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ABSTRACT 

Fog Computing is expected to decentralize clouds to improve users quality of service, in technologies like 
the Internet of Things, by pushing some computing onto mini-clouds (called Fogs) located close to end 

users. To enhance M&S with this concept, we have developed a complete Fog/Cloud collaboration methods 
to conduct simulation experiments: Users manipulate their experiments though nearby Fogs servers while 
M&S resources are dynamically discovered and allocated throughout the Fogs/Cloud. We have already 
built those methods using privately owned clouds. However, it was difficult in practice to study those 
methods scalability using real system setups. As a result, we present here the simulation model that we 
developed to mimic this real system in order to study the proposed collaboration methods on large scale. 

This model was validated with reference to the real system. The results have clearly shown the scalability 
of those proposed methods at the structure and coordination levels. 

1 INTRODUCTION 

Fog computing (Bonomi et al. 2012) has recently been gaining popularity mainly because of its promising 
support for technologies like the Internet of Things, in which countless of daily used mobile devices by 
people like phones, vehicles, sensors and health monitoring devices are being connected together via the 

Internet. This is because connecting those type of devices directly through the cloud can complicate certain 
issues mainly related to the way clouds work. Clouds are usually centralized and clustered in huge 
datacenters where devices regardless of their location always served  by those datacenters. Therefore, issues 
like mobility support, service latency, and geographical-location awareness need to be solved to better serve 
cloud based applications (Bonomi et al. 2012). Fog computing is the cloud extension to help with those 
issues. 

The main idea of Fog computing concept is to decentralize clouds by building close-to-users mini-
clouds, called Fogs, to perform some computation locally. This is expected to enhance cloud issues like 
mobility support, service latency, geographical-location awareness, and utilizing local resources that are 
usually idle off-peak hours, as suggested by several surveys (Hu et al. 2017, Naha et al. 2018, Yi et al. 
2015). 

Based on above, to allow Modelling & Simulation (M&S) Cloud based systems to cope with such 

expected future concepts, they need then to support Fog computing technology. In this way, devices 
consume their services through nearby Fogs rather than going directly to the cloud backbone, as in the case 
of current M&S cloud-based systems.  

In doing so, collaboration methods between distributed Fogs systems and the Cloud backbone play a 
major role in making all of those systems work together. This is because Fogs need to make the correct 
decisions on what to compute locally and what to offload to the cloud backbone. Thus, to allow M&S 

Cloud-based systems to involve Fog computing, Fog/Cloud collaboration methods need to exist first. 
As a step to advance M&S field into this direction, we’ve developed the needed Fog/Cloud 

collaboration mechanisms to allow users to setup their experiments on Fog servers. After that, the 
experiment can dynamically discover and select the required resources to execute the simulation for those 
experiments. This workflow is summarized as follows: Clients create simulation experiments on Fog 

2161978-1-7281-9499-8/20/$31.00 ©2020 IEEE



Al-Zoubi and Wainer 
 

 

servers (i.e. services access points). Once simulation is started on an experiment, the experiment then (1) 
discovers the M&S resources that can execute the simulation (i.e. M&S resources are heterogeneous, hence 
only execute compatible models). (2) selects the best resources to execute the simulation (that could be 

anywhere on the Fog/cloud), and finally (3) the experiment directly execute simulation on the selected 
resources. We have built and verified this system using private Fogs and Clouds with various physical steps, 
as detailed in (Al-Zoubi et al. 2020).  

Obviously, using the real system is good in a sense of achieving the real purpose of such system, in 
which to allow modelers to run their simulation experiments via nearby Fog servers without being 
concerned on how and where the required M&S resources can be found to execute the simulation. 

However, because this system is expected in practice to operate on large scale, thus, it is necessary to 
study this system scalability when it gets large, since it is hard to prove this quality with real systems 
constructed out of 20 or 30 real servers. 

Our main purpose here is to present the proof of that proposed Fog/Cloud collaboration methods that 
are indeed scalable on large Fog/Cloud environment. 

To do so, we have developed a Discrete Event System Specification (DEVS) (Wainer 2009) based 

simulation model to mimic our real system on large scale. This model uses the same proposed Fog/cloud 
collaboration algorithms (i.e. same implementation) as they are the main purpose of developing this model 
to study their scalability on large scale. The presented DEVS model here was mainly based on real collected 
results from various physical setups of the real system. It was then validated by comparing it to the whole 
real system behavior or part of it. Based on this model, the simulation results have shown the scalability on 
two levels: at the level of the overall system structure and at the level of Fog/Cloud collaboration 

mechanisms. 
It is worth noting that the presented work here is developed because of the need to study an existing 

Fog/Cloud platform on large scale. Thus, it was validated with respect to a real system. This distinguishes 
this work from other related works that study Fogs and Clouds based on general communications and job 
executions. 

This paper is organized as follows: Section 2 discusses related works. Section 3 summarizes the 

Fog/Cloud collaboration proposed ideas using real constructed private Fogs and Clouds. Section 4 presents 
the simulation model discussion and its validation. Section 5 presents the simulation model on large scale 
and results. Conclusions presented in Section 6. 

2 RELATED WORKS 

As stated previously, our main purpose is to build shared environment to conduct simulation experiments 
as service using the Fog/Cloud concepts. Obviously, Fog/Cloud collaboration methods play essential role 

to put all distributed systems in one collaborated environment. Therefore, we proposed in (Al-Zoubi et al. 
2020) the necessary Fog/Cloud collaboration methods to allow M&S resources to be discovered and used 
(within experiment framework) throughout the Fog/Cloud systems. These methods were developed and 
implemented using private clouds, as detailed in (Al-Zoubi et al. 2020). However, because it is complicated 
to study those collaboration methods using real constructed systems, the simulation model presented here 
main purpose is to study those methods on large scale. The presented model here is developed using the 

Discrete Event System Specification (DEVS) formalism and was executed using the CD++ (Wainer 2009) 
simulation environment. 

It is worth noting that Fog/Cloud concept still not used to provide modelling & simulation experiments 
as services. Thus, the use of modelling and simulation to study Fog and Clouds becomes the only 
comparison aspect between the presented work here and other related works.  

So far, existing works used simulation to study clouds quality of service and networking related issues. 

For example, CloudSim (CloudSim 2020), which simulates service provisioning, and network, 
CloudNetSim++ (Malik et al. 2017), which simulates datacenters energy consumption and communication. 
GroudSim (Ostermann et al. 2019), which simulates job executions and load distribution. Other works like 
(Etemad et al. 2017) simulates how fog computing could cut down service latency to enhance user 
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experience. All of those mainly focused on services provisioning like VMs and networking, and on high 
volume communication latency. 

In contrast, our presented work here main purpose is not to study clouds and Fogs in general as in the 

case of above existing works, but to study Fog/Cloud collaboration proposed methods in our real system 
on large scale. This is important because the presented simulation model is validated with respect to various 
real system setups collected data, including job execution, load distribution, communication, concurrent 
job executions, etc. On the other hand, related works are usually based on general communication data and 
general job executions. However, jobs like simulation jobs are extremely hard to estimate since any slight 
changes to experiment settings can affect the internal simulation events execution cycles, which affect the 

time it takes a job to complete. 

3 BACKGROUND: REAL SYSTEM DEPLOYMENT AND MANAGEMENT 

This section summarizes the proposed Fog/Cloud collaboration methods that were presented in (Al-Zoubi 
et al. 2020). Those methods assume that M&S resources are heterogeneous and arbitrarily spread out across 
all Fogs (i.e. mini clouds) and the main cloud backbone. Users interact with this system via nearby Fogs to 
setup and manipulate experiments. This solution is in conformance to the Fog/Cloud architecture proposed 

to the Internet of Things based applications (Bonomi et al. 2012). 
In our case, when a user sends a request to the experiment (on a Fog) to start the simulation, the 

experiment first (with the help of a local component called scheduler) needs to discover the compatible 
M&S resources that can simulate the model understudy, hence models are only executable on specific 
simulation engine environment. Those discovered compatible resources might exist on the local Fog, other 
Fogs, or the cloud backbone. The second stage is to select the best resources to run the simulation. The 

deciding factors of this selection are the discovered resources location and computing load. 
Those methods were implemented using real Fog/Cloud systems and were fully studied and presented 

in (Al-Zoubi et al. 2020). However, it was difficult to study them on large scale using real systems, which 
what we are doing in this paper using modelling and simulation. 

Next, we present a brief background about those Fog/Cloud collaboration proposed methods while the 
full detail of those methods is presented in (Al-Zoubi et al. 2020). 

The workflow starts when a user (via a client device) creates an experiment on nearby Fog. At this 
point, the user only communicates with the experiment (via nearby Fog) to perform any changes. Now, 
once the user sends a request to start the simulation, the experiment asks a component, called scheduler, on 
its local Fog server to (1) discover simulation assets that can execute the simulation, and to (2) select least 
loaded M&S resources, hence implicitly one or more servers will be selected to run the simulation. At this 
point, the experiment becomes an interplay unit between the client devices and the server(s) that executing 

the simulation. It is worth noting that selected server(s) could be the local Fog server itself or other server(s) 
located on the Cloud. 

As can be seen, the scheduler component, which is located on every server, plays a major role in the 
overall Fog/Cloud collaboration. This is because the experiment depends on the scheduler (that resides on 
its Fog server) to discover compatible M&S resources, and then to select best servers to execute the 
simulation. This means schedulers on Fog servers must have global knowledge to make such decisions. Of 

course, these Fog/Cloud collaboration mechanisms need to provide Fog servers this global knowledge while 
respecting M&S resources heterogeneity and the overall scalability. This Fog/Cloud collaboration is briefly 
explained the next example. 

Figure 1 shows an example of a Fog/Cloud physical setup in our platform. In our case, Fogs and Clouds 
are built as private clouds based on OpenStack. OpenStack (Shrivastwa et al. 2016) is an open-source cloud 
tool developed by NASA and Rackspace. This physical setup example (Figure 1) shows one Fog and one 

Cloud. For simplicity, the Fog (mini cloud) is built using one physical machine with one launched VM 
(server). The Cloud backbone is built using three physical machines: one Controller (to manage cloud 
services like networking), and two Compute machines to run VMs. As shown, the Cloud has launched four 
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VMs (servers). In our case, each server (VM) can be used to host the middleware that can execute the 
simulation. 

 

Figure 1: Example of fog/cloud physical setup. 

Those servers are then deployed in a parents-children hierarchical structure. For example, Figure 2 
shows possible deployment configuration for the physical system shown in Figure 1. This achieved by 
sending either (1) one XML deployment configuration message to configure the whole hierarchy by 
propagating this message downward the hierarchy, or (2) to send this XML message to one or more servers 
to join/disjoin them to/from the overall hierarchical structure. 

In our solution, as shown in Figure 2, Fog servers need to be on the top of the hierarchy (i.e. root nodes). 

This means that Fog servers have only access to the M&S resources within its subtree of the hierarchy. 
Accordingly, clients can only access the resources that are accessed by their Fog servers. 

 
 
 
 

 
 
 
 
 
 

 

Figure 2:  Examples of deployment and M&S resources pools. 

As previously stated, schedulers on Fog servers must have global knowledge to Discover & Select 
M&S resources within its subtree. To do so, servers with M&S capabilities sends their parents 
advertisements (i.e. as XML) describing their capabilities. This message is passed upward the hierarchy as 
necessary to construct the M&S Resources Pools. For example, suppose, in Figure 2-1, Server-2, Server-3, 

and Server-4 have the CD++ simulation capabilities. Now, when the first advertisement message reaches 
Server-1, the message is passed to the Fog-Server and a pool is constructed. However, when the other two 
advertisements messages reach Server-1, it just joins them to the existing resources pool, since they 
advertise the same resources. Now, assume Server-4 (in Figure 2-2) changed its capabilities to something 
other than CD++. As a result, Server-1 creates a second resources pool and passes the message up to the 
Fog-Server. Further, the load of those M&S resources pools is periodically computed by passing a special 

message called Compute-Load from parents to their children. In this way, these M&S resources pools 
provide Fog servers of global view of their subtree resources.  

Now, when an experiment on a Fog server request server(s) to execute its simulation, the scheduler (on 
that Fog server) matches experiment requirements to those pools, hence finding the pools that can execute 
the simulation. It then selects the best pools according to their current loads. After that, it sends Get-Server 
message through those pools (i.e. to the children that connected to those pools). Now, when this message 
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reaches the servers that originally advertised such resources, they can accept or reject this request. If 
accepted, the experiment on the Fog server will then have the URIs of those found servers. From now on, 
the experiment deals directly with those servers to the run the required experiment simulation. See (Al-

Zoubi et al. 2020) for more in depth details about this Fog/Cloud platform. 

4 SIMULATION MODEL: STRUCTURE AND VALIDATION 

To validate the presented model, we compared the model’s simulation results against real system setups 
using different physical and deployment configurations. In fact, the main reason behind developing this 
model is to study our real system on a very large scale. This is because, as in our case, building private Fogs 
and Clouds with numerous nodes can be very expensive. However, it is worth noting that we have built the 

real system in a range of tens of physical and VMs with different setups and configuration. We further 
conducted extensive analysis using the real system setups, as presented in (Al-Zoubi et al. 2020). Therefore, 
in this case, the model can study the system on a large scale (i.e. thousands of nodes) while the real system 
is used as a reference system to validate the simulation model. 

The presented DEVS model main purpose is to mimic a real physical setup and launched VMs (e.g. 
Figure 1). Once this is done, there is no difference (i.e. uses same programming code) between the real 

system and the model with respect to the Fog/Cloud collaboration mechanisms particularly with the M&S 
resources deployment and management (see Figure 2 discussion).  

To put this in an example, Figure 3 shows the DEVS model that resembles the real system shown in 
Figure 1. As can be seen, there are three types of coupled models: Top (to wrap the whole model), Cloud 
(to structure cloud elements), and Fog (to structure the Fog elements). Figure 3 shows one instance of each 
of those coupled models. In our case, these coupled models are written as textual script describing the 

shown diagram in Figure 3. As can be seen by this figure, these coupled models are made of four types of 
atomic models: Client, Router, Link, and VM. These atomic models are explained next. 

The Client atomic model simulates client devices requests sending to the Fog servers. The example in 
Figure 3 has one instance of the Client atomic model. The Client atomic model is connected (via Link 
atomic model) to the highest Router instance, allowing clients to reach any other destination as explained 
next. 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3:  DEVS model for real system shown in Figure 1. 

Router atomic model simulates Layer-3 network routing and Layer-2 switching. Each router is assigned 
a unique prefix IP address. The router matches this prefix address to incoming messages IP addresses to 
know how to route them. If the destination IP address matches the prefix address, the message is then 
forwarded to that router local network. Otherwise, it is passed to the parent default router. For example, if 
a router prefix is 132.179.0.0, a message with IP address 132.179.2.10 will be forwarded to this router local 

network. However, incoming message with IP address 132.180.2.10 will be sent to the parent (default) 
router. This keeps going until it reaches a router up in the hierarchy that can forward it within its local 
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network. Of course, if the message reaches the highest router in the hierarchy and still cannot route it, the 
message is then returned to the sender with an error. In our example, Figure 3 has three router instances: 
One to route between Fog and Cloud, one to route within the Fog, and one to route within the Cloud. It is 

acceptable in this case since it is still with some respect a small setup, but we surely need to add more 
routers if we have thousands of VMs. 

Link atomic model simulates networks latency. Network latency could be caused for many factors such 
as network congestion, distance, and network devices capabilities, etc.  Link atomic model simplifies these 
factors by simply holding the transmitted message going through it for a certain delay. This is done by (1) 
stamping each received message being transmitted by the time it needs to be released, (2) and then placing 

it in an internal queue in a descending order. Accordingly, the simulation triggers internal event in the Link 
model when it is the time to release the messages in the front of the queue. This means one or more messages 
need to be released at the current simulation time. The issue now is how the Link model determines a 
message delay. Our first source was the results we collected from many different setups of the real system 
(e.g. Figure 1 shows an example of such setups). The collected results took into consideration if the message 
is being transmitted within the Cloud, Fog-to-Cloud, Client-to-Fog, etc. The Link model then used the 

occurrence probability of delay value with respect to the real system. For example, suppose from client 
device to Fog delay has measured 11 msec for 10% of all collected data in the real system. In this case, the 
Link atomic model between the client device and the Fog would delay a message for 11 msec a probability 
of 0.1. However, this was not enough since the transmission distance between senders and receivers also 
play a factor in the network latency as indicated by many studies like (Goonatilake et al. 2019). Thus, 
distance should be taken into consideration when communicating between Fogs and Clouds. However, in 

our real system setups, the distance between Clouds and Fogs is in the range of 30km to 60km, depending 
on the setup (i.e. were built within the same city). To overcome this issue, for long distances, we based 
network latency on the collected data in (Goonatilake et al. 2019), which gathered measurements between 
many different cities. 

VM atomic model represents the server in the real system. As previously discussed, in the real system, 
a server is a RESTful-based middleware runs on a VM that can run different simulation environments. 

Further, each server contains the scheduler component that is in the core of the overall Fog/Cloud 
collaboration and resources management as discussed in Figure 2. Because our main purpose is to study 
those algorithms on large scale, the VM atomic model should then apply the same Fog/Cloud proposed 
algorithms as in the real system. In fact, this is what we did. The VM atomic model (i.e. C++) uses the 
actual code of the scheduler component (i.e. Java) that was used by the real servers. Thus, VM atomic only 
simulates the load introduced by executing simulation Jobs (i.e. experiments). Otherwise, it uses the same 

management code as in the real system. 
In other words, our interest in the VM atomic model is to simulate the time it takes a simulation 

experiment to complete. From our intensive study to the real system, servers load was obviously related to 
three factors: (1) the background load (that is not related to simulation), (2) the model that is being simulated 
alongside the experiment settings, and (3) the number of concurrent simulation experiments being executed 
on the same server. Since the background load affects jobs completion time, we can safely assume it is 

implicitly calculated along with jobs completion time. However, in practice, it is hard to estimate the 
simulation jobs completion time or the load they add onto servers. This because simulation keeps going as 
soon as there are events to execute (which may further generate other events, and so on). Thus, this depends 
on the simulation model that is being executed and the simulation events are being generated. In fact, some 
simulation executions may go infinitely until it is literally stopped. 

Therefore, to make the VM model as accurate as possible in predicting the length of a simulation job 

to complete, is by basing it on real servers in the real system. To do so, we collected results based on three 
effects: (1) the computing capability of a server (e.g. CPUs, RAM, etc.). (2) The simulation experiments 
being executed. For example, fire model (to study forest fire) executes differently from a ship model (to 
study ship evacuation), hence they have different completion times. (3) The number of concurrent 
simulation jobs being executed. Obviously, executing one ship model is different from executing 5 or 50 
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concurrent executions on the same server. The way we used those three factors to collect the results: We 
first defined a set of real servers with certain capabilities. We further, defined a set of real models to simulate 
over those real servers. After that, we measured the time to complete a simulation experiment for each 

model over each server in a stepwise fashion. This means for single experiment simulation, two concurrent 
simulations, and so on until sixty concurrent simulations. For each of those runs we averaged the value over 
10 different repeated rounds. It is worth noting that results collection was performed using scripts that left 
running over the real servers for several days. 

Based on above, the VM atomic model is initialized (i.e. via loading a file) the information related to 
its computing capability. Using this information, it can estimate the completion job of each running local 

job. Accordingly, every time a simulation job is added/removed to/from a VM atomic model server, the 
server’s load and the expected completion time for all other jobs in progress are recalculated.  

For further proof, we run additional tests to compare the VM atomic model to real servers with similar 
circumstances to ensure similar behaviors. Figure 4 shows one of those comparing examples. The figure 
compares the total execution time for simulating ship evacuation model between the VM atomic model and 
the real server. The slight differences can be explained by other external factors like the background 

processes running on the real server. The VM atomic model has also considered this background processing 
since it was based on real collected results from real servers. However, there will always be some 
differences when an experiment is repeated at different times even on the same real server. 

 
 
 

 
 
 
 
 
 

 
 

Figure 4:  Example of comparing VM model to real server. 

As discussed above, the first stage of validation was to compare internal atomic models to their 
equivalent real elements, as we did in the shown example in Figure 4. Now, the next level of validation is 
to compare entire real systems to their corresponding DEVS modelling with respect to the overall 

Fog/Cloud collaboration proposed mechanisms. As previously stated, the main purpose of the DEVS model 
is to mimic the physical structure. Beyond the physical structure, there is no difference between the DEVS 
model and the real system with respect to the deployment configuration and the overall Fog/Cloud 
collaboration algorithms. This necessary because the main purpose of this model is to study those 
algorithms on a large scale. However, before doing so, we must ensure the model behaves like the real 
system using various physical and configuration settings. 

To put this in one example, the physical structure in Figure 1 is modeled in Figure 3. In this example, 
we have one Fog (i.e. with one server) and one Cloud (i.e. four servers). Both Figure 1 and Figure 3 were 
discussed earlier in detail. Figure 5 compares this real system (Figure 1) to the modeled system (Figure 3) 
using the deployment configuration in Figure 2-1 (see this figure earlier discussion). In this configuration, 
Server-2, Server-3, and Server-4 advertise CD++ simulation capabilities; hence, they can run CD++ 
simulation. On the other hand, Fog-server (i.e. used by clients to access services) and Server-1 (i.e. used 

for structural reasons) do not advertise any M&S capabilities. In this example, the client device created 60 
experiments (to study spreading of fire in forests) on the Fog-server. After that, the client device started the 
simulation of those 60 experiments randomly over a period of ten seconds. This was repeated over 100 
rounds while each run (in Figure 5) is an average of 10 actual rounds. 
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As expected, Figure 5 results show that the 60 experiments execution was reasonably spread over the 
three Cloud servers with CD++ capabilities. This means that the Fog-servers was able to discover the well-
matched resources to execute the sixty jobs, and was further able to select the best resources to balance the 

load. As can be seen that the behavior of the real and modeled systems is very similar. Both executed the 
jobs on the same three servers (i.e. Server-2, Server-3, and Server4), and the servers got similar load (e.g. 
each executed on average 20 jobs). Of course, it is not expected to get the same numbers for both systems 
since many real-life factors can still play some role. This is even the case when comparing the same real 
system at two different runs, as shown in Figure 5-1.  However, the overall behavior should be similar, 
which is met. 

 

 

 

 

 

Figure 5:  Comparing Real System to Model Behavior. 

 
 
 
 
 
 

 
 
 

Figure 6:  Comparing real to model job completion time. 

Figure 6 shows the above results (in Figure 5) from the dimension of the total time it takes a job to 
complete execution. In Figure 6, each run is averaged over 10 different rounds, hence 100 rounds in total. 

On the real system, the fire model execution was 20.1 sec while it was 19.5 sec on the modeled system. The 
figure shows that both real and modeled behave in a very similar way. The difference is like in the case of 
a real system with same physical setups and configuration being run and compared at two different times. 
This fact can be observed when comparing the real system different runs on Figure 6. This makes sense 
since the modeled system uses real collected data from real system previous runs, as previously discussed. 

5 STUDY ON LARGE SCALE: MODEL & RESULTS 

As previously discussed, in our platform, clients create and setup their experiments on Fog servers. Once 
this done, a client then starts a simulation on an experiment via a Fog server. The experiment (on a Fog 
server) then discovers and selects the proper M&S resources to execute the experiment simulation. After 
the selection step, experiment (on the fog server) runs simulation directly on the selected servers, and 
becomes an interplay unit between client(s) and selected servers. 

As can be seen, our main purpose of modelling our existing Fog/Cloud real system is to study the 

collaboration algorithms scalability on large scale. In the other words, our concern here is to study the issues 
that are hard to experience with the real system setups.  
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Thus, we more concerned in studying scalability by studying the effect of enlarging the system on two 
things: 
 

(1) On the overall deployment structure (hence, we should always be able to keep adding/removing servers 
without affecting the overall structure), and 

(2) The time it takes an experiment to discover and select resources. This discovery & selection time is 
measured from the time an experiment asks its local fog server host (i.e. scheduler) to find the 
compatible servers to execute the simulation until the experiment gets the URIs for those servers. 

5.1 Modelling the Fog & Cloud Infrastructure 

Figure 7 shows modelling the physical structure on large scale. The elements that make up this model have 
already been described in Figure 3. The highest level in the model (Figure 7) consists of one atomic model 
router, called Router-top, and six instances of coupled models called Clients, Cloud, Fog1, Fog2, Fog3, and 
Fog4. Router-top is responsible for routing all traffic between all Clients, Cloud, and Fogs. This is done by 
routing the traffic to/from other Fog/Cloud routers. Note that connections between elements is made via 
Links atomic models. Links have already been fully discussed in Figure 3. Clients coupled model contains 

several Client atomic models (to mimic clients’ requests) that connected to router Router-clients. This 
Router is also connected to the highest router (Router-top) to reach other networks. Similarly, each of the 
four Fogs contains a server and a router to route traffic inside the Fog, and at the same time connected to 
the highest router (Router-top) to reach other networks. 

 
 

 
 
 
 
 
 

 
 
 
 

 

Figure 7:  Modeling physical infrastructure on large scale. 

The Cloud coupled model consists of 5 Routers and 153 internal coupled models called Racks. Each 
Rack contains 20 VMs (servers) atomic models and 1 Router. This makes the cloud contains 3,060 servers 
in total. Our approach treats servers as pool of resources that can be deployed dynamically in many ways. 
Deployment configuration for these servers is described soon in Figure 8. The Rack routers (i.e. Router-
r1…Router-r153) route traffic between their internal rack servers and at the same time connected to the 
highest router (Router-cloud) in the cloud to reach other racks and other external networks. Router-cloud 

routes traffic between cloud racks and at the same time connected to the highest router (Router-top) to reach 
other external networks. 

This model was simulated using CD++ distributed simulation (Al-Zoubi et al. 2015), hence was 
partitioned over three physical machines: The first partition is the Cloud coupling model, the second 
partition is the four Fogs coupled models, and the third partition is the Clients coupled model. 
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5.2 Deployment Configuration 

As explained earlier, deployment configuration XML messages (to build the hierarchy structure) are sent 
to each server individually or to all servers altogether starting from top of the hierarchy. This step is the 

same on both real and modeled servers (i.e. same code implementation). 
Figure 8 shows the deployment configuration based on the shown infrastructure in Figure 7. In this 

deployment, we created 50 groups of servers where each group contains 60 servers. Those groups of servers 
are the ones that advertise M&S resources and mimics simulation execution. Each group of servers are 
made children to one intermediate server (e.g., Server-1 is the parent of all servers in Group-1 and so on). 
For instance, to make servers in Group-1 accessed by the Fog servers, Server-1 needs to be made a child to 

Server-Root (i.e. the highest server on the cloud hierarchy). Likewise, we can remove a group of servers 
from being accessed by Fog servers. In this way, we can study the effect of adding more servers on the 
overall system, as presented later. 

Further, to give access to a Fog server, it just needs to be made a parent to the Server-Root. Note that 
this hierarchy is only needed to manage and discover resources. However, once servers are discovered and 
selected by a Fog server, the Fog server then execute jobs directly on those selected servers 

 
 
 
 
 
 

 
 
 
 

 

Figure 8:  Large scale deployment configuration. 

5.3 Case Study Results 

The overall structure scalability and the discovery & selection time is studied from two dimensions: The 
first dimension is when the number of servers keep increasing. The second dimension is when the M&S 
resources (advertised by those servers) heterogeneity keep increasing. Note that the real processing time on 
the Fog servers to access its local data structure is considered in addition to the cloud and network 
simulation time. This is because modeled Fog servers build similar local data structures to the real Fog 

servers. 
Figure 9 shows the discovery & selection results using those two dimensions (i.e. servers count and 

advertised M&S resources heterogeneity). All cases in Figure 9 starts with one group (i.e. 60 servers), 5 
groups (i.e. 300 servers), and then keeps adding 5 more groups of servers with each step until it reaches the 
whole 50 groups (i.e. 3000 servers). 

Figure 9-1 shows the case when all servers advertise the same M&S resources (e.g. CD++). This means 

that Fog servers on top of the hierarchy will always see one pool of resources regardless of the number of 
servers on the cloud. This also applies to the other intermediate schedulers (i.e. Server-Root, Server-
1…Server-50). Therefore, local processing is trivial in this case comparing to network latency, which 
measured in a range of 5-7 msec. As a reminder, a network message needs to be passed downward the pools 
hierarchy to retrieve the servers URIs. As expected, Figure 9-1 shows that adding more servers did not 
affect the direction of the line in the figure. In fact, the variation of the line is more affected by the network 

latency rather than of the number of servers. 
Figure 9-2 shows the case when each group of servers advertise different M&S resources. This means 

each of the group schedulers (i.e. Server-1…Server-50) sees one resources pool for all its 60 children 
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servers. The Server-Root sees 50 resources pools since each of its children resources are different from 
each other. This also applies to the Fog servers.  

The argument of Figure 9-1 also applies to the results of Figure 9-2. The local processing is trivial (i.e. 

data structures of at most 50 entries) with respect to network latency. Accordingly, the direction of the line 
is more affected by network latency rather than of the number of servers or the M&S resources 
heterogeneity.  

Figure 9-3 shows the case when each server within each group advertises an M&S resources at random. 
This done by making each server selects at random an M&S resource from a list of 100 resources. This 
means that every time we add more servers with every run, the whole resources pools change as well since 

servers keep changing their advertised resources. This case has showed that the overall behavior remained 
stable as the system grows with random heterogeneity. 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

Figure 9:  Results based on different resources and servers. 

Figure 9-4 shows the worst-case scenario. In this case, we made every server advertises a different 

M&S resources from all other servers. This means the cloud support 3000 different M&S resource where 
each is installed on a different server. This means each of the group schedulers (i.e. Server-1…Server-50) 
sees 60 resources pool since it has 60 children servers. The Server-Root sees 3000 resources pools (i.e. 50 
groups × 60 servers). This also applies to the Fog servers. Thus, local processing is expected to increase. 
However, when compared to the best-case scenario (in Figure 9-1), this increase is on average about five 
msec. Further, the overall behavior showed stable system despite enlarging the system with the worst-case 

scenario of heterogeneity. 

6 CONCLUSIONS 

We have built and developed full Fog/Cloud collaboration mechanisms to be used by modelers to run their 
simulation experiments via nearby Fog servers without being concern on how and where the required M&S 
resources can be found to execute the simulation. However, since these real systems are usually setup of 
tens of servers, it was then necessary to study this system on large scale using modelling and simulation. 

We showed how this model was validated with respect to the real system. This was needed to have the 
required confidence before modelling the system on large scale. The presented results showed that the 
system overall structure and the Fog/Cloud collaboration met the scalability requirements on large scale. 
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