
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

COMPOSITION OF GEOGRAPHIC-BASED COMPONENT SIMULATION MODELS

William A. Boyd
Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University
Tempe, AZ 85281, USA

ABSTRACT

Separate simulation models (e.g., agent-based models) may depend on spatial data associated with
geographic locations. Use of autonomous interaction models allows independent models to be composed
into an aggregate model without alteration of the composed models. The Geographic Knowledge
Interchange Broker (GeoKIB) is proposed as a mediator of spatial-temporal models. The GeoKIB regulates
unidirectional interactions between composed models of the same type or not. Different input and output
data types are supported depending on whether data transmission is passive or active. Synchronization of
time-tagged input and output values is made possible via connections to shared simulation clocks. A spatial
conversion algorithm transforms any two-dimensional geographic data map for another region of different
map cell sizes and boundaries. A composition of a cellular automaton and an agent-based model is
developed to demonstrate the proposed approach for spatially-based heterogeneous model composition
with the GeoKIB.

1 INTRODUCTION

To create models of complex systems, it is often best to compartmentalize different aspects of systems as
separate, autonomous models. These component models are each best specified with a separate set of
specifications, operating with different rules and scales. Each model could be simulated independently
using a simulation engine.

A model, on which simulations are based, is defined to have a particular input and output specification.
The frequencies, measurement units, and meanings of the input and output variables play a significant role
in a model. Some models have other specifications for I/O, such as spatial resolution or null value
limitations. These unique specifications result in difficulty connecting different models, even for models
that represent related systems. Differences between variable types and values must be resolved whenever
the expected input of a simulation is not provided, with the same format, by the output of another simulation.
While changing the simulations’ I/O requirements may work in these situations, such changes are
undesirable. Each simulation should be created and tested according to its own requirements, and changing
an input or output violates this. Forcing adherence to a common protocol places restrictions on component
models that are inappropriate to their different scopes of operation.

Multi-resolution modeling is basic to understand the dynamics of systems (Davis and Bigelow 2008).
Toward achieving this need, the composition of models has a basic role. A key challenge is to model
interactions between heterogeneous model types. Interaction components can be modeled in different ways,
among which is multi-formalism modeling supported with Knowledge Interchange Broker models
responsible for making conversions of data types, quantity, resolution, and frequency between disparate
models (Sarjoughian 2006). Each KIB model has a syntax and semantics consistent with the disparate
model types. In this paper, a variant of KIB supporting geographic maps is proposed for agent-based and

2257978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Boyd and Sarjoughian

cellular automata simulations. A geographic KIB manages interactions between models with spatial and
temporal differences.

The GeoKIB applies spatial data transformation for cellular automata (CA) models or spatially bounded
Agent-Based Models. Cellular automata represent changes to a geographic area over time (Wolfram 2002).
For each time step, every map cell needs to read its inputs and produce its outputs as its state is determined.
The updating format often varies greatly between different models. For example, considering human-
landscape modeling (Barton et al. 2016), the interactions between a model of human activities and a model
of landscape dynamics may include primitive data types, such as integer and floating-point values, but also
includes entire maps of data, with values spread over cells of two-dimensional maps. Particular challenges
arise when transferring cellular automata data between models, especially when the models use area
divisions of different boundaries and cell sizes. The need to mitigate this complexity motivated the design
and development of the GeoKIB that converts two-dimensional maps to different region specifications
during simulations. To aid the development and testing of the GeoKIB model, an exemplar cellular
automata (CA) model for fruit growth and an agent-based model (ABM) for gatherers are composed using
a geographic KIB. The CA, ABM, and GeoKIB models are created, simulated, and validated.

2 RELATED WORK

Prior work has used different approaches for the modelling and composition of cellular automaton models.
These works generally are based on the well-known concept of cellular automata suitable for modeling
spatiotemporal systems. A cellular automaton model is a representation of a system based on a tessellation
of map cells over multi-dimension cell spaces. All cells of the automaton have the same dimensions and
the same specifications for input and output space, state space, and state transitions. State transitions for a
single cell of a cellular automaton are dependent on the cell’s inputs, the cell’s state, and the state of the
cell’s neighbors (Wolfram 2002). The states of all the cells are updated with the same discrete-time behavior
specification. A variety of simulators have been developed for cellular automata models. One of these is
called MASON (Multi-Agent Simulator of Neighborhoods) (Luke et al. 2005). This tool is based on the
agent-based modeling approach for creating, executing, and visualizing cellular automata models.
Mathematica also supports run-time animation of cellular automata states, where cell behavior is
determined by the mathematical formulas set for the model.
 An approach called Composable Cellular Automata (CCA) for combining separate cellular automaton
models has been proposed (Mayer and Sarjoughian 2009). The approach described in this paper is closely
related to the idea of CCA approach. However, it differs in that the GeoKIB emphasizes the process of
model composition itself, and that the differences between the geographic representations, especially
differences in spatial resolution, are handled within interaction models.

2.1 Event-Based Cellular Automata

Traditionally, the state of a cellular automaton is updated at discrete time steps. Some representations of
cellular automata emphasize temporal changes. (Peuquet and Duan 1995) describe a method of storing
spatiotemporal GIS data primarily according to the time of change (event), rather than storing the full
geographical state at every time interval. This organization of geographic data gives computational and
conceptual advantages for geographic analyses of events, causes, and effects.

A Cell-DEVS model specification to represent each of the cells of a cellular automaton has been
developed (Wainer 2017). As DEVS-based models, component and CA models can be composed using I/O
couplings. This specification models the interactions of map cells while providing a mechanism to reduce
the required computation for passive cells. The performance of cellular automaton simulations was
improved in this manner.

Another related research is a multiscale framework that supports modeling, simulating, and visualizing
independent multiple CCAs. The framework uses I/O couplings to model interactions among CCAs. The
approach in this paper, in contrast, does not support run-time component-based animation, run-time step-

2258

Boyd and Sarjoughian

by-step debugging through independent linear and superdense input, output, and state trajectories, and
customized playback (Zhang et al. 2020) .

2.2 Model Composition

Previous work proposed a hybrid modeling approach for composing separate agent and landscape models
using the Knowledge Interchange Broker (KIB). The approach proposed in this paper supports interaction
modeling for composing geographic simulations. Interactions modeling is supported with mapping
functions for models that can have independent timing and spatial resolutions.

A formulation for composition of cellular automata for a single group (set of cells) in which the
transition function for the composition of two cellular automata is equivalent to the functional composition
of the transition functions for the component automata has been proposed (Inokuchi et al. 2014). This type
of composition may be useful when composing cellular automata that represent layered effects on a set of
data. However, this definition of composition is not applicable to models that update independently on
different data sets.
 Another approach to multiscale modeling called Complex Automata (CxA) has been proposed
(Hoekstra et al. 2008). A Complex Automata can be created as a composition of a set cellular automata of
different spatial and temporal resolutions. Each cellular automaton of the set has a time step (∆t) and cell
size (∆x) appropriate for its representation, along with temporal and spatial boundaries within the
boundaries of the CxA. The CxA acts as a whole Cellular Automaton that integrates CAs that have different
spatial and temporal scales. This is similar in purpose to the approach described in this paper, allowing
models with different specifications and resolutions to be composed. This paper differs in that the
responsibilities of managing interactions are assigned to separate, dedicated interchange components. This
difference in approach was chosen to allow interaction of models that were designed separately from the
other models of the composition. While a well-designed CxA can allow more efficient composition of
cellular automata components designed for aggregation, a technique was required that allows future models,
with different temporal formalisms (such as discrete event), to be added to an existing system. Another
difference is that in this paper, two composed Cellular Automata models can have the same spatial
dimensions. The CxA approach neither conceptualizes nor formalizes the Composable Cellular Automata
model, which provides modularity at the level of individual Cellular Automata models for composition with
component-based models (Mayer and Sarjoughian 2009).
 A methodology is proposed and implemented for a multi-resolution cellular automaton model. Its
specification views cells from related models as neighbors in a hierarchical adjacency set, regardless of the
differing resolutions and cell sizes (Kiester and Sahr 2008). The implementation of the methodology
requires that state transition rules for each cell be dependent on the percentage distribution of the states of
the neighboring cells, rather than the number of neighboring cells that have the state. For example, in the
Game of Life model (Gardner 1970), the transitions are redefined as dependent on the ratio of neighboring
cells that are alive (Kiester and Sahr 2008). The ratio-based specification allows for interactions among
models, with automatic adjustments for differing numbers of neighboring cells from other resolutions. The
approach to interaction shows the assumption that all models use the same category of information greatly
restricting the use of such an approach with heterogeneous models. In addition, working with a hierarchical
adjacency set in this manner would most often require changing the component models and their transition
rules to fit this ratio-based perspective of neighboring states.

3 INTERACTION MODEL DESIGN

 The purpose of the geographic knowledge interchange broker (GeoKIB) is the composition of models
with cellular spatial models. The GeoKIB is designed to allow component models to be combined into a
single model when the component models have different specifications for input, output, and data
structures. This design was created to be adaptable to both frequency- and event-based update types.

2259

Boyd and Sarjoughian

3.1 A Generalized Knowledge Interchange Broker Design

A composition of two or more simulations is likely to involve multiple complex interactions. A snippet of
the UML class diagram of the GoeKIB design is shown in Figure 1. To manage this complexity, each of
the interactions is managed by a separate component, called a KIBFunction. Each of the simulations may
connect to more than one KIB to regulate its interactions with each of the other components. Each
KIBFunction has the task of regulating one set of interactions between two simulations, where one
simulation is designated as the input to the KIBFunction, and the other simulation is the output. When two
different simulations must communicate in multiple ways, multiple KIBFunction instances can be used as
brokers between those same two simulations. In particular, when two models must send information to each
other, at least one KIBFunction instance is needed to regulate the data flow in each direction.

Figure 1: A partial class diagram design for GeoKIB

A Each KIBFunction acts as a separate model. The inputs, outputs, transition functions, and timing of
each KIBFunction must be defined to produce the correct outputs at the correct times in response to the
received inputs. This is done by defining the abstract methods state_transition() and
is_transition_triggered(). The state_transition() method acts as the main state transition function of the
KIBFunction object, including the acts of dequeuing inputs, transforming values, and enqueuing outputs.
The method is_transition_triggered() returns a Boolean value that demines whether the state_transition()
method should be called. As an example, is_transition_triggered() may be defined to return true only when
a new input is available, indicating that state_transition() will not be activated when no input has been
received.

For a KIBFunction object to have the ability to synchronize its timing with other components or the
composed simulation, it needs the ability to read the time from an external source. For this purpose, a
KIBFunction can read the current simulation time from an external clock via the ISimClock interface.
KIBFunction uses the method get_current_time() method from the ISimClock interface to obtain the current

2260

Boyd and Sarjoughian

simulation time. Different simulations and KIBFunction objects may use the same or different clocks for
their timings.

A KIBFunction object receives inputs from dedicated input ports and sends outputs through assigned
output ports. Each of the ports is parameterized to specify the data type of the values that are sent through
the port. Each of the ports uses a queue to store and retrieve values. Each received value at an input port is
tagged with the time of receipt. In an output port, values are tagged with a scheduled time for the output.

Different types of ports can be created and attached to a KIBFunction. A discrete-event input port can
receive inputs at any time. Upon receiving an input value, the port alerts the KIBFunction of the external
event by calling the state_transition function. A discrete-time input port can be set to read an input value at
specified time intervals. A passive output port allows the KIBFunction’s output values to be read at any
time, allowing other models to check values when required. An active output port delivers outputs to a
specified model, allowing event inputs to be delivered to a model. This variety of ports allows one
KIBFunction unit to connect to both a discrete-event model and a discrete-time model when necessary.

The KIBFunction method update_state() is used as a “wakeup” function. When the method is called,
the object checks whether any updates are needed, performs any scheduled actions, then updates its state
accordingly. Calling update_state() more than once does not cause any inconsistencies in the KIB’s
functionality or state, so the method may be called at any time to ensure that the state is current. In the class
KIBElement, update_state() is an abstract method, meaning that it has no “default” implementation and
uses polymorphism to provide the implementation appropriate for the subclass.

The implementation of update_state() depends on the class and its specific purposes. In KIBFunction,
update_state() first updates each of the attached input ports. Any scheduled inputs are taken by the input
ports. Then, if the is_transition_triggered() method returns true, state_transition() is called. Finally, values
at all output ports are updated, and values are sent to other models if scheduled.

3.2 Geographic Interaction Model Design

The design of the KIBFunction allows different data types or classes for inputs and outputs. The input and
output ports can be parameterized to operate together with any set of models. While this is compatible with
geographic models, it is best to extend the design of KIBFunction to address the needs specific to
geographic maps.
 The basic data structure for values spread across a geographic area is a geographic map, represented as
an array of values associated with map locations. For this project, the GeoMap class was created for this
representation. Each GeoMap object has one region specification, which defines the boundary values and
divisions, or cells, of the region. Each cell of the GeoMap holds one value, which may be null. The values
are stored as a two-dimensional array in memory.

The class GeoKibFunction inherits from the KIBFunction class and adds functionality specific to
working with geographic transformations between models. A GeoKibFunction is assigned a separate region
for its inputs and outputs. The differences between the MapRegion objects are used as the basis for the
spatial conversions that are performed within the class. As with its parent class, GeoKibFunction is an
abstract class, meaning that it cannot be directly instantiated. The abstract methods from KIBFunction,
state_transition() and is_transition_triggered(), are not defined in GeoKibFunction and must be defined in
a specialized extension of the class.

GeoKibFunction provides the spatial_conversion() method, which converts a GeoMap from the input
region to the output region. The spatial_conversion() method accepts one GeoMap object as a parameter,
which must match the source region of the GeoKibFunction. Within spatial_conversion(), a two-
dimensional array of values is created with the number of row and columns specified in the
destination_region attribute of GeoKibFunction. Each element of the new array corresponds to a
geographical area, with values that can be determined for its north, south, west, and east boundaries of a
destination map cell. These boundaries can then be matched with the original GeoMap to find an
overlapping area. Because of differences in resolution, the destination cell may not align with the

2261

Boyd and Sarjoughian

boundaries of cells from the source map. It is possible for a destination cell to overlap multiple cells from
the source map in different area proportions, as shown in Figure 2.

Figure 2: Example of the conversion to a region with differently aligned cell boundaries.

 The value of one destination cell in spatial_conversion() is determined by finding an average of the
values from the corresponding (overlapping) area of the source map, weighted based on area sizes. For each
of the source map cells, its value is multiplied by the size of the area of overlap between the source cell and
destination cell. The products are added from all the corresponding source cells to create a weighted sum.
Similarly, the sizes of the overlapping areas are added to find a total area. The weighted sum is divided by
the total area to find the weighted average value for the destination cell.

3.3 Model Integration

Creating a composition of models involves defining the characteristics of the composition, setting up the
component models and interaction models, configuring the connections, and synchronizing the execution
times. To verify that all of these steps could be applied, two simple exemplar models were created with
geographic components. A fruit growth model was developed in which the number of fruit that reproduce
in an area is proportional to the number of nearby fruit. A separate gatherer model has gatherer agents
explore or settle in a landscape to obtain food.
 Composition of the fruit growth model and the gatherer model requires that the interaction
specifications be defined. The gatherer model requires an input of the amount of food available at each
location of the map. This input is specified to be the same as the number of fruit at the same location, taken
from the fruit growth model. The input to the fruit growth model is the change, at each location, in the
number of fruit due to external influences. This is determined by multiplying the number of gatherers at the
location by the rate of consumption by -1. In the composition, it is assumed that different regions and time
steps are used by the different models, so such differences must also be managed.
 For the components that deal with interactions between the fruit growth model and gatherer model,
extensions of the GeoKibFunction class were made. One instance of GeoKibFunction was made to take a
map of the number of fruit as input and produce a map of the amount of available food as output. Although
these amounts are equal, differences in region and time scaling needed to be addressed. The fruit growth
model outputs the current number of fruit, so there is no case in which multiple inputs should be combined
by addition or any other operations. Therefore, if multiple input maps are received before an output map
needs to be sent, the output map is processed from only the most recently received input. If multiple outputs
are needed before new inputs are received, the resulting map is output multiple times.
 During a simulation of the composed models, the simulation manager must determine when each of the
component simulations must be progressed. Each component simulation can be queried for the time step
for which it was last run. Information about the time of the last step and length of the time steps can be used

2262

Boyd and Sarjoughian

to determine the time to run the next step for each component. The next time step for the composition is the
least of the next times for the components. At each time step, the simulation manager finds the components
whose next scheduled time step is equal to the current time, and commands those components to progress
for one time step. It is important to note that this synchronization protocol is only possible for components
that can be externally controlled to progress one step at a time.

4 DEMONSTRATION OF INTERACTION MODEL EXECUTION

A demonstration is shown here of the interactions between the exemplar models via the GeoKIB. For this
scenario, the growth model and the gatherer model are run in a joint simulation. The regions for the two
models have same outer boundaries, but different resolutions. The simulation takes place in a 30km x 20km
area, with west and east boundaries labeled 300 and 330, and south and north boundaries labeled 200 and
220. The simulation area for the fruit growth model is divided into 24 square cells that each have size 5 x
5. The same area in the gatherer model is divided into 6 square cells of size 10 x 10. Each gatherer eats,
when available, four fruit per time step. A gatherer can see cells up to two spaces away and can move two
spaces within a time step.

The state of the combined simulation is updated at integral time steps. In this simulation, the state of
the gatherers is updated every time cycle, but the state of the fruit growth is only updated for even numbered
time steps. Time 0 is the start time of the simulation, and changes to the state occur after, not during, time
0. To avoid cyclic data dependencies, data from a component model can only be used by the other
component model at a time later than the time of data production. That is, the number of fruit at time 2
influences the gatherer model at times 3 and 4, but not at time 2. This requirement allows the results of the
simulation to be independent of the order of execution of the component models.

At the beginning of the simulation (time 0), the KIB takes the map information about the number of
fruit from the fruit growth model. The KIB uses the data to create, as outputs, maps of available food for
the gatherer model for times 1 and 2. The KIB must convert the spatial resolution to a format appropriate
for the gatherer model. The food is cumulative data, so the values in the cells of the output maps are obtained
from sums, not averages, from the corresponding input areas, as shown in Figure 3. Since the fruit growth
model is not updated before time 2, identical maps are produced by the KIB for times 1 and 2.

As the fruit growth simulation has a period of 2 time units, its first iteration of execution is at time 2.
The KIB is responsible for providing data to the fruit growth model concerning the changes in the number
of fruit due to external influences, including the amount eaten by the gatherers.

Figure 3: Conversion of spatial resolution by the KIB. (a) Fruit growth model initial numbers of fruit.
(b) KIB output food maps for times 1 and 2.

Also at time 0, the KIB receives a map that tells the locations of the gatherers. The KIB produces maps
that tell external changes to the number of fruit at each map cell. Since the KIB receives fruit values more
frequently than it sends food values, the KIB needs to collect multiple inputs maps and assemble them
before it sends each food map to the gatherer model.

2263

Boyd and Sarjoughian

At time 1, the first time step of the gatherer simulation is executed. During this step, the two gatherers
examine their surroundings to find the cell with the largest amount of food. The cell with 157 food has more
food than any other cell, and it is visible to both gatherers. The cell becomes the target of both gatherers.
They each decide to move to the cell during the following time step. Because they do not move during time
1, the output from the gatherer simulation (shown in Figure 4) is the same as the output at time 0.The KIB
takes this map of numbers of gatherers during time step 1. The KIB has the inputs it needs to create its
output, a map of the changes in fruit amounts, for use by the fruit growth simulation at time 2. The KIB
must complete a few steps to create each of its outputs for the fruit growth simulation.

Figure 4: Input maps of numbers of gatherers processed by the KIB at the start of time 2. (a) numbers
of gatherers at time 0. (b) numbers of gatherers at time 1.

1. Collect and store each output from the gatherer simulation. Each output is a map of the numbers of

gatherers, using the spatial resolution of the gatherer simulation.
2. Combine input maps received between outputs by adding the values at corresponding locations

 over each input map. The summation gives the total number of gatherer visits per location, in the
gatherer simulation’s spatial resolution.

 3. Create a map of fruit change by multiplying the gatherer visits by the gatherers’ appetite (fruit eaten

per time step), multiplied by -1. The resulting map indicates the changes in the amounts of fruit
between updates in the fruit growth simulation (shown in Figure 5). The values are all negative to
indicate that the fruit was removed by the gatherers.

Figure 5: Creation of the fruit change map by the KIB at the start of time 2. (a) sum of input gatherer
maps for times 0 and 1. (b) change in fruit at time 2, using the spatial resolution of the gatherer
simulation.

 4. Perform a spatial resolution conversion on the fruit change map to convert its region from that of
the gatherer simulation to that of the fruit growth simulation (see Figure 6).

2264

Boyd and Sarjoughian

Figure 6: Change in fruit at time 2, converted to the spatial resolution of the fruit growth simulation.

 5. Make this output map, of the change in fruit, available for the fruit growth simulation at time 2.

 At time 2, the fruit growth simulation can proceed to execute its first simulation step, once it receives
as input the map of changes in fruit from external influences. The simulation can continue to run with this
procedure, allowing both the fruit growth simulation and the gatherer simulation to progress without
concerns of the other simulation’s differences. With similar procedures, the KIB can run combined
simulations when the fruit growth simulation runs more frequently than the gatherer simulation, or when
the spatial resolution of the gatherer simulation is higher than that of the fruit growth simulation.

5 TESTING AND RESULTS

The principles of the Geographic Knowledge Interchange Broker (GeoKIB) were applied to connect the
two exemplar models: the fruit growth and gatherer models. In order to verify the GeoKIB’s ability to
compose models at different resolutions, a set of different simulations using the models was run. The
different simulations differ in the relative spatial and temporal resolutions of the two exemplar models.
Distances within simulations represent meters. All simulations of the set use the same set of spatial
boundaries, with south boundary at a value of 1000, north boundary at 1320, west boundary at 5000, and
east boundary at 5640. Each simulation time step represents one day. Within the simulations of the fruit
growth model, the number of fruit at each cell increases by an amount determined by multiplying the
number of fruit in the surrounding 5 meters by 0.010. A maximum fruit density of 0.3 fruit per square meter
is allowed. Gatherers can live for a maximum of 30 days, and the 1000 initial gatherers have an age of 10
days. A gatherer can reproduce and create another gatherer after staying settled for 5 days. Each of the
gatherers needs to consume 4 fruit per day. A gatherer will die if there is not enough available food for 3
days.

Initial values were provided to the exemplar models as maps that indicate the locations of fruit and
gatherers over the simulated landscape. To remove stochasticity from the simulations, the same map of fruit
locations and the same map of gatherer locations were used to create the initial state for each of the
simulations. In cases where a model had a different spatial resolution than the map of initial locations, the
locations were converted to create a state most consistent with the given initial locations using the model’s
resolution.

The first of these simulations has both models use the same spatial and temporal resolutions. Both
models use a map resolution of 32 rows and 64 columns, for a total of 2,048 cells. The models each update
once per simulation time step during the 100 total time steps. Other simulations had varying differences in
spatial resolution between the exemplar models, while keeping the temporal resolutions equal. In these
simulations, one model had the higher resolution with 32 rows and 64 columns, while the other model
represented the same area with fewer cells. Additional simulations retained the same spatial resolutions for
the two models while using different time steps between updates for each of the models. In these, the state
of one of the models was updated during each simulated day, while the other was updated only after a given
number of days had passed. Finally, simulations were run in which spatial and temporal differences existed

2265

Boyd and Sarjoughian

between the two exemplar models. These simulations included all combinations with spatial area resolution
factors of 4 or 16 and temporal resolution factors of 2, as shown in Table 3.
 Because the GeoKIB was designed to be flexible regarding the differences in spatial and temporal
resolutions, it was able to connect the different simulations for all of the configurations. The GeoKIB
automatically determined how to manage the differences in data input and output timings when given inputs
that indicate the sizes of the time steps for each of the simulations.

Table 1: Configurations for simulations with differences in both spatial and temporal resolutions.

Figure 7: Number of gatherers during simulations with different spatial resolutions for the gatherer and
fruit growth models.

Results of interactions between gatherers and fruit are apparent at all resolutions. The large numbers of
gatherers, along with the limited number of fruit, result in a limit in the growth of the populations. The

Fruit Number of Cells/Gatherer
Number of Cells Ratio 4:1 4:1 16:1 16:1 1:4 1:4 1:16 1:16

Fruit Number of Time Steps/Gatherer
Number of Time Steps Ratio 2:1 1:2 2:1 1:2 2:1 1:2 2:1 1:2

Fruit Number of Rows 32 32 32 32 16 16 8 8
Fruit Number of Columns 64 64 64 64 32 32 16 16

Gatherer Number of Rows 16 16 8 8 32 32 32 32
Gatherer Number of Columns 32 32 16 16 64 64 64 64

Fruit Period 1 2 1 2 1 2 1 2
Gatherer Period 2 1 2 1 2 1 2 1

2266

Boyd and Sarjoughian

number of fruit decreases over time wherever gatherers are present, and gatherers tend to collect in areas
with large numbers of fruit. As all of the interactions are managed by the GeoKIB, this shows the success
of the GeoKIB in exchanging information between the models. Figure 7 shows the effects of changing
spatial resolutions on the number of gatherers when the models have the same temporal resolution. The key
in Figure 7 shows the number of gatherer cells divided by the number of fruit growth cells.

The differences in relative spatial resolutions resulted in some differences in results. In particular, the
behavior of the gatherers was especially sensitive to spatial resolution. At lower relative resolutions of the
gatherer model, each map cell of the gatherer model corresponds to multiple cells of the fruit growth model.
This results in more fruit available at each of the gatherers’ cells, making each of the cells more sustainable.
However, the lower number of cells for the gatherers also results in fewer locations to settle and faster
depletion of food.
 A limitation of this approach to multi-resolution modeling became apparent. When models rely on other
models for data, differences in resolution can result in missing or insufficient information for one of the
models. As an example, when the gatherer model was updated 5 times as often as the fruit growth model,
the GeoKIB needed to supply information to the gatherer model from as much as 5 days previous to the
current day. Then, after the fruit growth model was updated, it was impacted by all 5 days of influences
from the gatherers at once.

6 CONCLUSION

In this paper, a proposed hybrid modeling approach for combined spatial-temporal interaction model design
is developed. A unique advantage of this hybrid model composition approach is the capability to define
interactions between models of arbitrary resolution levels. This is useful since interactions amongst natural,
social, and built systems are complex, especially for systems that have multiple geographic resolutions.
Interaction models can be used to understand or design complex structures and behaviors for systems that
exhibit different temporal and spatial scales and configurations. When models communicate their
geographic data via GeoKIB, the data can be transformed to account for differences in boundaries and
resolution, as well as the differences in measurements and timing protocols. Interaction modeling with
geographic mapping algorithms can be used to transform values. Interaction models allow exact or
approximate calculations for different geographic regions in a transparent and disciplined manner. For
future work, visual support for model development of GeoKIB is anticipated. Combining the rigor of model
specification with complementary capabilities such as visual modeling and high-performance computing
can offer a new level of access and understanding into the nexus of biological and cyber-physical systems,
among others.

ACKNOWLEDGMENT

This research is supported by the National Science Foundation grant #DEB-1313727.

REFERENCES

Barton, C. M., I. I. Ullah, S. M. Bergin, H. S. Sarjoughian, G. R. Mayer, J. E. Bernabeu-Auban, and J. R. Arrowsmith. 2016.
“Experimental socioecology: Integrative science for anthropocene landscape dynamics.” Anthropocene 34-45.

Davis, P. K., and J. H. Bigelow. 2008. Experiments in Multiresolution Modeling (MRM). Santa Monica: RAND.
Gardner, M. 1970. “Mathematical Games - The fantastic combinations of John Conway's new solitare game ‘life’”. Scientific

American 223(4): 120-123.
Hoekstra, A. G., J-L Falcone, A. Caiazzo, and B. Chopard. 2008. “Multi-scale Modeling with Cellular Automata: The Complex

Automata Approach.” 8th International Conference on Cellular Automata for Research and Industry, edited by H. Umeo, S.
Morishita, K. Nishinari, T. Komatsuzaki, S. Bandini. 192-199. Berlin: Springer.

2267

Boyd and Sarjoughian

Inokuchi, S., T. Ito, M. Fujio, and Y. Mizoguchi. 2014. “A formulation of composition for cellular automata on groups”. The
Institute of Electronics, Information and Communication Engineers Transactions on Information and Systems. 97(3): 448-
454.

Kiester, A. R., and K. Sahr. 2008. “Planar and spherical hierarchical, multi-resolution cellular automata”. Computers, Environment
and Urban Systems 32(3): 204-213.

Luke, S., C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. 2005. “Mason: A multiagent simulation environment”. Simulation
81(7): 517-527.

Mayer, G.R., and H. S. Sarjoughian. 2009. “Composable cellular automata”. Simulation 85(11-12): 735–749.
Peuquet, D. J., and N. Duan. 1995. “An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical

data”. International journal of geographical information systems 9(1): 7-24.
Sarjoughian, H. S. 2006. “Model Composability”. Proceedings of the 38th Conference on Winter Simulation, edited by L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 149-158. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc. .

Wainer, G. A. 2017. Discrete-event modeling and simulation: a practitioner's approach. Boca Raton: CRC Press.
Wolfram, S. 2002. A New Kind of Science. Champaign: Wolfram Media.
Zhang, C., H. S. Sarjoughian, and M. G. Seok. 2020. “A Framework for Composable Cellular Automata DEVS Modeling,

Simulation, and Visualization”. In Proceedings of the SpringSim Conference, May 19-21, Virtual Conference.

AUTHOR BIOGRAPHIES

WILLIAM A. BOYD earned his Master’s Degree in Computer Science in the School of Computing, Informatics and Decision
Systems Engineering (CIDSE) at ASU, Tempe, AZ, USA. He can be contacted at waboyd@asu.edu.

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science & Computer Engineering at Arizona State
University and Co-Director of the Arizona Center for Integrative Modeling and Simulation. His research focuses on model theory,
polymorphic model composability, distributed co-design modeling, visual simulation modeling, real-time modeling, and service-
oriented simulation. He can be contacted at sarjoughian@asu.edu. His website is http://sarjoughian.faculty.asu.edu/.

2268

