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ABSTRACT 

Construction robot path planning is critical for safe and effective human-robot collaboration in future 
intelligent workplaces. While many studies developed methods to generate paths for construction robots, 

very few, if any, have integrated the worker trajectory prediction on the jobsite. The objective of this 
research is to find a safe and efficient robot path, meanwhile, taking into account the predicted movement 
of construction workers. To this end, we propose a context-aware Long Short-Term Memory (LSTM)-
based method to predict worker’s trajectory. Based on the predicted trajectory, the A* and Dynamic 
Window Approach (DWA) are used to find an optimal path for the robot. The efficiency and effectiveness 
of the proposed method are manifested by simulated and field experiments. The proposed method will 

contribute to the body of knowledge for prediction-based construction robots path planning and provide the 
potential to be integrated into existing robot platforms to enhance their performance.  

1 INTRODUCTION 

Automation and robotics are the future of the construction industry. The global construction robot market 
is projected to increase to $186.6 billion by 2024 from $78.6 billion in 2018 (The Robot Report Staff 2019). 
Approximately 49% of construction tasks can be automated or be substituted by robots (Manzo et al. 2018). 

Robots are expected to solve the labor shortage issue and boost productivity in the construction industry. 
In the near future, humans and robots will coexist on the intelligent construction sites to conduct a variety 
of tasks, posing new challenges on robotics-related safety. Construction robots are expected to 
autonomously navigate on the dynamic and unstructured jobsite while avoiding collisions with other site 
entities, which, however, remains an unaddressed challenge. Therefore, there is a critical need to create 
effective algorithms for collision-free path planning of robots to enable efficient and safe human-robot 

collaboration at construction sites.  
In some existing studies, methods have been developed to plan paths for construction robots on 

construction sites. For example, Kim et al. (2003) proposed a SensBug algorithm to generate a path for a 
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mobile construction robot from its initial position to a target position. The SensBug algorithm can navigate 
robots in a 2D planar unknown environment with stationary and moving obstacles. However, this method 
requires a high-level positioning accuracy of robots which is not achievable at urban or crowded 

construction sites. In addition, the generated path by the SensBug algorithm is close to the obstacle, which 
is not safe and efficient. Kayhania et al. (2018) presented a methodology to automate path planning for 
heavy construction equipment. The proposed method can find the shortest path and avoid obstacles at 
construction sites. However, this method is not suitable for moving obstacles such as construction workers.  

To address these challenges, we proposed a novel robot path planning method by integrating the worker 
trajectory prediction in construction sites. The proposed method can generate paths for robots without 

collision with moving workers. Our contribution is twofold. First, this research develops a new algorithm 
to predict worker’s trajectory with context information. Second, this research develops a new workflow that 
integrates worker trajectory prediction to robot path planning to generate safe and efficient robot paths. 

2 LITERATURE REVIEW 

2.1 Related Studies on Human Trajectory Prediction 

Human trajectory prediction is an essential yet challenging task in computer vision. Traditionally, tracking 

filters, such as Kalman filter and Particle filters, are used to predict the future steps in a trajectory (Hermes 
et al. 2009; Liu et al. 1998). However, because only the continuity of movement is considered, such 
approaches may either result in physically impossible locations (e.g., behind walls, within obstacles) or 
degrade into random walks of feasible motion over large time horizons (Ziebart et al. 2009). Some 
researches (Rudenko et al. 2018; Ziebart et al. 2009) adopted planning-based approaches, where entities 
are treated as intelligent agents who actively plan their path to achieve a goal. The problem is formulated 

as a path planning or optimal control task, such as the Markov decision process (MDP). One main drawback 
is that the planning-based approach relies heavily on prior knowledge, and it still uses hand-crafted features 
to model states and reward functions that are specific to particular settings. Recently, data-driven approach 
has been increasingly used given that it does not require to explicitly model movement dynamics and the 
ability to be generalized to various scenarios. Long short-term memory (LSTM) network is the most widely 
used deep learning method for human trajectory prediction (Alahi et al. 2016; Xue et al. 2018). 

In the construction domain, Zhu et al. (2016) proposed a novel Kalman filter to predict the movements 
of workers and mobile equipment using positions obtained from multiple video cameras. Although the 
methods achieved a submeter accuracy when predicting the next-step movement in 0.03s, the accuracy 
decreases to about 1.5m when predicting the movement in 1.5s. Instead of using conventional tracking 
filters, Dong et al. (2018) and Rashid et al. (2018) modeled the worker movements as a Markov process to 
predict their trajectories based on historical records. More recently, Kim et al. (2019) and Tang et al. (2019) 

attempted to predict the construction entity trajectory through a data-driven approach given the advances 
in deep learning techniques. Most existing studies only consider individual movements while predicting a 
worker’s trajectory, which is insufficient to capture worker behavior under different scenarios. In reality, 
multiple entities co-exist on the construction site, forming various working groups to accomplish different 
activities (Cai et al. 2019). Workers’ behavior will be influenced by each other and the specific activities 
they are involved in. Jobsite contextual information such as entity interactions and ongoing activities must 

be incorporated in order to better predict entity movements, which, however, has been overlooked by 
existing studies in the construction domain.  

Some studies on pedestrian behavior analysis have recognized the significance of context information 
and considered various contextual features to predict pedestrian trajectory and intention on the road. For 
instance, Kooij et al. (2019) found that incorporating pedestrian situational awareness, situation criticality, 
and spatial layout of the environment increases the prediction accuracy. Alahi et al. (2016) proved that the 

pedestrian trajectory can be better predicted by incorporating the interaction among multiple pedestrians. 
These studies show the great promise of contextual features in improving the performance of movement 
prediction. Motivated by the above achievements, this study proposes a context-aware deep learning 
method for worker trajectory prediction on unstructured and dynamic construction sites. 
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2.2 Relative Studies on Robot Path Planning 

With the emergence of robot application in different industries, such as construction (Bogue 2018) and 
manufacturing (Paryanto et al. 2015), to automate tasks and enhance worker safety, mobile robotics field 

has attracted increasing attention from many researchers, in which robot path planning problem is one of 
the important and challenging research themes. Path planning is used to identify a sequence of actions to 
transform robots from a start to a goal position. Existing studies on robot path planning can be classified as 
classical and heuristic approaches (Atyabi and Powers 2013). Classical approach commits to prove whether 
an optimal path for the robot exists or not (Masehian and Sedighizadeh 2007). This method requires 
intensive computational power and is sensitive to uncertainty, which limits their application in the real 

world. The approaches such as Subgoal Network, Cell Decomposition, Potential Field, and Road Map are 
common classical path planning methods. The heuristic approach is developed to solve complex 
optimization problems in real-world scenarios, which integrates probabilistic algorithms such as 
Probabilistic Roadmaps (PRM) to achieve a high-speed implementation (Mac et al. 2016).  

Many heuristic-based path planning approaches have been developed to navigate robots in a partially 
known or dynamic environment. For instance, graph-based methods such as Dijkstra’s (Dijkstra 1959) and 

A* (Hart et al. 1968) algorithms have been utilized to find an optimal path from the start position to the 
goal position. The two methods plan paths on a given graph G = (S, E) that represents the environment of 
the robot. Where S is a set of robot states in the graph and E is a set of edges connecting pairs of vertices in 
S. The edge cost is defined as the transition cost between the two endpoints of the edge. The optimal path 
represents a path that has minimal transition costs leading from initial state to goal state. Rapidly-
Exploration Random Tree (RRT) is a typical sampling-based algorithm (Lavalle 1998). This method is 

suitable for planning in a high-dimensional space. However, all the above approaches were designed for 
static environments, which do not involve path re-planning after the path is calculated. Thus, they may not 
work well in a dynamic environment with moving obstacles. To address this issue, the incremental re-
planning algorithm like the D* algorithm (Stentz 1994) was developed. The D* algorithm is based on the 
A* algorithm, which offers an efficient re-planning in changing environments like adding a new obstacle.  

The heuristic-based approach was also widely adopted in robot path planning on construction sites. 

Soltani et al. (2002) evaluated the performance of Dijkstra’s, A*, and Genetic algorithms regarding their 
application in construction sites based on the distance, risk, and visibility of the path. The study concluded 
that the A* algorithm can find an optimal solution more efficiently for a large-scale problem. In Ali et al. 
(2005), the Genetic algorithm was used to automate a collision-free path planning of cooperative crane 
manipulators. The generated path achieved a shorter distance and less computational time compared to the 
A* search. Chang et al. (2012) proposed a fast path-planning method for crane erection, where the PRM 

algorithm was incorporated. The developed method was validated in virtual experiments, which can 
generate erection paths efficiently for operating. The main drawback of these studies is that a static 
environment was assumed, which ignores dynamic nature at construction sites where multiple entities 
conducting various activities simultaneously on the jobsite. 

3 METHODOLOGY 

Figure 1 shows an overview of the proposed method, which consists of two steps. In the first step, an LSTM-

based method is created to predict the worker’s trajectory considering contextual information on the jobsite. 
In the second step, the robot path planning method is devised based on predicted worker trajectories to 
avoid potential collisions. The next two sections elaborate on the technical details of our method. 
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Figure 1: Methodology overview. 

3.1 Worker Trajectory Prediction 

This study proposes a context-aware LSTM-based method for accurate worker trajectory prediction using 
construction video data based on Cai et al. (2020). The method incorporates both individual movement and 
workplace contextual information regarding movements of neighboring entities, working group 
information, and potential destination information. Entity movement and contextual information are 
incorporated in the LSTM-based sequence-to-sequence (seq2seq) neural network for trajectory prediction. 
Figure 2 illustrates the framework. 

 

Figure 2: Context-aware LSTM-based model for trajectory prediction. 

It is assumed that construction videos are first preprocessed to obtain entity positions and contextual 
features, consistent with most of the related studies (Alahi et al. 2016; Tang et al. 2019; Xue et al. 2018). 

We use the mid-bottom point of entity’s bounding box to represent their position. As a result, at time step 
t, the ith entity is denoted by its pixel coordinates on the image plane, i.e., (𝑥𝑡

𝑖 , 𝑦𝑡
𝑖). The objective is to predict 

entity positions from time step 𝑇𝑜𝑏𝑠+1 to 𝑇𝑜𝑏𝑠+𝑝𝑟𝑒𝑑 based on the observation of site dynamics, including 
both the positions of all entities and the jobsite contexts from time step 𝑇1 to time step 𝑇𝑜𝑏𝑠. Different from 
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previous studies (Alahi et al. 2016; Tang et al. 2019) which only observe entity positions and implicitly 
incorporate the interactions among entities using hidden states learned from deep neural networks, we 
explicitly models the contextual information on the jobsite based on the methods developed in our previous 

study (Cai et al. 2019). 

3.1.1 Contextual information formulation 

Construction workers co-exist and collaborate with other entities to conduct various tasks on the jobsite. 
Their behavior is purposeful and will be influenced by involved activities and their surrounding entities. It 
is expected that construction workers tend to avoid obstacles to prevent potential collisions, while stay close 
to their co-workers or group members to conduct the activity collaboratively. In addition, workspaces, 

where workers locate and move, are typically defined by specific activities, which will indicate their 
potential destination. Therefore, the specific contextual features considered in this study include neighbor 
position, working group information, and distance from potential destination. 

Neighbor position. Worker behavior can be influenced when they interact with other entities, 
especially with their neighbors. Different from previous studies that use occupancy map to represent the 
existence of other entities (Alahi et al. 2016; Tang et al. 2019), we directly use neighbor position 

information as one contextual feature to capture the temporal dynamics of neighbor’s movement. Note that, 
to ensure features in different scenarios have the same dimension, we only consider the position of entity’s 
nearest neighbor. It is reasonable because an entity is more likely to be affected by others who are spatially 
closer to them. 

Working group information. The working group information, i.e., the relationship between an entity 
and its neighbor in terms of whether they belonging to the same working group, also influences entity 

movement. For instance, workers tend to avoid entities that are not in the same group to prevent potential 
conflict, while they tend to have similar movement patterns with their co-workers. Therefore, the group 
relationship between an entity and its nearest neighbor is considered as a second contextual feature. If they 
belong to the same working group, the feature value is 1, otherwise, it is 0. The group information can be 
obtained using the LSTM-based method created in our previous study (Cai et al. 2019) by integrating 
positional and attentional cues on the jobsite. 

Distance from potential destination. The distance between construction workers and the potential 
destination is considered as a third contextual feature because construction worker behavior is typically 
goal-based and influenced by their involved activities. In this study, we simplify the potential destination 
as prior knowledge. In practice, it can be inferred from the involved activity and the corresponding 
workspace, where ongoing activity can be automatically learned from visual data and workspace can be 
extracted from site layout or BIM model. 

3.1.2 LSTM-based trajectory prediction 

This study adopts the LSTM encoder-decoder architecture (Sutskever et al. 2014) (see Fig. 2), which allows 
the generation of a sequence with arbitrary length from a given sequence. In the method, the entity position 
during observation time and the corresponding contextual features are concatenated into time-series feature 
vectors and fed in LSTM encoder. The encoder outputs an encoded vector that incorporates the information 
from the observed movements and jobsite context. The encoded vector is used to initialize the states in 

LSTM decoder which allows the integration of previous information for better prediction of future 
trajectory. The hidden state of each LSTM cell in the decoder is considered as the output of the 
corresponding time step, which is further fed into a dense layer with two nodes. The dense layer performs 
a linear regression, resulting in estimated positions from time Tobs+1 to Tobs+pred. The network is trained to 
minimize one of the most commonly used loss functions, i.e., mean squared error (MSE) loss function (Lee 
2007). The MSE is computed as 𝑀𝑆𝐸 = ∑ (�̂�𝑖 − 𝑌𝑖)

2𝑁
𝑖=1 /𝑁, where N is the size of training data, �̂�𝑖 and 𝑌𝑖 are the 

predicted and actual ith trajectory. 
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3.2 Robot Path Planning 

Robots must avoid construction workers to ensure safe operation on construction sites. In this regard, 
Construction workers are treated as obstacles for robot path planning. As such, robots can avoid potential 

collisions with workers who are moving and conducting a variety of tasks along the trajectory. We adopt a 
hierarchical planning approach which includes global and local planning. The global planner is used to find 
an optimal collision-free path from the start to the goal without considering differential or dynamic 
constraints. In the local planning stage, the local trajectory tries to smooth path with dynamic constraints 
and stay close to the global path.  

The A* algorithm is used as the global planner in this study, which was developed by Hart et al. (1968). 

The algorithm is an improvement of the Dijkstra’s algorithm (Dijkstra 1959) designated to find the shortest 
path with high-efficiency. A heuristic function h(n) is used to direct the robot toward the goal position. The 
h function acts as a critical role in the performance of the A* algorithm. In this study, the Manhattan distance 
heuristic function is defined in Eq. (1) to calculate distance from any node, n (xn, yn), to the goal, g (xg, yg) 
in the graph.  

 

( ),n n n a n ah x y x x y y= − + −                                                (1) 

 
The search cost is defined in Eq. (2), where g(n) represents the cost from starting point to any node n, 

f(n) is the total cost. The objective is to minimize the total cost. Using this equation, the A∗ algorithm will 
direct toward the goal and try to find the most direct path.  

 

( ) ( ) ( )f n g n h n= +                                                          (2) 

 
Given a global path to follow, the local planner produces linear velocity v and angular velocity w for 

the robot. The Dynamic Window Approach (DWA) algorithm proposed by Fox et al. (1997) is used for 
local robot planning. Constraints regarding robot dynamics (e.g., the maximum velocity) are considered in 

the DWA algorithm. The algorithm directly samples velocities in the robot’s control space within a given 
time window. The bad velocity samples that intersect with an obstacle are eliminated. The DWA will find 
an optimal pair of (v, w) for the robot based on its local condition by maximizing a cost function that 
depends on (1) proximity to the global path, (2) proximity to the goal, and (3) proximity to obstacles. Eq. 
(3) gives the weighted cost function to find the optimal trajectory. The trajectory with minimal cost is 
selected.  

 

( ) ( ) ( )cost , , ,a d cf v w f v w f v w  = + +                                         (3) 

 
Where fa(v, w) represents the distance between global path and the endpoint of the trajectory, fd(v, w) 

is the distance to the goal from the endpoint of the trajectory, fc(v, w) is the grid cell costs along the 

trajectory, α is the weight representing that how much the controller should stay close to the global path, β 
is the weight for how much the robot should attempt to reach the goal, and γ is the weight for how much 
the robot should attempt to avoid obstacles.  

4 IMPLEMENTATION AND RESULTS 

In the proposed framework, the moving workers are treated as obstacles for robots in a dynamic 
environment. The predicted worker trajectories obtained in module 1 (Section 3.1) can be used to determine 

the potential locations of obstacles for robot path planning (Section 3.2). We conducted two experiments 
to validate each module of the proposed method and analyzed the results. Note that, the worker trajectory 
prediction and robot path planning method were evaluated separately in this study. Specifically, field videos 
were collected to evaluate the performance of worker trajectory prediction. A robot simulation platform 
was developed to demonstrate the robot path planning method. Using the robot simulation to replicate the 
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scenarios in real construction sites is justified in two aspects. First, with the simulation platform, various 
construction scenarios can be arranged for testing, which allows us to fully assess the performance of the 
robot path planning method. The workers’ trajectories can also be simulated in the robot simulation 

platform to reflect different construction activities in real world. The potential safety issue in real 
construction sites prevents such experimentation. Second, the simulated scenario is built based on photos 
and videos from real construction sites to ensure its authenticity and validity.  

4.1 Implementation 

We collected ten construction videos from three projects to validate the proposed worker trajectory 
prediction method: a hospital construction project from the Hospital Construction (2019), and two teaching 

building projects videotaped by authors. The videos consist of a total of 84 workers in different construction 
scenarios, conducting various activities in different working groups. All videos were down-sampled to 2fps, 
similar to other studies (Alahi et al. 2016; Xue et al. 2018) on video-based pedestrian trajectory prediction. 
Figure 3 illustrates some images from the dataset. Visual data were pre-processed to extract entity positions 
and contextual features, serving as inputs of the prediction model.  

 

Figure 3: Sample images. 

In this study, we observed worker movements and contextual information for 3s (i.e., 6 frames) and 
predicted for 5s (i.e., 10 frames), consistent with relevant studies (Alahi et al. 2016; Xue et al. 2018) on 
pedestrian trajectory prediction. The proposed method was implemented on a desktop with 3.6GHz Intel 

i9-9900K CPU, 32GB, and NVIDIA GeForce GTX 2080 Ti GPU using Keras library on top of Tensorflow 
platform. The dataset was randomly split into training set (80%), validation set (10%), and testing set (10%). 
The network was trained with Adam optimizer (Kingma and Ba 2015), with a learning rate of 0.001, batch 
size of 20, and dropout of 0.5. 

 

Figure 4: Overview of the robot simulation platform. 

Bird View

Camera View

Laser Scan

Mobile 

Robot
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The second set of experiments was conducted in the robot simulation platform, where a husky robot 
(Clearpath Robotics 2013) was simulated at a construction site. The robot is equipped with LMS1xx 2D 
laser and camera sensors. The laser is used for Simultaneous Localization and Mapping (SLAM) to create 

a 2-D occupancy grid map. The occupancy map is then used for path planning. The onboard camera is used 
to capture the surrounding environment. Figure 4 shows the experiment setup. The platform is built on a 
laptop running Ubuntu 16.04 with Intel i7-4900MQ 2.8GHz CPU processor, NVIDIA Quadro K2100M, 
and 16G RAM. The distribution of ROS is Kinetic, and the version of Gazebo is 7.16.0. 

4.2 Results 

4.2.1  Results for trajectory prediction 

The result of the proposed trajectory prediction method was compared with that obtained from two other 
LSTM-based models: (1) a standard LSTM model (Saleh et al. 2018) that predicts location one-step-ahead 
based on object positions and achieves multi-step prediction by running the model recursively; and (2) a 
seq2seq model with the same architecture as the proposed method but only considering entity movements 
without contextual information. Figure 5 illustrates two example results of trajectory prediction. The 
proposed method results in the predicted trajectory (blue line) that is closer to the ground truth (red line). 

The position-based model (yellow line) leads to a trajectory with a slightly larger discrepancy compared to 
the proposed method, whereas the position-based recursive model (green line) has the largest discrepancy 
from the ground truth. 

 

Figure 5: Example results for trajectory prediction. 

The performance is further evaluated quantitatively using two metrics, i.e., final displacement error 
(FDE) and average displacement error (ADE), which are most widely used to evaluate performance of 

trajectory prediction (Alahi et al. 2016; Xue et al. 2018). FDE measures the average distance between the 
final predicted location and the final actual location of all workers, while ADE measures the average 
distance between all locations along the predicted trajectories and the actual trajectories. Table 1 lists the 
quantitative results of trajectory prediction using three models. The recursive model leads to much larger 
FDE and ADE compared to seq2seq approaches due to the error accumulation when predicting trajectory 
over multiple time steps. The proposed context-aware seq2seq model achieves the smallest FDE among all 

models, despite a slightly larger ADE compared to the position-based approach. The possible reason is that 
by incorporating contextual information, especially the potential destination information, the model is 
trained to adapt more to the long-term goal, rather than accurately predicting each step. 

 
 
 

 

Ground truth Position (seq2seq) Position + context (seq2seq)Position (recursive)
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Table 1: Trajectory prediction results of three models. 

Model FDE (pixel) ADE (pixel) 

1. Position (recursive) 28.32 15.41 
2. Position (seq2seq) 9.00 8.95 

3. Position +Context (seq2seq) (proposed) 8.51 9.00 

4.2.2 Results for robot path planning  

Table 2 shows the performance of the robot path planning method. The path planning method is 
demonstrated to be efficient given an average 0.201s planning time. The standard error of planning time is 
small, suggesting that planning time is stable across different simulated cases. The execution time is mainly 
dependent on the distance from start to the goal and obstacles between them. In addition, all the 15 simulated 
cases successfully generate paths without collision with construction workers and other obstacles.  

Table 2: Performance of the robot path planning method. 

Number of 
simulation cases 

Planning time (second) Execution time (second) Number of cases 
without collision Average Standard error Average Standard error 

15 0.201  0.004 35.147  11.025 15 

 
Figure 6 shows representative examples to demonstrate robot path planning based on the predicted 

worker’s trajectory. As indicated, the proposed global path is efficient, safe, and collision-free. Most 

importantly, the mobile robot can navigate to the goal without collision with construction workers. We also 
present two exemplary results without considering worker movement. As indicated in Figure 7, the global 
paths intersect with workers’ potential trajectories, which may lead to the struck-by accident. Thus, it is of 
great importance to integrate worker trajectory prediction with robot path planning to effectively avoid 
human-robot collision on the jobsites. 

 

Figure 6: Examples of generated path considering worker movement. 

Trajectory Prediction Implementation #1

Implementation #2Implementation #3

Global path

GoalWorker who is walking when the robot is moving

Worker who is static when the robot is moving

Trajectory in grid map

Worker trajectory
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Figure 7: Examples of generated path without considering worker movement. 

5 CONCLUSIONS 

Autonomous construction robots have been deemed to augment and enhance efficiency as well as improve 
safety by reducing human errors. The overarching goal of this research is to develop a system that can 
navigate robots safely and efficiently in dynamic and unstructured construction sites with the existence of 
moving workers. To this end, a context-aware LSTM model is proposed for trajectory prediction on 
construction sites. A robot path planning algorithm that integrates workers’ predict trajectories is designed 

to navigate robots on unstructured construction sites. Experiments were conducted using field video data 
and robot simulation platform. The results indicate that the proposed context-aware seq2seq model achieves 
the smallest final displacement error among the three investigated approaches. The efficiency of the robot 
planning method is manifested by the simulated experiment because the approach achieves a small planning 
time and generates paths without collision with workers and other obstacles. The value of the proposed 
method is highlighted by comparing to the state-of-the-art in collision-free path planning at construction 

sites. Different from the GPS-based planning method proposed in (Kim et al. 2003), our method is not 
affected by the quality of GPS signal. The proposed method also considers construction contextual 
information including entity interactions and involved activity information, which was ignored in previous 
studies (Chang et al. 2012; Kayhani et al. 2018). This study has the potential to complement current practice 
in construction safety. For instance, the proposed method can be integrated into construction proximity 
warning and alert system (Teizer et al. 2010) by providing predicted workers’ trajectories. As such, the 

system can achieve more reliable and accurate alert information.  
It should be noted that there remain several limitations that deserve further research efforts. First, while 

the robot simulation platform allows us to validate the proposed method, we necessarily miss out on the 
context and complexity in the real world. Our ongoing research is building the robot platform to collect 
data in real construction sites. Second, this study assumes a flat ground surface which may not be the case 
in real situations. Future study is needed to address robot path planning on the uneven ground surface. In 

this case, terrain traversability of the robot plays a critical role in finding an optimal path. In addition, 
algorithms should be developed to reconstruct an uneven environment for future path planning. Third, 
human trajectory was modeled as static obstacles for robots without considering the dynamic relationship 
between human and robots. In the future, it is indispensable to investigate more complex interactions to 
improve efficiency, fluency, and adaptiveness of human-robot cooperation. Finally, human trajectory 
prediction and robot path planning were validated in real experiments and the robot simulation platforms, 

respectively. Future research will evaluate the performance of the entire workflow by collaborating with 
ongoing construction projects. 

Global path

GoalWorker who is walking when the robot is moving

Worker who is static when the robot is moving

Worker trajectory
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