order to satisfy the MSaaS
application requirements provided by the Simulation Expert. The Integrator skills also include
knowledge of the TOSCA standard, which is used to specify YAML-based templates.

• End User: the final user of the simulation experiment.
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Figure 2: Conceptual Architecture of ArTIC-MS.

• ArTIC-MS Administrator: the user who possesses the required skills for managing the ArTIC-MS
platform. Its main task is to provide other users with the required environment for building, executing
and monitoring simulation experiments.

The scenario proposed in this section addresses the development of MSaaS applications composed by
M&S simulation services available in the cloud infrastructure of different partners. As discussed in 4, the
underlying technology adopted by the cloud infrastructure of each partner is not required to satisfy any
assumptions. Moreover, it is also assumed that each partner’s infrastructure includes a metadata-based
Service Registry which, in turn, provides an API-based discovery interface. Finally, the provided services
do not need to satisfy any technology requirements and are made available either as running services (via
URI endpoints) or as deployable services packaged in a CSAR file. The development of MSaaS applications
is based on the follwoing workflow:

1. the Integrator interacts with the Simulation Expert to retrieve the objectives and requirements of
the given simulation;

2. the Integrator logs into ArTIC-MS and executes a query on the Service Registry to identify a MSaaS
application, i.e., an existing composition of available M&S services that meets the given objectives
and requirements. Thanks to the API-based interface provided by the various service registries, the
Integrator is allowed to discover services provided by any partner;

3. if an existing MSaaS applications is found, then:
(a) the related CSAR package is retrieved from the Service Repository;
(b) the Integrator deploys and configures the CSAR package and configures the required parameters

of the various M&S services;
(c) the simulation is ready to be used by the End User.

4. else (i.e., if a suitable existing MSaaS application is not found):
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(a) the Integrator executes a query on the Service Registry to discover a set of candidate M&S
services. In the most general case, the Integrator identifies N services, where NL services are
available in the local infrastructure, NE services are provided by remote partners via an URI
endpoint and an interface specification (e.g., WSDL, etc.), and finally NR services are available
from remote service repositories as CSAR packages, being N = NL +NE +NR;

(b) the Integrator retrieves from the local Service Repository the NL locally available services;
(c) the Integrator retrieves from remote service repositories the identified set of NR remote CSAR

packages;
(d) the Integrator uses the ArTIC-MS visual interface to create a template which describes the

given MSaaS application, by composing the retrieved CSAR packages;
(e) the Integrator configures the required parameters of the various M&S services;
(f) the Integrator configures their composition, so to make it possible invoking the operations

provided by the endpoints of remote M&S services;
(g) the Integrator gives the template as input to the TOSCA engine, so to carry out the automated

deployment of the simulation;
5. The MSaaS application is ready to be used by the End User.
6. the Integrator can optionally save the so obtained MSaaS application as a new composite simulation

service by i) storing in the Service Repository the CSAR file that wraps the YAML service template
together with the required artifacts, and ii) updating the Service Registry with the required set of
service metadata.

For the sake of clarity, it should be noted that the TOSCA engine addresses the infrastructural orchestration
of only those services available as CSAR packages. The integration of the remote running services via
URI endpoints is addressed by the application orchestration, which is not discussed in this work. In other
words, each simulation component, during its execution and according to the related business logic, invokes
the given remote services by sending messages to the correct endpoint, according to the remote service’s
interface specification. In this case, the Integrator’s task is limited to the configuration of the orchestration
template, in order to make each local service able to reach the URI of the given remote services.

6 ArTIC-MS IN PRACTICE: INTEROPERABILITY WITH A NON-TOSCA PLATFORM

The most important objective of the ArTIC-MS’s architecture is to ensure interoperability among hetero-
geneous services provided by different partners, without assuming either a specific cloud implementation
or one or more technological constraints for the implementation of each M&S service. In this respect
ArTIC-MS is founded on i) the availability of registries that provide an API-based discovery interface and
ii) the availability of services in terms of TOSCA CSAR packages.

An additional relevant objective of this paper contribution is to investigate how to make ArTIC-MS
interoperable with any other non-TOSCA infrastructure. Thus, as mentioned in Section 1, this work
specifically addresses the OCEAN MSaaS platform.

OCEAN includes a visual interface to specify templates by composing the several elements (software
artifacts, computing nodes, network connections, etc.) available from a dedicated toolbox. OCEAN includes
also a feature for searching existing services that can be used as building blocks of more complex services.
As OCEAN is founded on Openstack, it makes use of an orchestration engine, namely HEAT, to parse
topology templates specified in the YAML-based description format named HOT.

The objective of this section is to outline how M&S services and MSaaS applications available from
ArTIC-MS can be easily reused in OCEAN.

In order to cope with HOT-based service descriptions, HEAT-Translator (Openstack Foundation 2019b),
the Openstack component for translating TOSCA templates to semantically equivalent HOT templates, has
been evaluated.
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Figure 3: Integration of ArTIC-MS and OCEAN.

HEAT-Translator is a command-line tool that allows the generation of HOT templates by converting non-
HOT service description templates. Currently, HEAT-Translator only supports the conversion of TOSCA
templates to HOT ones, but according to the referred documentation, it is designed to be easily extended for
being used with any other input format. In addition, ongoing work is claimed to be planned for implementing
the transformation in the opposite direction (i.e., from HOT to TOSCA), as well as transformations from
additional orchestration languages. The translator architecture consists of two modules, the TOSCA Parser
and the HOT Generator. The TOSCA parser analyzes the input template in order to identify Types and
Nodes element in the source model, so to build a graph representing the TOSCA topology. Then, the
HOT Generator is responsible for mapping elements in the TOSCA graph to HOT concepts (MAP sub
module) and generating a corresponding HOT template that preserves the TOSCA semantics (Generate
sub module).

The translator is developed in Python and, even though part of the Openstack project, is being developed
as an independent and self-contained open source project (Openstack Foundation 2019c).

The next subsection illustrates the proposed architectural solution to cope with the interoperability
between ArTIC-MS and OCEAN by use of the HEAT-Translator.

6.1 Integrated Architecture

Figure 3 illustrates the conceptual model that describes how to achieve the required interoperability between
ArTIC-MS and OCEAN.

In the proposed scenario, Partner A is responsible for creating M&S services (and also MSaaS applications
exported as CSAR complex services, as discussed in Section 5) by using the ArTIC-MS platform (left
part of the figure). The MSaaS application is built by integrating a set of M&S services available in the
catalog. The right part of the figure shows the OCEAN infrastructure, in which Partner B aims at creating
a MSaaS application orchestrating some local components with services provided by Partner A.

The scenario is specified as follows:
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Precondition: the user Partner A created a set of M&S services and MSaaS applications, which are
available as CSAR packages in ArTIC-MS.

1. the user Partner B logs into the OCEAN platform and executes a query to the Service Registries in
order to identify the available M&S services. As the query makes use of the API interfaces provided
by each partner’s Registry, Partner B is able to identify the TOSCA-based service provided by
Partner A;

2. Partner B identifies the set of needed services;
3. Partner B retrieves the required set of locally available services from the local repository, and also

retrieves the CSAR descriptions of M&S services provided by Partner A through the ArTIC-MS
Service Repository;

4. Partner B translates the TOSCA template contained into the CSAR package to a HOT template;
5. the generated HOT template can be used to build and deploy the required MSaaS application in

OCEAN, by integrating local services which other services built, packaged and made available by
different infrastructures.

The proposed integrated infrastructure has been tested using a simple TOSCA based service template
which has been translated into a HOT template and deployed onto OCEAN.

The conceptual model of the service template is shown in Figure 4. The service’s main artifact is an
.iso virtual image implementing the application that has to be deployed on top of a virtual machine,
which in turn is executed on a server connected to two different networks.

The TOSCA-based YAML service template is provided in Listing 6.1, while the related HOT-based
YAML template is provided in Listing 6.1.

7 CONCLUSIONS

This paper has introduced ArTIC-MS, a MSaaS platform for supporting the development of inter-cloud M&S
applications. ArTIC-MS exploits TOSCA, a standard for specifying vendor-independent orchestrations of
services and applications in the Cloud.

The ArTIC-MS’s conceptual architecture has been designed to ensure and maximise the interoperable
reuse of M&S services provided by partners using different underlying Cloud infrastructure. The proposed
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tosca_definitions_version: tosca_simple_yaml_1_0
description: Server connected to 2 networks
topology_template:
...
node_templates:

virtual_machine:
type: SoftwareComponent
artifacts:
vm_image:

file: images/vm_image.iso
type: tosca.artifacts.Deployment.Image.VM.iso

requirements:
host: server

interfaces:
Standard:

create: vm_image
server:

type: tsca.nodes.Compute
capabilities:
host:

properties:
disk_size: 10 GB
num_cpus: 1
mem_size: 4096 MB

network1:
type: tosca.nodes.network.Network
properties:
cidr: {get_input: cidr1}
network_name: net1

...

Figure 5: Input TOSCA Service Template (fragment).

architecture has been developed to be used in the defence sector but is flexible enough to be used in any
other M&S-based application domain.

In order to assess how M&S services provided by ArTIC-MS and other non-TOSCA MSaaS platforms
can be effectively integrated in a heterogeneous MSaaS application, this work has experimented with the
Openstack HEAT Translator, which in the current implementation only provides the automated translation
of TOSCA templates into HOT ones.

The analysis of such a concrete scenario has confirmed the feasibility of the proposed approach and
has also revealed some issues that deserve to be further discussed and addressed. Indeed, the relevant
standardization effort carried out by the well known OASIS (Organization for the Advancement of Structured
Information Standards) consortium, which led to the publication of the TOSCA specification, didn’t result
in a full acceptance and support by important players in the cloud marketplace (e.g., Amazon, Google,
Microsoft). This is probably due to the lack of a clear roadmap and to some changes that have been recently
introduced in the standard, both in terms of the template specification language, which shifted from XML to
YAML, and in terms of the TOSCA conceptual model, which has been slightly revised. As a consequence,
any effort dealing with the specification of interoperable MSaaS platforms should appropriately address
compliance with alternative orchestration standards and technologies.

In this respect, ongoing work includes the analysis and implementation of a full fledged adaptor
component, based on the current implementation of the HEAT Translator, in order to provide the translation
of HOT templates to TOSCA ones and vice versa. Finally, in order to ensure compliance with other
cloud-based infrastructures, the adaptor is being designed to be easily extended, so to make ArTIC-MS
compliant with alternative template specification languages and standards.
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heat_template_version: 2013-05-23

description: >
Server connected to 2 networks

...
resources:

virtual_machine_create_deploy:
type: OS::Heat::SoftwareDeployment
properties:

config:
get_resource: virtual_machine_create_config

server:
get_resource: server

network1:
type: OS::Neutron::Net
properties:

name: net1
server:
type: OS::Nova::Server
properties:

flavor: m1.medium
user_data_format: SOFTWARE_CONFIG
networks:
- port: { get_resource: port1 }
- port: { get_resource: port2 }

...

Figure 6: Output HOT Service Template (fragment).
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