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ABSTRACT 

A simulation System of Systems (SoS) comprised of various simulation systems may have dissimilar 
modeling paradigms. For performing autonomy research and development, various types of simulation 
systems need to be brought together to build a multi-domain virtual SoS wherein effects of autonomous 
entities/agents can be observed. While the distributed simulation community has solved the integrability 
challenge using standards like Distributed Interactive Simulation (DIS) or High Level Architecture (HLA),   
the model composability challenge is an open research problem. Many software/systems can now be made 
available as docker applications which can be readily plugged into existing simulation systems. However, 
the trust issues with such integration limit their usage as established systems cannot trust third party apps. 
This paper highlights some of the challenges with building a cloud-based simulation SoS, proposes an 
architecture framework using the concept of structural autonomy and leverages Modeling & Simulation as 
a fundamental key enabler for autonomy research.  

1 INTRODUCTION 

Autonomy is the ability of a system to achieve goals while operating independently of external control 
(NASA 2015, David & Nielsen 2016); it is not Artificial Intelligence (AI), or automation, or adaptive 
behavior. A combination of various such capabilities to achieve the desired objective makes the autonomous 
system self-sufficient and self-directed. Designing a test-bed for testing autonomy is a challenging task, as 
is creating a virtual environment that realistically stimulates the system. Future complex system engineering 
will have to incorporate System of System (SoS) engineering methodologies that acknowledge that the 
constituent systems may have independent managerial, operational and evolutionary trajectories, are 
geographically displaced and produce emergent behaviors (Maier 2015). Modeling and Simulation is a core 
capability and a key enabler to explore SoS structure and behaviors (Mittal et al. 2008, Maier 2015, David 
and Nielsen 2016, and Mittal et al. 2017).  
 The Department of Defense (DoD) requires resources to implement and maintain such a networking 
infrastructure architecture for autonomous/AI systems development and innovation. From a Systems theory 
perspective, we consider autonomy at two fundamental levels: behavioral autonomy and structural 
autonomy. Behavioral autonomy can be understood through an autonomy spectrum with autonomy-at-rest 
on the far left and autonomy-in-motion on the far right (Grabowski 2015). Autonomy-at-rest implies AI-
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based solutions executing portions of the observe-orient-decide-act (OODA) loop in the form of decision 
aides and cognitive assistants. The issue becomes more complicated when autonomy is defined with respect 
to a particular domain; for example, when developing an Army autonomous system, is the “autonomy” the 
same as in Navy autonomous systems? What happens when one tries to develop a multi-domain SoS with 
systems from multiple domains (e.g., ground, maritime, space, cyber and air)? Autonomy-in-motion further 
incorporates the mobility aspect on top of autonomy-at-rest capabilities. In addition to the kinematic 
mobility, the mobility may be relative to the environment; e.g.,  a cyber-virus “moves” through a network 
and has the ability to change the environment. Behavioral autonomy provides the ability to act in a tactical 
manner when an agent situates itself in the environment, either at rest or at motion, and develops 
relationships with other participating agents or systems. In a composed SoS, structural autonomy is the 
ability of the underlying infrastructure to autonomously incorporate autonomous software/system 
components in the SoS and to therefore provide behavioral autonomy for the larger SoS. This paper 
proposes an architecture framework and an execution test-bed to exploit the structural autonomy aspect of 
a SoS. The constituent systems may be autonomous systems preserving their autonomy and control, and 
need to be brought together in a collaborative development environment.  
 A foundational capability for future autonomous system development (Wierzabanowski 2020) is an 
open environment infrastructure for the integration, interoperability and composability of autonomous 
software/systems tools using an open systems architecture providing Live, Virtual and Constructive (LVC) 
execution. This environment will enable evolutionary and incremental improvements in the state of 
practice. It is necessary for autonomous systems to have a scalable and flexible foundation for integrating 
autonomous tools and capabilities within a multi-domain environment (i.e. an environment wherein systems 
from Army, Navy, Air Force etc. can be composed to deliver an extended SoS).  

We present the Simulation, Experimentation, Analytics and Testing (SEATTM) Framework which 
we have created to provide a development and execution environment supporting the composability of 
interoperable simulation and analytical applications with the goal of performing useful simulation and 
analytical tasks for engineering autonomous systems.  The simulation and analytical applications are 
anticipated to come from DoD and industry contributors bringing their skillsets to the SEAT environment 
in a container-based application form (i.e. Docker Container Platform) for flexibility of deployment and 
reduction of portability and dependency challenges. The SEAT environment has the following objectives:  

• Provide a containerized distributed simulation platform to perform large scale on-demand 
experimentation for LVC scenarios. 

• Realize syntactical, semantic and pragmatic interoperability in Joint All Domain Command and 
Control scenarios 

• Build a plug’n’play architecture for external docker images (from vendors and collaborators) to 
be integrated on an as-needed basis and offer model and software interoperability through Docker 
containers, making simulation interoperability completely transparent by the use of distributed 
simulation standards like DIS/HLA. 

• To encapsulate an abstract time simulation environment that can run both faster than real-time 
and in real-time. 

 
We are not solving the model composability challenge at-large, but providing an infrastructure that does 
engineer simulation composability using existing distributed simulation standards and processes. Model 
composability is partially addressed through adoption of an agreed upon data model while simulation 
composability is addressed using simulation standards and protocols. We aim to address the challenges of: 
abstract-time execution, accessibility, automation for development, test and execution pipelines, 
heterogeneous tools, trust levels, architecture specification levels, multi-role and multi-user access and 
various processes for easy onboarding of participants to the shared collaborative SEAT environment. 

2306



Mittal, Kasdaglis, Harrell, Wittman, Gibson, and Rocca 

 

2 HIGH LEVEL REQUIREMENTS AND VISION 

The SEAT framework is guided by a three-pronged vision: the ability to bring together models and 
simulation systems at varying levels of specifications and structural autonomy, offer a simulation 
environment for external software/systems to play within the simulation, and be usable by various partners. 
Let us elaborate on each of the prongs. 

2.1 Multi-Level Architectures and Abstraction Levels 

In any complex systems modeling and simulation effort, models are built in an iterative and incremental 
manner. During this iterative cycle, knowledge, information and data is added to the model. Knowledge, 
information and data is analogous to the pragmatic, semantic and syntactic forms of linguistic 
interoperability (Gurr 1998, Mittal et al. 2008). If the model is not separated from the underlying simulator, 
this iteration is bounded by the simulation system that executes the model. However, once we separate the 
model from the simulator, we can explore the model’s abstraction, resolution and fidelity levels required 
for the case-at-hand. Alternatively, selection of a simulation system that is not amenable for integration and 
interoperability with other simulators at a different resolution and fidelity can become a limiting factor in 
exploring a model’s abstraction level. Ideally, we would like to achieve the progression (Figure 1) wherein 
we develop a reference model architecture with appropriate domain constraints to identify a broad set of 
options, parameters and concepts of operation (CONOPS) that need to be optimized and evaluated. At this 
first level, various domain-agnostic modeling and simulation methods and tools can be employed, such as 
formalism-based DEVS (Zeigler et al. 2000) tools or agent-based Netlogo (Wilensky and Rand 2015), to 
ensure the correct system behavior is observed. At the next level of Enterprise Architecture specification, 
we use the formal model from step 1 and add further requirements and constraints to architect an SoS with 
an objective of performance evaluation and domain simulator (e.g., OneSAF, JSAF, etc.) integration. At 
this level we bring different types of domain simulators to verify various domain-constraints, requirements 
specifications and their impact on the SoS performance. At the third and final level, we develop an SoS 
Solution Architecture that eventually is fielded. The SEAT framework must allow simulation at these 
architecture specification levels.  

Figure 1. Architecture evaluation progression for multi-level abstractions. 

2.2 M&S as a Core Capability  

In a multi-player environment, each contributing system may provide different levels of autonomy. None 
of the applications or a single system in SoS can solve the whole problem. This is the fundamental aspect 
of any SoS. To preserve autonomy and be able to test (before deployment) with the larger SoS, a constituent 
system must be given a virtual SoS test-bed wherein integration tests could be performed (Step 2 in Figure 
1). This warrants development of a simulation environment that provides the ground truth in a modeled 
scenario and interfaces with real-world data as well as with various domain specific and domain agnostic 
simulation systems for testing at various levels. Many SoS take the form of Complex Adaptive Systems 
(CAS) (Mittal and Martin 2017a) when the constituent systems are black-boxes and implement autonomous 
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functions across the entire spectrum (autonomy-at-rest to autonomy-in-motion). Figure 2 shows how a 
simulation ground truth is a key enabler for any system to test with if it wants to be a part of the larger SoS. 
The larger SoS (e.g., LVC) incorporates both the real-world data as well as the modeled data that is used to 
develop a hyperheuristic (as a black-box system) to experiment with both the developed model and the 
simulation model. The simulated scenario offers the ground truth for experimenting with the model both 
before and after the application of heuristic to evaluate the significant impact of the heuristic on the SoS. 
The SEAT framework must be able to offer ground truth for various apps and autonomous  
software/simulation systems to test out their capabilities in a black-box manner.  

 
Figure 2: M&S as a core capability offering ground truth (adapted from Mittal and Martin 2017a). 

2.3 Ease of Use 

Any complex system will have many stakeholders. Likewise, in SEAT, there must be a provision for 
customized User Interfaces (UI) for different types of stakeholders. The three primary use case journey 
maps we need to consider are:  

1. Researcher/warfighter: a domain-expert that may provide the model or the scenario and is 
interested in all aspects of the modeled SoS. He is also an evaluator and an end-user who wants to 
evaluate and test out a particular capability. 

2. Developer: a software/systems engineer that builds the SEAT infrastructure and manages the 
release/build process through the Continuous Integration/Continuous Delivery (CI/CD) 
Development and Operations (DevOps) methodologies. This role is quite broad and may also 
involve simulation engineers and IT system engineer that install, test, evaluate and deploy 
simulation systems. 

3. Industry: An external participant that contributes to the SEAT framework in either passive or 
active manner.  

The SEAT framework must allow customized workflows for these three journey-maps, at a minimum, 
through a browser-based UI, as the infrastructure will be cloud-deployed.  Figure 3 shows a user-oriented 
view of the SEAT framework. The SEAT implementation architecture shown in cloud deployed form is 
elaborated ahead in Section 6. 

3 ARCHITECTURE FRAMEWORK 

The SEAT execution environment is a container-based architecture wherein each container maintains its 
own autonomous execution environment, each supporting the structural autonomy concept. The container 
technology which has recently become the primary vehicle for leveraging cloud resources, offers many 
inherent advantages. For example, the associated DevOps processes, CI/CD pipelines, configuration 
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management, repository management, user management and remote access are some of the inherent 
capabilities. Additionally, the technical dependency management for each of the containers saves time when 
a software SoS is being architected. Each of the container applications comes bundled with its own set of 
dependencies and is shielded from other container apps.  

Figure 3: User oriented view of the SEAT Framework. 
 

 The SEAT architecture considers the container boundary vital and a critical requirement for 
software/systems that want to play within the SEAT. To “_grab a seat in SEAT_”, one must have a container 
and an associated data model specification. As we address the software/systems integration and 
interoperability challenge, and have adopted the container technology, there are two modes of integration: 
data dependent only (passive/simulation-independent) and data contributor (active/simulation 
dependent). In data dependent only mode, the container app may only listen to the simulation ground truth. 
As a black-box, it can subscribe to the data channels and can use it to provide analytics or visualization 
capability. In the second data contributor mode, while the integration is dependent on the simulation data 
model, the interoperability issue is much bigger as the app data model may not conceptually align with the 
simulation data model. For example, consider bringing an Army simulation system trying to work with an 
Air Force simulation system, or as another example, a vehicle simulator with a cognitive simulation system 
for driver model. The conceptual alignment must happen before such simulation systems, or non-simulation 
system with similar conceptual dependencies are integrated. It is up to the system contributors to articulate, 
negotiate, and instantiate their necessary interfaces and processing mechanism to support these 
dependencies in the context of the SEAT infrastructure. This is necessary as the SEAT framework does 
address simulation composability using docker technology and available distributed simulation technology, 
but it does not address the model composition problem.  

Figure 4 shows the layered architecture for SEAT framework. This layered M&S architecture is built 
using concepts described in Zeigler et al. (2000), Mittal et al. (2010) and Mittal and Martin (2017b). It 
categorically separates the modeling and simulation layers. It also adds the vertical User app and Security 
layers indicating the user apps can serve any of the horizontal layers and that the security aspect must be 
handled at both horizontal and vertical levels. The other layers are self-explanatory. The layers are also 
categorized into end-user and automation aspects, to emphasize the automation technologies that are 
available for simulation, cloud APIs and infrastructure levels.  

The end-user layers are focused towards the user-roles as described in section 3. Many of the layers are 
marked dockerized to emphasize the use of container technology in those layers (Berg et al. 2017). The 
Visualization Services layer may or may not be dockerized as it may reside very close to the end-user. The 
visualization aspect is local to the end user as it may require considerable graphic processing power and it 
is impractical to mandate it as a docker container. The SEAT framework is offered as a services architecture 
in line with Modeling and Simulation as-a-Service (MSaaS) paradigm (Siegfried et al. 2018). 
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Figure 4: SEAT Layered Architecture Framework. 

4 CONTINUOUS AUTHORITY TO OPERATE (CATO) PROCESS 

We now outline the information assurance (IA) objectives, threats and countermeasures to secure the SEAT 
environment from external third-party applications developed for the SEAT environment. The objective is 
to have a SEAT environment where new or modified application can be rapidly approved and incorporated 
into the simulation environment through a process that achieves a Continuous Authority-to-Operate 
(Continuous ATO or CATO). There are two primary objectives for information assurance: Rapid ATO and 
Application approval and security. Rapid ATO should develop a process by which applications can receive 
an ATO rapidly. Application approval and security should provide a mechanism to integrate applications 
with minimal delay and without jeopardizing the security objectives.  

4.1 Rapid ATO 

Achieving a rapid ATO can be broken into two major areas: the CI/CD pipeline and the application software 
approval process. For purpose of an IA analysis, the SEAT framework can be viewed as a three-tiered 
system (Figure 5) composed of: (1) An operational SEAT environment that runs the simulations, (2) An 
infrastructure development CI/CD pipeline, and (3) An application development CI/CD pipeline. 

The infrastructure and policies that require CI/CD pipeline approval are relatively static so we can 
significantly reduce the timeline to acquire the ATO as compared to the application software which changes 
much more frequently.  Containerized servers instantiated by an approved CI/CD pipeline helps quickly 
develop new compliant infrastructure.    

4.2 Application Approval, Development and Security 

Application security begins with the software development life cycle (SDLC).  SDLC encompasses the 
tools process, procedures and processes, (like the Building Security In Maturity Model (BSIMM 2019) is 
a potential way to evaluate the maturity of software development practices. Applications written without 
good software development processes may contain vulnerabilities that can be exploited by an attacker. NIST 
SP800-53 Security and Privacy Controls for Federal Information Systems (NIST 2013) and SA-11 
Developer Security Testing and Evaluation (NIST 2019) require developers to create and follow plans for 
producing quality software. Third-party applications are developed by entities that may be external to the 
U.S Government or MITRE. To manage risk and develop trustworthiness, NIST provides guidance as an 
interdisciplinary risk model that incorporates the aspects of safety, reliability, resilience, cybersecurity and 
privacy (NIST 2017).  

The SEAT infrastructure offers best practices to developers and restricts deployment within SEAT to 
those applications that follow best practices There are three primary security objectives: confidentiality 
(applications should not be able to be copied or examined by other applications), integrity (applications 
should not be modifiable by other applications) and availability (applications should not be able to deny 
approved connections or consume more than allotted resources). To provide application isolation for 
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achieving structural autonomy, streamlined ATO without impacting performance, a tiered trust model and 
an associated isolation mechanism needs to be developed.  The level of trust placed in a new application 
depends on a number of factors: (1) the trustworthiness of the application development team and (2) how 
well that team adheres to good development practices.  Other factors could be developed that affect the 
trust placed in a new application that incorporate data security procedures which protect the data exchanges 
with the application. Applications that are less trustworthy are isolated from the rest of the simulation 
environment and other applications and data.  The level of trust drives the level of security isolation 
required. The lower the trust level, the more the application is isolated from the rest of the SEAT 
environment and other applications.  Increasing levels of isolation will impact simulation performance and 
the allowed mechanisms for inter-application communication but allows for multi-level tradeoff between 
security and usability. Figure 6 shows technical architecture of the SEAT environment with respect to 3 
trust levels within applications: fully trusted apps, medium untrusted apps, and untrusted apps. Fully trusted 
apps are available as white-boxes i.e. complete code and SDLC transparency. Medium trusted apps have 
limited code and SDLC transparency and may have dependencies that can never appear as white-boxes or 
validated. Untrusted apps may have a lot of dependences that haven’t been validated and have questionable 
SDLC practices.  

Figure 5: CI/CD pipelines and staging environments. 
 

Figure 6. Isolation of Applications based on Trust levels. 
 
Achieving a CATO for applications requires a shift towards working with dedicated assurors to become 

familiar with the system, the technology, the people and the risk tolerance of the Authorizing Official (AO). 
This creates a tight feedback loop between assurers and the DevOps team that allows for rapid assessment 
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and quick feedback to development teams. We are actively researching the mechanics and standards to 
make this process as efficient as possible and expect these concepts and architectural constraints to mature 
over time.    

5 CLOUD INFRASTRUCTURE THROUGH MITRE SYMPHONY PLATFORM 

MITRE developed an automated process called SymphonyTM built on the CI/CD DevOps methodology 
(Symphony 2019). It provides Infrastructure as a Service (IaaS) capability to the SEAT architecture 
framework. The objective of CI/CD as powered by Symphony were two-fold: Create a Symphony enclave 
that can host custom docker images securely, and create a custom CI/CD pipeline for docker images that 
would confirm the security and integrity of docker images using industry leading tools before they enter 
the Symphony enclave.  
 Symphony is a preexisting MITRE framework that automates the provisioning of secure enclaves in 
the cloud. Symphony accelerates the process of gaining accreditation by providing pre-built, automated 
“recipes” to stand up the environment and software, as well as bundled documentation and security controls, 
in a matter of days. Some of the major security controls that Symphony provides out of the box are: 
centralized authentication, centralized logging of all machines and applications and centralized 
vulnerability scanning and virus scanning. Symphony can create any number of user virtual desktops that 
can be accessed easily through any modern web browser. The virtual desktops are similar to what would 
be found in a secure lab. They have no internet access, and are monitored and secured using the centralized 
authentication, logging and scanning. Symphony could be used to deploy enclaves to any Amazon Web 
Service (AWS) account, not just MITRE-owned ones, making it easy to create multiple SEAT 
environments to accommodate different communities based upon security or customer requirements. In 
addition Symphony is cross-provider and can deploy enclaves into Azure or on-premises VMware labs as 
well as AWS. This avoids cloud vendor lock-in and insulates SEAT from the differences in cloud providers. 

For the SEAT framework, Symphony enables an accelerated initial ATO process and provides an 
infrastructure that can be used to implement CATO. All of these tools protect the integrity of the SEAT 
environment and allow for secure and controlled experiments to be run and monitored from the secure 
desktops. A custom Software Defined Networking (SDN) Zone was added to Symphony. This "SEAT 
Zone" functions as the network firewall separating the virtual machines that will be running the SEAT 
Experiments from the rest of the Symphony enclave.  

5.1 Custom SEAT CI/CD Pipeline and CATO Support 

A custom-built CI/CD pipeline was built to scan and test individual SEAT applications as they are being 
developed to ensure they will safely run inside of the Symphony enclave and not introduce vulnerabilities 
that could affect the implementation of CATO. The pipeline leverages the CI/CD tools provided by the 
Gitlab product family to perform the building and exporting of the custom SEAT Docker applications. 
Specifically, the Clair Docker Image Scanner was implemented and integrated into the pipeline and was 
used to perform a full known vulnerability scan of the custom images as they are being developed. Figure 
7 shows the implemented cloud architecture.  
 The MITRE Symphony platform includes the automation, security (i.e., ATO or CATO) support and 
flexibility of cloud deployment (i.e., AWS) useful to the long-term goals of the SEAT environment. The 
Symphony platform provided a development and deployment environment surpassing the originally 
conceived architecture in several practical ways. In Figure 7, the “Gitlab CI/CD Pipeline” includes Git 
utilities and an automated build, test and report processing workflow toward generation of container-based 
simulation and analysis assets (i.e., input data and Docker images). Once set up by a SEAT Application 
Developer with a unique configuration file along with necessary Docker files, the system will automatically 
propagate application changes through to an AWS “S3 bucket” to await uploading to the “Symphony 
Enclave” to enable composable, interoperable deployment for simulation experimentation. Symphony 
specified an accelerated initial ATO and provided an infrastructure that can implement CATO for the CI/CD 
Pipeline. This is largely possible because the CI/CD pipeline is relatively isolated and accessible only to 
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authorized users.  This is beneficial for security, but may not be as useful for software development. 
Subsequently, the simulation and analysis assets (i.e., data and Docker containers) will then be able to be 
composed into experiments executing in the cloud-based Symphony Enclave designed by a researcher to 
help evaluate choices for some operational context. 

Figure 7: SEAT framework cloud architecture. 

6 IMPLEMENTATION 

We will describe a sample application within the SEAT execution environment in a SEAT project-enclave, 
labeled as Symphony Enclave in Figure 7. A SEAT project-enclave is an instantiation of SEAT 
environment for a specific project. It is an on-demand deployment of containerized M&S infrastructure in 
a virtualized environment. 

6.1 Experiment Simulation Platform (ESimP)  

The Experiment Simulation Platform (ESimP) was developed to evaluate the effect of small unmanned 
ground and airborne vehicles (UxVs) in a ground tactical combat scenario (Figure 8). The UxVs would be 
evaluated in a jamming environment as well as a permissive communications environment, and that the 
UxVs would utilize different levels of autonomy. A goal of ESimP is that it be used for flexible, quick 
prototyping of these varying combat scenarios (i.e., at a reference model architecture level). The platform’s 
ability to track the actions of individual entities allows us to evaluate the precise events that led to a certain 
action (e.g., kill chains), is a key advantage over similar models. ESimP was written in NetLogo, a multi-
agent programmable modeling environment, developed at Northwestern University. Combat entities and 
unmanned vehicles are represented as heterogenous agents with their own set of rules/behaviors. In this 
summary, we refer to both combat entities and unmanned vehicles as “entities,” and communication 
between entities is represented as links. Links and entities can be grouped into a variety of networks 
(command and control, situational awareness or simply communications), and in the simulation, the 
networks are used to determine communication paths, the data available within those paths, the 
vulnerability of those paths as well as other networking attributes between entities. With this explicit--albeit 
abstract representation of communications networks--we are able to use ESimP to investigate aspects of 
electronic measures and countermeasures and their impact on information flow, and ultimately on the 
represented entity and unit’s operational mission effectiveness.  ESimP currently provides a platform for 
prototyping various combat scenarios that exercise, track, and show impact of both kinetic and non-kinetic 
aspects of mission operations. ESimP has also been used as a test-harness within the development of a 
spectrum dependency map (SDM) decision support tool prototype, allowing the initialization of simulated 
radio band assignments, and their operational status from SDM decision support tool data. 
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6.2 Bringing ESimP into the SEAT Environment 

Much of the integration activity involved understanding the requirements, dependencies, expected 
simulation output and analytic applications and containerizing the simulation systems architecture through 
CI/CD pipelines for seamless deployment. For example, the NetLogo simulation framework application 
with multiple parallel execution experimental runs points to a container-based “headless” deployment 
(without the User Interface) of NetLogo ESimP within the SEAT environment. For the passive mode 
integration in SEAT, a database approach (i.e. mongo DB or MySQL) allows applications to access and 
operate on simulation execution results for additional analytic or simulation tasks. For the active data 
contributor model, the SEAT environment makes use of an HLA Federate Object Model (FOM) based on 
the Real-time Platform Representation (RPR) data model as a robust and tested manner of providing the 
ontology and syntax for real-time interaction between the modeled entities.  The Cloud inset in Figure 3 
shows the technical simulation architecture for both passive and active modes.  

 
Figure 8: Snapshot showing the ESimP modeled application. 

 
The newly provisioned SEAT-Symphony platform has been exercised successfully with an example 

container-based simulation application within the SEAT platform effort. Once the SEAT-Symphony unique 
configuration file is edited, and with a successful connection to the development Git repository, the CI/CD 
Pipeline is set to automatically perform a series of processing stages with each stage giving the SEAT 
developer feedback on success or failure. The Java-NetLogo/ESimP/HLA Docker image was then executed 
through the Vulnerability assessment tool to incorporate the CATO process. The identified vulnerabilities 
were marked and the image was validated. It was then uploaded from the S3 bucket to the Symphony 
enclave by the Symphony enclave manager for experiment execution.  The ESimP simulation ran 
successfully to completion and output expected results. The complete pipeline was executed: from initial 
docker image building, to running securely on the Symphony enclave with the ESimP headless custom 
docker image. For this initial cycle, the entire ESimP application was a single federate. This is important 
as it demonstrates that the SEAT environment can build any custom images, execute the established CATO 
process for both infrastructure and application CI/CD pipelines and make it available for further integration 
with other external docker images.  
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ESimP/HLA bridge was developed to interface the Netlogo simulator with HLA infrastructure. 
Containerizing HLA infrastructure has been reported by Berg et al. (2017). In the next iteration ESimP/HLA 
will interact with other HLA federates and will be reported in our follow-on work. 

7 CONCLUSION 

Autonomy research and development requires a testbed that can perform SoS engineering at different 
abstraction, resolution and fidelity levels. Behavioral autonomy is being studied in disciplines like 
Cognitive Science and Artificial Intelligence. Structural autonomy at the infrastructure level must be 
supported by a test-bed that mimics autonomous behaviors at multiple levels of system specifications. M&S 
is a key enabler that provides the techniques, technologies and procedures to develop a virtual testbed in 
which various autonomous software/systems can be tested, evaluated, verified and validated. The entire 
software and systems engineering community is making strides to migrate to cloud-based systems and M&S 
is no exception. The proposed SEAT framework aims to provide the virtual testbed wherein one can 
perform simulation, experimentation, analytics and testing for different architecture model specifications. 
The framework exploits the ground truth M&S capability and offers role-based access to different 
stakeholders, and test interoperability and composability of the new autonomous systems integrating with 
the larger SoS.  
 This paper described the SEAT layered architecture framework that employs docker technology, 
provides description of the Cloud infrastructure through MITRE’s Symphony platform, conceptualizes 
various trust levels wherein external third party apps can be CATO’d in the SEAT environment and become 
a part of the composed SoS. The concepts and architecture were substantiated by bringing an existing 
simulation application, ESimP, into the SEAT execution environment and the integration process we 
underwent to perform the onboarding. 
 While we demonstrated how one simulation in single domain application can be onboarded and provide 
the ground truth for another docker app, we still need to describe a multi-domain and multi-abstraction case 
study wherein we bring high fidelity simulators to do SoS M&S-based performance engineering between 
two different domains, e.g. Army and Air Force. Performance evaluation needs to be done to investigate 
the applicability in LVC systems. Finally, trust, composability and interoperability have to be addressed in 
more detail to achieve the vision.  
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