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ABSTRACT

Most of the literature on supply chain management assumes that the demand distributions and their parameters
are known with certainty. However, this may not be the case in practice since decision makers may have
access to limited amounts of historical demand data only. In this case, treating the demand distributions and
their parameters as the true distributions is risky, and it may lead to sub-optimal decisions. To demonstrate
this, this paper considers an inventory-routing problem with stochastic demands, in which the retailers have
access to limited amounts of historical demand data. We use simheuristic method to solve the optimisation
problem and investigate the impact of the limited amount of demand data on the quality of the simheuristic
solutions to the underlying optimisation problem. Our experiment illustrates the potential impact of input
uncertainty on the quality of the solution provided by a simheuristic algorithm.

1 INTRODUCTION

Most of the literature on supply chain management assumes that the demand distributions and their parameters
are known with certainty. This may not be the case in practice. There may be cases where data collection
is infeasible, or feasible but too expensive. Although more data have become available in the era of big
data, there are still some practical situations in which decision makers have access to a limited amount of
data. For example, when launching new products with shorter life cycles, the sales data does not exist and
companies have to rely on historical sales data from similar products. Hence, there is no guarantee that
the data will be representative. Even in cases where decision makers have access to abundant data, firms
may prefer to use the most recent data to be able to capture the ever changing market conditions. The
phenomenon “big data dreams, small data reality” that was introduced by Brian Lewis —chief data scientist
and co-founder of Fractal Sciences— in the January/February 2014 issue of the Analytics magazine refers
to this practical situation (Lewis 2014).
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A typical practice when modelling random inputs in simulation is to find the best-fit probability
distribution —including its parameter values— using a maximum likelihood estimation (MLE) method. The
maximum likelihood estimates of the parameters of a probability distribution can be shown to approach their
true values when the number of historical data points approach infinity (Rohatgi and Saleh 2015). However,
we are rarely fortunate to be in that asymptotic situation and we often have access to only limited amounts
of historical data. In that case, the use of the maximum likelihood estimates (finite-sample estimates) as if
they are the true parameter values leads to parameter uncertainty. Obviously, as the length of the historical
data approaches infinity, parameter uncertainty disappears. However, it is there in the presence of limited
amounts of data.

In combinatorial optimisation problems with stochastic inputs that need to be modelled using a
probability distribution, this lack of observations might cause an incorrect selection of the underlying
probability distribution or its parameters. Figure 1 illustrates this scenario: let’s assume that the customer’s
real demand is a random variable following a log-normal probability distribution with parameters u = 2.34
and o = 0.83; however, if only a random sample of 10 observations of this demand were available to
the decision maker, the best-fit model would correspond to a log-normal probability distribution with
parameters i = 2.198 and ¢ = 1.153. In other words, due to the lack of data, the best-fit model that can
be obtained might differ from the real probability distribution that governs the problem stochastic input.
As we collect more data (e.g. 100 and 10,000 observations), the estimated parameters become closer to
the true parameters. Notice that the log-normal probability distribution is frequently used in the literature
to model random variables that can only take positive values (Faulin et al. 2008).
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Figure 1: Illustrating a deviation from the real model due to a limited sample size.

The main goal of this paper is to investigate how the inaccuracy in the estimates of the probability
distribution caused by the limited data can affect the quality of solutions to stochastic optimisation problems.
In order to numerically quantify this ‘inputs inaccuracy effect over the solution’, we make use of a numerical
example based on the inventory routing problem (IRP), which combines a vehicle routing problem (VRP)
with an inventory management problem —a more detailed explanation on the IRP is given in Section 2. Being
an extension of the VRP, the IRP is also NP-hard (Lenstra and Kan 1981). Hence, several heuristic-based
approaches have been proposed for both the deterministic version —where the demands are assumed to
be exactly known— and the stochastic version —where the demands are assumed to follow a probability
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distribution. Among other methods, simheuristic algorithms have been used to deal with different variants
of the stochastic IRP (Onggo et al. 2019). Simheuristics integrate simulation with optimisation heuristics
to provide high-quality solutions to stochastic optimisation problems (Juan et al. 2018).

The remainder of the paper is organised as follows. Section 2 describes in more detail the stochastic
IRP employed to test the effect of small-size samples in the quality of the solutions. Section 3 reviews
related work on both the stochastic IRP and the issue of parameter uncertainty in stochastic simulations.
Section 4 illustrates our numerical study, and Section 5 concludes by highlighting the main contributions
of this work and potential future research directions.

2 TESTING EXAMPLE: THE STOCHASTIC INVENTORY ROUTING PROBLEM

As described in Gruler et al. (2018), in IRP with stochastic demands, a product is distributed from a central
warehouse to several distribution centres (DCs), where stock-outs might occur. A stock-out happens at a
DC whenever the aggregated customers’ demand associated with that DC exceeds the available inventory
at the DC. In that case, a penalty cost is charged. This cost is equivalent to a refill round-trip from the
warehouse to that DC. We assume that the initial inventory level at each DC is known, and the goal of the
optimisation problem is to minimise the total expected cost, which includes routing and inventory costs.
This IRP is illustrated in Figure 2. Because the IRP includes both inventory management decisions and
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Figure 2: A simple example of the inventory routing problem.

routing decisions, a typical IRP aims to minimise the summation of the routing costs and the inventory
costs. The following lays out the operational plan and calculation of the related costs. The operational
plan starts with finding the optimum replenishment levels at each DC, which has a direct impact on the
quantities to be delivered from the warehouse to each DC. More specifically, if the current stock level at
DC i, s;, is smaller than the replenishment level at DC i, r;, the difference between these two quantities
(gi = ri—s;) is delivered to the DC. Otherwise, no delivery takes place. Letting N € {0,1,2,...,n} denote
the set composed of all DCs including the warehouse (represented as node 0), we determine g; as defined
in Equation (1):
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ri—s; if si<w .
qi {0 P, Vie N\ {0} (1)

The next step is finding the optimum routes. Notice that we only visit a DC if the quantity to be
delivered to that centre is greater than zero; i.e, g; > 0. We assume the availability of K homogeneous
vehicles (i.e., vehicles with the same loading capacity) located at the warehouse. Let S be the set of edges
that connect the nodes in N € {0,1,2,...,n}, and y{?j to be a binary variable that takes the value of 1 if the
edge (i, j) is visited by vehicle k € K, and ¢;; = ¢j; > 0 is the cost of travelling from i to j. Then the total
routing cost is represented as defined in Equation (2):

RC = Z Zcij-yfj (2)

(i)eskek

The final step is the realisation of the customer demands and the computation of the inventory costs.
Notice that there are two (mutually exclusive) components of the inventory costs: holding cost and stock-out
cost. More specifically, if the demand is less than the summation of the quantity delivered to the DC (i.e.,
gi) and the current stock level of that DC (i.e., s;), then a holding cost is incurred. Otherwise, a stock-out
occurs, in which case, we assume that the only penalty cost is a round-trip cost from the warehouse to that
DC. We formulate the inventory costs at a single center as given in Equation (3):

Vie N\ {0} (3)

10 — hi(gi+si—d;) if qi+si>d;
Y2 if gi+si<d

In this representation, &; stands for the holding cost for each unit held at DC i and c¢;y represents the
cost of a trip from the warehouse to DC i. Because demand is random, we are interested in expected
inventory costs over all DCs, which we represent as described in Equation (4):

Elll= Y E[C] “4)
ieN\{0}

The objective function that we want to minimise is the the total expected cost, i.e. the sum of
Equations (2) and (4). Notice that we are considering in this paper a single-period inventory routing
problem. Also, it is assumed that there is infinite inventory at the warehouse, and that there is no cost of
holding inventory at the warehouse.

3 RELATED WORK

In this section we discuss relevant literature in the two streams of research: (i) the stochastic IRP and
simheuristic algorithms for solving it; and (ii) work on parameter uncertainty in stochastic simulations.

Although the deterministic IRP has been studied extensively, the focus on stochastic IRP has remained
limited. Among the notable solution approaches proposed for stochastic IRPs are Markov decision process
(Adelman 2004), dynamic programming (Kleywegt et al. 2004), scenario trees (Hvattum et al. 2009),
dynamic programming (Bertazzi et al. 2013) and metaheuristic methods (Huang and Lin 2010; Bertazzi
et al. 2015). Juan et al. (2014) propose a simheuristic approach for the stochastic IRP. It integrates a
multi-start metaheuristic with Monte Carlo simulation to solve a single-period IRP with stochastic demands.
Later, Gruler et al. (2018) provide an enhanced simheuristic algorithm, while Gruler et al. (2020) extend
it to the multi-period stochastic IRP. Recently, Onggo et al. (2019) propose a simheuristic algorithm for
solving the multi-period IRP with stochastic demands and perishable products. However, these simheuristic
approaches assume that the demand distributions and their parameters are known with certainty. This paper
relaxes this assumption, and studies how the existence of limited observations to model the input random
variables may affect the quality of the IRP solutions.
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The estimation of the demand parameters from limited amounts of historical demand data, and the use
of these demand parameters as if they are the “true” demand parameters estimated from an infinite amount
of data leads to an uncertainty that is referred to as parameter uncertainty in the stochastic simulation
literature. There has been a significant body of research that studies proper modeling of the parameter
uncertainty. See review papers Henderson (2003), Chick (2006), Barton (2012), Song et al. (2014), Lam
(2016), and Song and Nelson (2017) for an excellent review of the methods that are available to account
for parameter uncertainty in stochastic simulations. The danger of ignoring parameter uncertainty has also
been investigated in different contexts. The ones more related to our work are Muioz et al. (2013), Mufioz
and Muioz (2015), Akcay and Corlu (2017), and Corlu et al. (2019). These authors study the impact of
demand parameter uncertainty in inventory management simulations. To the best of our knowledge, our
paper is the first one that investigates the implications of demand parameter uncertainty on the quality of
solution in the context of an inventory routing problem.

4 COMPUTATIONAL EXPERIMENTS

In order to illustrate the impact of the limited amount of demand data on the quality of the solutions to
the IRP, we perform a set of experiments using the VRP instances proposed by Augerat et al. (1998)
and adapted for the IRP by Juan et al. (2014). The data set consists of 27 small- and medium-sized test
instances, with a number of nodes ranging from 32 to 80, and a fleet of 5-10 homogeneous vehicles. In
the adapted instances, each node represents a DC.

To measure how the solution results are affected by the inaccuracy in the estimation of the demand
distribution —due to the limited amount of demand data—, we have designed four different scenarios of data
(P, L, M, and S) representing random samples of demands. Scenario P represents the population; scenario
L represents the situation in which a large amount of data (10,000 observations) is available; scenario M
represents the situation in which a medium amount of data (100 observations) is available; finally, scenario
S represents the situation in which only a small amount of data (10 observations) is available. For the
purpose of our experiments, since the population follows a log-normal probability distribution, all scenarios
use log-normal probability distribution. For each scenario, we use the maximum likelihood estimates;
hence, each distribution uses a slightly different set of values for the u and ¢ parameters. As shown in
Figure 1, the more observations we collect, the more accurate the estimation is.

Table 1 shows the results. The first group of columns indicate the tests and scenarios (i.e. the test id,
the instance name, the scenario, and the probability distribution). Columns five and six show the fitted
parameters. In the second group of columns, we show the quality of the simheuristic solution based on
the best-fitted distribution parameters. Columns seven to nine indicate the estimated costs provided by
the simheuristic algorithm. The result shows that the quality of the solution of the large sample is very
close to that of the population. The solutions from medium and small sample are non-optimal. In column
ten, we compare the solutions to the best-known solution (BKS) reported in Juan et al. (2014). The gap
shows that the fewer data points we have, the less optimal the simheuristic result is. When we have a large
amount of data (scenarios L, simheuristic produces an accurate estimation and hence, the optimality of the
solution is not significantly affected). The final column shows the computational time needed to generate
the solution —by default, a maximum time of 120 seconds was given to each test. The result shows that
the computation time is not affected by the inaccuracy of the estimated parameters.

Figure 3 shows the box plot associated with the gap values across all instances shown in column ten
in Table 1. It clearly depicts the effect of sample size over the quality of the solutions generated by our
simheuristic approach. When the sample size is 10, the total cost of the optimum solution found by the
simheuristic algorithm, on average, is 1.78% worse than the solution obtained using the true parameters’
values. In some applications, a 1.78% difference may not matter. However, the objective of this experiment
is to show that input uncertainty may have an impact on performance. Furthermore, in the experiments,
we only consider one source of uncertainty (i.e. demand). As we include more sources of uncertainty
(e.g. travel cost), the impact would be more significant. Finally, the experiments show that collecting more
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Table 1: Results obtained from four scenarios based on sample size (population, large, medium, and small).

#Test  Instance Scenario Distribution mu  sigma | Routing  Stock Total | Gap(%) Time
Cost [1] Cost [2] Cost [3] BKS (sec.)
1 A-n65-k9  Population LogNormal 2.340 0.830 7954 1,815.7 2,611.1 0.0% 17.79

L (sample 1e4) LogNormal 2.334 0.825 8499 1,751.1 2,601.1 0.1% 25.09
M (sample 100) LogNormal 2.373 0.870 874.8 1,835.3 2,710.1 0.3% 66.64
S (sample 10) LogNormal 2.189 1.153 806.2 1,843.1 2,847.3 1.2% 67.24

2 A-n80-k10  Population LogNormal 2.340 0.830 | 1,603.4 4,123.1 5,726.5 0.0% 31.86
L (sample 1e4) LogNormal 2.334 0.825 | 1,538.2 4,167.5 5,705.7 0.0% 33.74
M (sample 100) LogNormal 2.373 0.870 | 1,684.4 4,216.5 5,900.9 0.3% 21.58
S (sample 10) LogNormal 2.189 1.153 | 1,329.8 4,374.6 5,973.5 29% 891

3 A-n63-k9  Population LogNormal 2.340 0.830 | 1,180.0 2,670.2 3,850.2 0.0% 18.38
L (sample 1e4) LogNormal 2.334 0.825 | 1,155.8 2,687.6 3,843.3 0.6% 26.93
M (sample 100) LogNormal 2373 0.870 | 1,191.4 28199 4,011.3 09% 83.49
S (sample 10) LogNormal 2.189 1.153 | 1,160.2 2,746.9 3,907.1 24% 78.09

4 B-n67-k10  Population LogNormal 2.340 0.830 776.8 1,541.6 273184 0.0% 23.32
L (sample le4) LogNormal 2.334 0.825 7684 1,534.0 23024 0.1% 77.25
M (sample 100) LogNormal 2.373 0.870 770.3  1,6329 2,403.2 0.3% 35.68
S (sample 10) LogNormal 2.189 1.153 7819 1,591.0 2,372.9 2.5% 95.65

5 B-n68-k9  Population LogNormal 2340 0.830 | 1,072.4 2,310.7 3,383.1 0.0% 73.80
L (sample 1le4) LogNormal 2.334 0.825 | 1,077.2 2,283.1 3,360.3 0.3% 5.70
M (sample 100) LogNormal 2.373 0.870 | 1,072.8 2,449.8 3,522.5 0.4% 65.26
S (sample 10) LogNormal 2.189 1.153 | 1,010.8 2,419.2 3,430.0 0.6% 96.57

6 B-n78-k10  Population LogNormal 2.340 0.830 9994 2,600.1 3,599.5 0.0% 57.35
L (sample le4) LogNormal 2.334 0.825 | 1,068.8 2,523.5 3,592.2 02% 14.50
M (sample 100) LogNormal 2.373 0.870 | 1,034.3 2,696.6 3,730.9 1.0% 3.83
S (sample 10) LogNormal 2.189 1.153 9433  2,730.0 3,673.2 1.1% 21.58
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Figure 3: Gaps (in %) between the predicted BKS and the real BKS for each scenario.
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data beyond certain point will not significantly improve the quality of the solution. This is shown when
the sample size is 10,000, the quality of the simheuristic solution is very close to the solution obtained
using the true parameters’ values. Hence, collecting more data beyond this point will not significantly
improve the quality of the solution. This can guide decision makers when deciding budget for further data
collection.

S CONCLUSIONS

In this paper, we have analysed how a limited number of observations might cause inaccuracies when
modelling random inputs using probability distributions and, in turn, lead to sub-optimal solutions to
stochastic optimisation problems. To illustrate these concepts, we have employed a testing example based
on the inventory routing problem (IRP) with stochastic demands and stock-outs. Different sizes are
considered for the random sample of observations. For each of these sizes, a different set of parameters
is estimated. Thus, we can observe that for parameter values without the necessary level of accuracy, the
solution generated by the simheuristic algorithm might be biased and reflect an incorrect total expected
cost. Hence, treating the demand distributions and the parameters that are obtained from limited amount
of data as the true distributions is risky, and may lead to sub-optimal decisions. It should be noticed that
this issue will affect any optimisation method that makes use of best-fit probability distributions. Still, this
error is much lower than when researchers employ methods that can only work under a reduced set of
probability distributions and, hence, do not derive them from real-life data.

As future work, we plan to extend our analysis to more complex stochastic optimisation problems
and additional sources of uncertainty. From that extensive study, we expect to be able to generate general
conclusions on the trade-off between the sample size and the error that the solution might contain.
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