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ABSTRACT

In this paper we approximate the last, close-to-first, and what we call quantile failure times of a system, when
the system-components’ failure times are modeled according to a Levy-frailty Marshall-Olkin (LFMO)
distribution. The LFMO distribution is a fairly recent model that can be used to model components failing
simultaneously in groups. One of its prominent features is that the failure times of the components are
conditionally iid; indeed, the failure times are iid exponential when conditioned on the path of a given Lévy
subordinator process. We are motivated by further studying the order statistics of the LFMO distribution,
as recently Barrera and Lagos (2020) showed an atypical behavior for the upper-order statistics. We are
also motivated by approximating the system when it has an astronomically large number of components.
We perform computational experiments that show significative variations in the convergence speeds of our
approximations.

1 INTRODUCTION

In this paper we propose and test computationally several asymptotic approximations for random failure
times having a Lévy-frailty Marshall-Olkin (LFMO) distribution. The LFMO model is a multivariate
distribution that is a particular subfamily of the Marshall-Olkin (MO) distribution, see, e.g., Mai and
Scherer (2009), Mai and Scherer (2011). In turn, the MO distribution is a a cornerstone in reliability as a
tool to model simultaneous failures in systems; see, e.g., Kvam and Peña (2005) for applications in software
reliability and civil engineering, and Frostig and Pellerey (2015) for applications in population dynamics
and insurance theory. The main attractive of the LFMO distribution is perhaps that the components of
the vector are conditionally iid, a highly desirable property in statistical modeling and machine learning,
see, e.g., Efron and Hastie (2016) and (Reiss and Thomas 2007, ch. 8). In simple terms, this property
poses that conditional on the value of a certain latent random variable, the components of the random
vector are distributed iid; in particular, in the LFMO case, the components are iid exponentials when
conditioned on the path of a given Lévy subordinator stochastic process, as we will see in Section 2.
An interesting interpretation is that it models the heterogeneous degradation of (random) homogeneous
components, e.g., the components in an aircraft subject to the mechanical degradation due to vibrations,
or a chain subject to the corrosion of a liquid medium where it is submerged. Additionally, as a particular
case of the MO distribution, the LFMO model inherits the following hallmark properties: it generalizes to
multiple dimensions the memoryless property of exponential random variables; it models the simultaneous
occurrence of events; and these simultaneous occurrences can be modeled as triggered by the arrivals
or happenings of independent “shocks” that hit multiple components at the same time. Overall, these
properties of the MO distribution are particularly convenient in the field of reliability, since it allows (at
least in principle, see Matus et al. (2018)) straightforward modeling and simulation of, e.g., earthquakes
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taking down simultaneously several transmission lines and buses of a power grid. See also L’Ecuyer and
Tuffin (2011) and Botev et al. (2013) for works on rare-event simulation in the MO setting.

Specifically, in this paper we propose asymptotic approximations for the close-to-first, last, and what
we call quantile failure times modeled by the LFMO distribution. In detail, we consider the setting where
there is a finite collection of components that fail at random times —sometimes several components failing
at the same time instant—, once a component fails it stays in that state onwards, and assume that the failure
times of the components are jointly distributed as an LFMO random variable. In this setting, we propose
approximations for the following: the time when the close-to-first failure occurs; the time when the last
failure occurs; and the time when a proportion of the total of components have failed, for each possible
proportion value; we call the latter quantile failure times. These random variables are both interesting
from a theoretical perspective, as order statistics or a classical interest in statistics, see, e.g., Reiss (2012),
and also from a practical perspective, as reliability engineers are usually interested in failure times such
as “the time when the last working component fails”, “the time when the first failure occurs”, “the time
when 80% of the components have failed”, and so on.

Our interest in approximating the aforementioned failure times given by the LFMO distribution is
essentially motivated by the finding in Barrera and Lagos (2020) of several atypical asymptotic regimes
for the last failure times as the number of components grows. In this sense, deriving further asymptotic
approximations for the LFMO distribution can lead to new structural insights on the model and can allow
to fine-tune the distribution to model very large systems. We are also motivated by the case where there
is an astronomically large number of components in the system, e.g., as considered in the computational
experiments of Barrera and Lagos (2020). There, for the larger number of components considered, each
simulation run of the distribution was burdensome in computational time despite the Lévy subordinator
being very easy to simulate; see Mai and Scherer (2017) for further information on simulating LFMO
random variables.

Main contributions
The main contributions of this paper are the following.

1. We propose approximations for the following failure times distributed according to an LFMO model:
the close-to-first, last, and quantile failure times. Our approximations are based on asymptotic results
when the number of components of the system grows to infinity. To the best of the authors’ knowledge,
up to now only Barrera and Lagos (2020) has explored this path, and they showed approximations
for the last and close-to-last failure times; in contrast, in this paper we show further approximations
for the last failure time, and moreover show approximations for the close-to-first, and for quantile
failure times.

2. Our approximations help to significatively reduce the computation time needed to simulate the
aforementioned failure times given by the LFMO distribution. Indeed, for each proposed approxi-
mation method, we replace the need to simulate n exponential random variables and then sorting
them —where n is the number of components of the system— with the need to simulate only one
random variable. Thus, our approximations allow to save roughly O(n logn) operations. This can
lead to considerable improvements in efficiency in the case where n is very large.

3. We show computational experiments testing the accuracy of our proposed approximations, and
present evidence pointing to them being fairly precise already for a small to very small number of
components of the system. This is a positive and unexpected result since the approximations were
derived for systems with a large number of components.

4. From a theoretical point of view, our approximations also contribute to the structural understanding
of the order statistics of a sequence of (conditionally-iid) random variables distributed according
to an LFMO model.
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Figure 1: Simulation of a random vector (T1,T2,T3) in R3 with an LFMO distribution: for each
component i, Ti is the first time t the Lévy subordinator process S up-crosses the “trigger” εi, with ε1, . . . ,εn

iid standard exponential random variables. In this simulation T1 and T3 are equal because an upward jump
of the Lévy subordinator S up-crossed (or “killed”) both triggers ε1 and ε3.

Organization of this paper This paper is organized as follows. In Section 2 we define the LFMO
distribution and show our proposed approximations for the last, close-to-first, and quantile failure times.
Finally, in Section 3 we show computational experiments testing the accuracy of our experiments.

2 ASYMPTOTIC APPROXIMATIONS OF THE LFMO DISTRIBUTION

In this section we show our proposed approximations. For that, first we give a brief description of the
LFMO distribution in Definition 1, then in Section 2.1 we show our proposed approximations, and finally
in Section 2.2 we give short proofs of our approximations.
Definition 1 A random vector T in Rn is said to have a Lévy-frailty Marshall-Olkin (LFMO) distribution
if its components (T1, . . . ,Tn) can be jointly defined as

Ti := min{t ≥ 0 : St ≥ εi} , i = 1, . . . ,n, (1)

where S = (St : t ≥ 0) is a Lévy subordinator stochastic process with S0 = 0, and ε1, . . . ,εn is a collection
of n iid standard exponential random variables independent of S.

In system reliability, an LFMO distribution can be used to model the times at which the components of
a system fail when several of the components can fail at the same time. Indeed, an intuitive interpretation
of an LFMO distributed random vector (T1, . . . ,Tn) in a system with n components is, first, taking each
Ti as the time at which component i fails, second, thinking that each component i has associated an
exponential “trigger” εi, and third, noting that according to definition (1) component i fails the first time
the Lévy subordinator S up-crosses (or “kills”) its trigger εi. Recall now that a Lévy subordinator is a
Lévy stochastic process with non-decreasing paths; in simple terms, it can be heuristically understood as a
random trajectory of St : t ≥ 0 that is non-decreasing in time t and that has upward jumps at random times
— in total a countable number of such jumps. Importantly then, it is because of these upward jumps that
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several components can fail simultaneously; in other words, a jump of the subordinator S can take down
multiple components by up-crossing several triggers at the same time. In Figure 1 we show an example
of a system with n = 3 components where components 1 and 3 fail simultaneously because of an upward
jump of the subordinator S.

Several interesting properties of the LFMO are in order. First, note that the components’ lifetimes are
conditionally iid, an important property e.g. in statistics, since the lifetimes Ti are iid when conditioned on the
path of the Lévy subordinator S. In particular, the marginal distribution of each failure time Ti is exponential
with rate ψ(1), where ψ(x) := − logEexp(−xS1) is the Laplace exponent of the Lévy subordinator S.
Second, note that the LFMO distribution actually subsumes the model of iid exponentially distributed times:
if the subordinator is deterministic with St := λ t for some fixed λ > 0 then T1, . . . ,Tn are iid exponential
random variables with rate λ . Third, the LFMO distribution is a particular case of the Marshall-Olkin
distribution, a cornerstone in reliability modeling. In particular, it satisfies a multidimensional version of
the memoryless property of exponential random variables, a key property for modeling and analysis. Lastly,
an interesting interpretation of the construction (1) of the LFMO distribution is that the triggers ε1, . . . ,εn
represent the homogeneous but random nature of the components, and the Lévy subordinator S represents
a common “force” that degrades the components in an heterogeneous way. Think, e.g., about the failure of
mechanical components in an airplane that may in principle be modeled as homogeneous (iid), but because
of the vibrations and other stressors of the airplane’s operation they degrade in a heterogenous fashion; here
the Lévy subordinator represents the “overall stress” that degrades heterogeneously the, at first, homogenous
components. See (Mai and Scherer 2017, ch. 3) and Barrera and Lagos (2020) for further properties of
the LFMO distribution.

2.1 Proposed approximations

We now consider the last, close-to-first, and what we call quantile failure times: the time when a given
fraction q in (0,1) of the total components have failed. For that, we use the notation T1:n, T2:n, . . . , Tn:n for
the time when, respectively, the first, second, . . . , last failure occurs. That is, T1:n, . . . ,Tn:n is the sorting of
the times T1, . . . ,Tn in increasing order: {T1:n,T2:n, . . . ,Tn:n}= {T1,T2, . . . ,Tn} and T1:n ≤ T2:n ≤ . . .≤ Tn:n.
Analogously, ε1:n, . . . ,εn:n denotes the sorting, in increasing order, of the “triggers” ε1, . . . ,εn of the
components of the system. Note that because of the definition (1) of the failure times it holds that

Tk:n = min{t ≥ 0 : St ≥ εk:n} , k = 1, . . . ,n. (2)

With this, our proposed approximations are the following.

Last failure times: Consider the last failure time Tn:n. We propose approximating it by T̃n:n defined as

T̃n:n := min{t ≥ 0 : St ≥ Gn} , (3)

where Gn is distributed as a Gumbel(logn,1) random variable. That is, we approximate Tn:n by
replacing the random variable εn:n in the definition (2) of Tn:n by Gn. The approximation is based
on the following lemma; see Section 2.2 below for its proof.
Lemma 1 For Tn:n and T̃n:n defined according to (2) and (3), respectively, it holds that

sup
t>0

∣∣∣P(Tn:n > t)−P(T̃n:n > t)
∣∣∣→ 0 as n→+∞. (4)

Close-to-first failure times: Consider the close-to-first failure times Tk:n for k = kn such that kn/n→ 0
as n→+∞. We propose to approximate Tk:n by T̃k:n defined as

T̃k:n = T̃1:n := min{t ≥ 0 : St ≥ en} , (5)
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where en is distributed as an exponential(n) random variable. That is, we approximate Tk:n by
replacing the random variable εk:n in the definition (2) by en. The approximation is based on the
following lemma; see Section 2.2 below for its proof.
Lemma 2 For Tk:n and T̃k:n defined according to (2) and (5), respectively, it holds that∣∣∣P(Tk:n > t)−P(T̃k:n > t)

∣∣∣→ 0 as n→+∞ (6)

for all t > 0 and any fixed integer k ≥ 1.
Quantile failure times: Let q in (0,1) and consider the dqne-th failure time out of the total of n, i.e.,

Tdqne:n. We call this the q-quantile failure time. We propose approximating it by T̃dqne:n defined as

T̃dqne:n := min
{

t ≥ 0 : St ≥ Nq,n
}
, (7)

where Nq,n is distributed as a Normal (− log(1−q), ( q
1−q )/n) random variable. That is, we approximate

Tdqne:n by replacing the random variable εdqne:n in the definition (2) by Nq,n. The approximation is
based on the following lemma; see Section 2.2 below for its proof.
Lemma 3 Let q in (0,1). For Tdqne:n and T̃dqne:n defined according to (2) and (7), respectively, it
holds that

sup
t>0

∣∣∣P(Tdqne:n > t)−P(T̃dqne:n > t)
∣∣∣→ 0 as n→+∞. (8)

2.2 Asymptotic analysis: proofs of Lemmas 1, 2 and 3

We now prove Lemmas 1, 2 and 3, which are the basis of the approximations we propose. These results are
essentially based on the limits (9), (10) and (11) below, respectively, which are asymptotic approximations
for the order-statistics of a collection of iid exponential random variables.

Proof of Lemma 1. For the case of last failure times, to check the limit (4), i.e.,

sup
t>0

∣∣∣P(Tn:n > t)−P(T̃n:n > t)
∣∣∣→ 0 as n→+∞,

first note that P(εn:n− logn > s)→ P(G1 > s) as n→+∞ for all s, where G1 is a Gumbel(0,1) distributed
random variable. In fact, since G1 has a continuous distribution then it holds that

sup
x
|P(εn:n− logn > x)−P(G1 > x)| → 0 as n→+∞; (9)

see (Chung and Zhong 2001, S. 4.3, Example 4). Hence, since {Tk:n > t}= {εk:n > St} and {T̃k:n > t}=
{Gn > St}, we get that for Gn a Gumbel(logn,1) distributed random variable and all t > 0 it holds that∣∣∣P(Tn:n > t)−P(T̃n:n > t)

∣∣∣= |P(εn:n > St)−P(Gn > St)|

= |P(εn:n− logn > St − logn)−P(G1 > St − logn)| ≤ sup
x
|P(εn:n− logn > x)−P(G1 > x)| ,

the latter bound holding uniformly on t > 0, from which the limit (4) follows.

Proof of Lemma 2. For the close-to-first failure times, the approximation (6) is essentially based on the
limit

|P(εk:n > s)−P(ε1:n > s)| → 0 as n→+∞ (10)
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for all s > 0 and every fixed k ≥ 1. Indeed, for such s and k we have

|P(εk:n > s)−P(ε1:n > s)| ≤ |P(εk:n > s)−P(Ek,1/n > s)|+ |P(Ek,1/n > s)−P(ε1:n > s)|
≤ sup

x>0
|P(εk:n > x)−P(Ek,1/n > x)|+ |P(Ek,1/n > s)−P(ε1/n > s)|

= sup
x>0
|P(nεk:n > x)−P(Ek,1 > x)|+ |P(Ek,1 > ns)−P(ε1 > ns)| ,

where Ek,γ is as an Erlang(k,γ) distributed random variable and where we used basic properties of the Erlang
distribution. It follows that supx>0 |P(nεk:n > x)−P(Ek,1 > x)| → 0 as n→+∞ from (Reiss 2012, p. 162)
and the fact the cumulative distribution function of Ek,1 has no jumps; and also P(Ek,1 > ns)−P(ε1 >

ns) = ∑
k−1
i=0 e−ns(ns)i/i!− e−ns = ∑

k−1
i=1 e−ns(ns)i/i!→ 0 as n→+∞. Lastly, since {Tk:n > t}= {εk:n > St}

and {T̃1:n > t}= {ε1:n > St} then∣∣∣P(Tk:n > t)−P(T̃1:n > t)
∣∣∣= |P(εk:n > St)−P(ε1:n > St)| ,

from which (6) follows.

Proof of Lemma 3. For the quantile failure times, the limit (8) is based on (Reiss 2012, Theorem 4.1.3),
that establishes

sup
x

∣∣P(εdqne:n > x
)
−P(Nq,n > x)

∣∣→ 0 as n→+∞, (11)

for Nq,n having a Normal (− log(1−q), ( q
1−q )/n) distribution. Indeed, since {Tdqne:n > t} = {εdqne:n > St}

and {T̃dqne:n > t}= {Nq,n > St} then

sup
t>0

∣∣∣P(Tdqne:n > t)−P(T̃dqne:n > t)
∣∣∣= sup

t>0

∣∣P(εdqne:n > St
)
−P(Nq,n > St)

∣∣
≤ sup

x

∣∣P(εdqne:n > x
)
−P(Nq,n > x)

∣∣
from which (8) follows.

3 COMPUTATIONAL EXPERIMENTS

In this section we show the computational experiments we perform to test our proposed approximations.
Setup. To evaluate the accuracy of our approximations we use a large number of Kolmogorov-

Smirnov tests to check if the distribution of our proposed approximation is “close” to the distribution to
be approximated.

Indeed, first, for each approximation method of failure time, and for several possible values of the
number of components n, we sample 103 values of the actual LFMO failure times, and also 103 simulations
of our proposed approximations. For example, in the case of the last failure times, we sample 103 times
the random variables Tn:n and T̃n:n. It follows that a two-sample Kolmogorov-Smirnov test should reflect on
both samples coming from the same distribution: if the p-value is high then we cannot reject the hypothesis
that the distributions of the two samples are the same. Now, the result obtained in one run of the test is
inherently random, so to hedge against this noise we repeat the process 1,000 times and report the average
p-value. This experiment is used, e.g., in Lachaud and Ycart (2006) to test convergence of Markov chains.

For the Lévy subordinator process S = (St : t ≥ 0) underlying the LFMO distribution we choose to use
a compound Poisson process (CPP), possibly with drift, i.e., a process of the type

µt +
Nt

∑
k=1

Jk, for t ≥ 0, (12)
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where µ ≥ 0 is the drift term, N = (Nt : t ≥ 0) is a Poisson process, say with rate λ > 0, and J1,J2, . . . is
a sequence of iid strictly positive random variables —the jumps— that are independent of N. We base
our choice on the fact that, in a way, any Lévy subordinator can be approximated arbitrarily close by a
compound Poisson process, see, e.g., (Feller 1971, Ch. XVII S. 2). More generally, though, any Lévy
subordinator can be decomposed into the independent sum of a compound Poisson process with jumps
larger than any fixed positive value, say 1, and a Lévy subordinator with Lévy measure having jumps less
than 1; see, e.g., (Asmussen and Glynn 2007, Ch. XII) and (Mai and Scherer 2017, Appendix A.2).

More specifically, for the compound Poisson process we use as Lévy subordinator S, we test two type of
distributions for the jumps Jk in (12): a Pareto(α = 1.5) distribution (i.e., with mean 3 and infinite variance),
representing heavy-tailed jumps, and a uniform(0,1) distribution (i.e., with mean 1/2 and variance 1/12),
representing light-tailed jumps. We also examine the cases with drift µ = 1, and the drift-less case µ = 0.

Lastly, we remark that we run these computational experiments on Python v3.7.3 and perform the
two-sample Kolmogorov-Smirnov tests using the command scipy.stats.ks_2samp of the package
scipy v1.2.3.
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Figure 2: Average p-value over 1,000 K-S tests comparing our proposed approximation (3) for the last
failure times, i.e., approximating εn:n by a Gumbel(log(n),1) random variable in the definition (2) of Tn:n.

Results. In Figure 2 we show the results for approximating the last failure times Tn:n with T̃n:n
of (3): we show how the average p-value varies when n grows exponentially fast, and we do this for several
choices of compound Poisson process. Recall that p-values close to 1 suggest that the samples compared
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come from the same distribution. The plots show that the p-value grows with n, however it does so slowly.
Nonetheless, in most cases the p-value is far from 1, and including a drift term makes the convergence
slower. Note though that the convergence is guaranteed by Lemma 1, so overall these experiments suggest
a very slow rate of convergence.

In Figure 3 we show the results for approximating the close-to-first failure times Tk:n with T̃k:n of (5)
when k = kn = blognc; specifically, we show how the average p-value varies when n grows, and we do this
for several choices of compound Poisson process. The plots show two behaviors: convergence is fast when
there is no drift (µ = 0), and moreover in the case of Pareto jumps the two distributions are indistinguishable
already for n = 10; however there is no glimpse of convergence —even when n grows exponentially fast—
when there is a drift term. Importantly, though, note that Lemma 2 guarantees convergence for k fixed,
but for the results in Figure 3 we have taken k = kn growing with n such that kn/n→ 0.
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Figure 3: Average p-value over 1,000 K-S tests comparing our proposed approximation (5) for the close-
to-first failure times, i.e., approximating εk:n by an exponential(n) random variable in the definition (2) of
Tk:n, for k = kn = blognc. Importantly, note that Lemma 2 guarantees convergence for k fixed, but here we
have taken k = kn growing with n such that kn/n→ 0. Note also the change in scale of the horizontal axes.

Lastly, in Figure 4 we show the results for approximating the quantile failure times Tdqne:n with T̃dqne:n
of (7), for several values of q. Indeed, we show how the average p-value varies when n grows and for
several values of q in (0,1), and we do this for four types of compound Poisson process. We see again
two type of behaviors depending on the drift term µ: there is fast convergence when there is no drift,
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however convergence becomes unclear —even when n grows exponentially fast— when there is a drift
term. Note also that, intriguingly, the inclusion of a drift term inverts how “easy” the convergence is with
q: when there is no drift, convergence becomes (roughly) easier as q decreases to 0; and when there is a
drift term convergence becomes easier when q increases to 1. In any case, recall that Lemma 3 guarantees
convergence of the approximation, so the experiments suggest that the speed of convergence can depend
on q and the drift term µ .
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Figure 4: Average p-value over 1,000 K-S tests comparing our proposed approximation (7) for the
quantile failure times, i.e., approximating εdqne:n by a Normal (− log(1−q), ( q

1−q )
2/(n+1)) random variable

in the definition (2) of Tdqne:n, for several values of q in (0,1). Note the change in scale of both the vertical
and horizontal axes.

4 DISCUSSION

In this work we have presented approximations for the last, close-to-first, and quantile failure times of the
components of a system whose lifetimes are modeled according to a Lévy-frailty Marshall-Olkin (LFMO)
distribution. The approximations we propose are based on asymptotic results we derive, which are in
turn essentially based on classical results on the approximation of the order-statistics of a collection of iid
exponential random variables.

Our motivations to approximate failure times modeled according to an LFMO distribution are mainly
the following. First, we aim to extend the work of Barrera and Lagos (2020), that found several atypical
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asymptotic regimes for the failure times as the number of components grows. Second, we are lead by the
need to derive (very) efficient methods to simulate failure times when the system has an astronomically
large number of components. For example, in Barrera and Lagos (2020), Monte Carlo estimation was
performed for systems with a number n of components of 1010, 1040, 1090 and even 10160. In these types
of settings, crude Monte Carlo simulation of the LFMO distribution can be impractical, so more efficient
methods are needed. In that sense, the approximations we propose in this paper replace the need to simulate
and sort n iid exponential random variables, requiring roughly O(n logn) operations, by simulating only
one random variable. This improvement can make a significant difference when simulating systems with a
very large number of components n. Lastly, our work is ultimately motivated by the need to approximate
the failure times of the whole system by using the Samaniego Signature result, see, e.g., Samaniego (2007).
This is a promising avenue of research that can allow us to tackle more general definitions for the failure
time of the system, as long as the system satisfies certain monotonicity conditions; see the aforementioned
reference.

We also present computational experiments testing the accuracy of our approximations. Our experiments
are largely based on the two-sample Kolmogorov-Smirnov test. The results, however, are inherently random,
so to hedge against this noise our tests take the average p-value of 1,000 of these tests. The results of
our experiments suggest that the convergence of our approximations are affected by the inclusion of a
drift term in the Lévy subordinator, with the convergence being slower when there is drift. Moreover, the
experiments suggest that in the close-to-first approximations, there may not be convergence when k grows
with n and there is a drift term.

Overall, our results suggest that the speed of convergence of our approximations can vary considerably
with the parameters of the subordinators and the parameters of the failure times to be approximated —
say, k in the close-to-first failure times, and q in the quantile failure times. Hence, an important future step
is to analyze the rate of convergence of the limits in Lemmas 1, 2 and 3.
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