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ABSTRACT 

Current changes in DoD budgeting processes and in the constraints on available funding have resulted in 
inadequate support for our warfighter’s needs. The decision environment evolves into a key question 
impacting our warfighter capabilities: How should the funding be distributed to achieve the optimal balance 
between readiness, performance, and cost? This paper outlines the fundamentals of successful Product Life 
Cycle Management, a method to monitor systems towards fulfilling the operational needs at the lowest 
possible Total Ownership Cost (TOC). The paper discusses critical decision points in different phases of 
the system’s life cycle and suggests an approach to use modelling and simulation tools to answer key 
questions and provide the required decision support. 

1 INTRODUCTION 

Today’s constraints on funding the acquisition of systems and their associated lifecycle support costs 
requires a rigorous and consistent analytical process to ensure the systems and supporting processes provide 
capabilities that are worth the expenditures. These funding constraints come at a time when many of our 
systems are very mature and “war-weary.” This fact exacerbates an already complex decision environment. 
The decision environment evolves into a key question impacting our warfighter capabilities: How should 
the funding be distributed to achieve the optimal balance between readiness, performance, and cost? 
 Key Points: Recent DoD policies and guidance make significant strides towards identifying and 
promoting broad-based Product Lifecycle Management (PLM) strategies to design, field and sustain more 
affordable and ready warfighting capabilities. The practical implementation and institutionalization of these 
strategies, however, has not kept pace with available analysis capabilities. The most significant barriers to 
attaining the desired implementation and institutionalization of these strategies are: 

 
• The deep-rooted divisions between systems engineering, lifecycle product support, programmatic 

and cost functions. 
• Divergence between policy requirements and organizational business strategies/ investments in 

enterprise-wide lifecycle process and knowledge management. 
• Sustainment data from the many “stove-piped” information sources within each of the 

services/organizations that needs to be extracted, transformed, and loaded into a common 
information analytics data warehouse with other PLM data sources and capabilities. 

• The need for developing and employing a comprehensive “Big Data” strategy to effectively use the 
large volume of sustainment data and resolve the complexities involved with effective integration 
of this data. 

• A scarcity of competency and proficiency in structured analytics, business intelligence, Reliability, 
Availability, Maintainability and Cost (RAM-C) trade studies, lifecycle product support package 
design, and PLM technologies. 

 In addition, the complexity of the decision environment is increased by: 
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• The potential cost growth of continuing to operate systems that have been significantly degraded 
by war-fatigue or have had their original operational life extended many times. 

• The decreased budgets and increased costs to maintain systems, ultimately leads to a realization 
that spreading budget cuts across every program is probably no longer a viable solution. 

• Early decisions regarding concepts, requirements, and choice of supplier will impact the TOC more 
than anything. 

 This paper outlines the fundamentals of successful PLM, a method to monitor systems towards 
fulfilling the operational needs at the lowest possible TOC. The paper discusses critical decision points in 
different phases of the systems life cycle and suggests an approach to use modelling and simulation tools 
to answer key questions and provide the required decision support. 
 Advances in Lifecycle Modeling and Simulation technologies have provided a significant opportunity 
for the DoD to address these complex issues. Lifecycle Management (LCM) simulation tools and 
techniques have been developed to automate and modernize the collection, aggregation, measurement, and 
visualization of system and platform performance from the In-Service Engineering Agent’s (ISEA’s) 
perspective, with potential for providing valuable information to the service components and to the 
acquisition community. These new technologies assist with the capture, retention, translation, and 
aggregation of numerous forms of structured data. There are numerous databases being used that perform 
just as many tasks and the primary purpose is to aggregate their data. In some cases, tools can translate 
database data elements so that they are compatible with other databases’ data elements. Data translation 
then paves the way for data integration. Data aggregation and integration reveal data relationships not 
otherwise known to program managers and subject matter experts. 
 Additionally, early decisions regarding concepts, requirements and choice of supplier will impact the 
TOC more than anything else. Unfortunately, these decisions need to be made without exact knowledge 
about all influencing parameters. To make these kinds of decisions under major uncertainties calls for an 
efficient and systematic decision-making process, using modelling and simulation tools to analyze the 
consequences of the decisions. Figure 1 shows the basic Data Modeling and Analysis Process. 

Figure 1: Data modeling and analysis process. 
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2 SUPPORTABILITY IN THE DESIGN AND ACQUISITION PHASES 

From a customer and owner perspective, any system typically goes through several phases starting with 
concept definition, specification, and acquisition, continuing with system design and development, 
production, entry to service, operations, and maintenance and finally disposal. All through the life cycle a 
program or product manager needs to make many decisions regarding the technical system, its operations 
and maintenance and the logistic support. The important point here is that consequences of decisions made 
will may not be exposed until many years after a decision is made. That is the background to the classic 
characteristics of a Lifecycle Cost Curve (LCC) curve shown below in Figure 2. 
 

Figure 2: Characteristics of a life cycle cost curve (LCC). 
 
 The green curve shows the actual expenditures (both CapEx and OpEx) for a system throughout its life 
cycle. The red curve, however, describes when stake holder(s) decisions make them commit to the costs, 
which usually occur long before the actual expenditures. Thus, their possibility to influence the total 
ownership cost will decrease during the system´s life cycle according to the blue curve. 
 It is also important to note that if decisions are made in later phases without analyzing the potential 
consequences on operational performance and life cycle cost, there is a great risk that one commits to future 
cost increase. 

3 COST/BENEFIT ASSESSMENT DURING PRODUCT LIFECYCLE 

When should replacement of fleet of systems take place? What requirements should be put on a new 
system? Which systems should be purchased? What investments in logistic support, spares and other 
resources should be chosen? What improvements are most cost-effective to make to enhance my 
operations? 
 These are some examples of major questions for a system manager. They all require an understanding 
of what the consequences of the choices at hand will be on operational performance and total cost of 
ownership. The questions are complicated to answer since there are so many influencing parameters. Figure 
3 below illustrates the decision problem and the three main influencing domains. 
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Figure 3: The dimensions that influence the relationship between cost and availability.  

 
 To be able to assess consequences of alternative solutions in a systematic and consistent way throughout 
the system’s life cycle there is a need to use an analytical approach supported by efficient decision support 
models—a combination of tools to assess different aspects of a decision. Typically, an optimization tool is 
used to identify the best logistic support solution from a cost effectiveness perspective and to optimize the 
spares assortment. A simulation tool is used to validate sustainability and ability to handle different 
scenarios and to dimension fleet size, personnel, repair equipment and other resources. A cost calculation 
tool is used for LCC comparisons, identification of cost drivers, budgeting, and cost analysis. These tools 
work together as a suite to provide decision support for each type of decision and helps finding the optimal 
trade-off between cost and availability.  
 A general approach when working with LCM analyses includes the following: 

• Define a system and scope, the decision at hand and the alternative solutions. 
• Define prerequisites and limitations for operations and maintenance. 
• Define influencing parameters and create a model. 
• Acquire input data. Begin with a rough data model. 
• Validate the model and the data quality and improve data that has significant impact on the decision 

at hand. 
• Perform analyses and evaluate the results. 
• Perform sensitivity analysis, identify drivers of cost and effectiveness, iterate to find the best 

solution. 
 
 As per Figure 4, in the early phases stake holder(s) make the major decisions which will commit most 
of the future life cycle costs. This means that it is in the early phases that stake holder(s) need to put in most 
of the effort. Nevertheless, to achieve the availability performance and the life cycle cost that the early 
decisions have made possible, stake holder(s) need to carry on making decisions in a systematic way 
throughout the rest of the systems life cycle. Otherwise, there is a great risk that stake holder(s) will suffer 
from uncontrollable increasing costs or poor availability performance. Managing decisions over the 
lifecycle with overall requirements and goals on macro level in focus, modelling detailed data on micro 
level is a true lifecycle management challenge. 
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Figure 4: Lifecycle maintenance analysis capability.  
 

4 SAMPLE TEST CASES 

4.1 CASE 1 

Objective: A power utility company wants to investigate and analyze if it would be cost effective to invest 
in the procurement of spare transformers. Additionally, they need to determine the storage location for each 
of the transformers to optimize Operational Availability (Ao) of the power plant and operational costs. 

 CASE 1 Sample Data 

The power utility company used the following data in Table 1. 
 

Table 1: Available transformer data. 
Parameter Description 
Power Plant Name of power plant 

Manufacture Manufacturer of transformer 

Apparent Power The magnitude of the complex power [VA] 

Voltage Ratio Max/Min Ratio between LV and HV side 

Vector Group Winding configuration of 3-phase 
transformers 

Existing Spare Transformer If spare units exist and its location 

Quality/Reliability Reliability of transformer 

Transformer Price Price of transformer [EUR] 

Downtime in case of spare Time duration required to replace if spares 
exist 

Downtime in case of no spare Time duration required to replace if no 
spares exist 

Expected annual gross margin 
of block 

Expected gross margin per annum if no 
unavailability 
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 The data concerning down times with and without spare units, and the data concerning the expected 
margin, enabled the utility to assess what possible down times would imply in terms of lost profit. Together 
with the reliability data and the price of each transformer the risk of losing profit could be evaluated against 
the risk mitigation of investing in spare units. 

 CASE 1 Methodology 

The utility used a spare part and logistic support optimization tool to model and analyze their transformer 
case. The basics of the methodology is depicted below in Figure 5. This tool uses turn-around-times, 
reliability, and price data together with other logistics, maintenance, and technical data to calculate the 
optimal assortment and allocation of spares from a system cost-efficiency perspective. 

Figure 5: Overview of the analysis method.  
 

The spare part and logistic support optimization tool generates a Cost/Effectiveness (C/E) curve that 
plots the spares investment against the availability of the whole system, i.e., the average availability of all 
transformers. Each point on the C/E curve represents the optimal sparing solution for a specific budget 
frame, and as one progresses to the right in the C/E curve the spares investment increases as power utility 
company invests in more transformers. As a consequence of the larger spares investment, the resulting 
availability also increases. 

As the value of availability can differ between transformers in this case, the utility took advantage of 
the possibility to prioritize the plants in the model and used the expected annual gross margin as the priority 
factor in the input model. 
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Once the C/E curve had been established, the utility extracted the availability for each transformer in 
the case, and for each point on the curve. Together with the information about the expected annual gross 
margin the C/E curve was modified to a Risk vs. Investment curve. 

 

 CASE 1 Results 

Figure 6 shows how the investments in spares influence the lost profits due to down time caused by 
transformer failures. Naturally, lost production, and hence lost revenues, decreases with higher investment 
levels in spare transformers. 

 

Figure 6: Risk vs. spares investment. 

The power utility company was interested in evaluating how many, and which, transformers that could 
be economically motivated to purchase as spares. Therefore, the delta risk reduction was divided with each 
respective spares investment to create Figure 7 below. 

 
Figure 7: Delta risk/delta investment.  

 In the plot above the dimensionless ratio between risk reduction in dollars and investment in dollars is 
depicted. If this ratio is below one (1) the investment is inevitably not profitable. However, all ratios above 
one (1) will not necessarily prove themselves profitable since there are some uncertainties built into the risk 
value. 
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 The power utility company opted to vary different input parameter, e.g. the failure frequencies of the 
transformers, in order to study the sensitivity of the results. Results from three scenarios with different 
failure rates are shown below in Figure 8. 

 
Figure 8: Delta risk/delta investment at different failure scenarios. 

 Properly investigating the sensitivity of the results was an integral part of the analysis. To find the 
absolute availability level was not the priority of the analysis, more so was formulating a short list of 
transformers in which to invest in. After evaluating the case in different scenarios, the power utility 
company could select a ratio between risk reduction and spare investment with good judgment and 
formulate a short list of transformers for their investment program. 

4.2 CASE 2 

Objective: Navy Type Commanders (TYCOM) want to make sure that all the ships pass their Board of 
Inspection and Survey (INSURV) inspections. Ships are typically notified one year prior to the conduct of 
this upcoming INSURV. What can the TYCOM do to mitigate the risks to the ships to failing an INSURV 
and where should they focus their limited resources? Develop a statistical model to prioritize ship 
departments for focus of upcoming INSURV inspections. 

 CASE 2 Sample Data 

The TYCOM used the following data in Table 2. 

Table 2: INSURV data. 
 

Parameter Description 

INSURV  Material Inspection (MI) 
Data 

3-M Maintenance Material 
Management Data 

Training Sets Prior INSURV MI data  

 
 
 
 

2056



Woulfe and Andersson 
 

 

 CASE 2 Methodology 

Develop a statistical inspection model using Binomial Logistic Regression using the following parameters: 

• Formula 

𝐷 = 𝑥ோ + 𝑥 + 𝑥 + 𝑥௩ − 1 

where 

𝐷 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 (𝑏𝑖𝑛𝑎𝑟𝑦) 

𝑥ோ = 𝑅𝑜𝑜𝑡 𝐶𝑎𝑢𝑠𝑒 𝐶𝑜𝑑𝑒 

𝑥 = 𝑆ℎ𝑖𝑝 𝐴𝑔𝑒 (𝑚𝑜𝑛𝑡ℎ𝑠) 

𝑥 = 𝑖௧𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 

𝑥௩ = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

−1 = 𝑁𝑜 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

• Training Set = InspectionDate ≤ 2016  
(90 Inspections) 

• Test Set = InspectionDate > 2017 
(24 Inspections) 

• There is no equivalent R2 for logistic regression 
• McFadden R2 index (0.2-0.4 = excellent fit) 
• Receiver Operating Characteristic (ROC) Area Under Curve (AUC) is a (preferred?) binary classifier 

performance measurement (1.0 is ideal) 
 

 CASE 2 Results 

Figure 9 shows approximately 9 times out of 10 that the model correctly identified a specific discrepancy 
will occur within this AS Department with a root cause (i.e. Model is a realistic representation of predicting 
root causes). 

 
• Anti-Submarine (AS) Department 
• R2 = 0.353 
• Fit vs Actual Accuracy = 0.889 
• AUC = 0.848 

 
Figure 10 shows the Probability the Defect (Pd) will occur for a particular area on the ship. 
ELEX/CCA/MODULE Component failure is rated the highest probable defect in the Reliability Area (A). 
This provides a heads-up to the TYCOM team for particular discrepancy area prior to the actual inspection. 
They may ask the ship to conduct additional Preventative Maintenance in order to mitigate these issues. 
 

2057



Woulfe and Andersson 
 

 

 

Figure 9: Model fidelity curve. 
  

 
Figure 10: Probability of discrepancy per INSURV area. 

 

5 CONCLUSIONS 

This paper has presented a tool-based methodology to enhance supportability. These models can be used 
for optimizing spares and predicting areas where failures can occur. By conducting the analysis, the 
customers will be better prepared to provide informed decisions. The methodology quantifies the risks. 
Moreover, the case presented in this paper shows how Logistics Modeling tools can be successfully 
employed, and deliver fact-based results, also in cases with low failure frequency systems. 
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