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ABSTRACT

Visual recognition of the content and actions that take place in a construction site is important in many
applications such as data-driven simulation, autonomous systems, and intelligent machinery. Construction
project, however, are dynamic and complex, and often take place in harsh environments. This may hinder
the ability to collect good quality, well-lit, and occlusion-free imagery, which in turn, can lower the
performance of computer vision models for fast and reliable object detection. In this paper, we propose
and validate a deep convolutional neural network (CNN)-based generative adversarial network (GAN)
trained and tested on construction site photos from two in-house datasets to increase image resolution by
generating missing pixel information. Results show that using GAN-enhanced images can improve the
average precision of pre-trained models for detecting objects such as building, equipment, worker, hard
hat, and safety vest by up to 32% while maintaining the overall processing time for real-time object
detection.

1 INTRODUCTION

The digital image is one of the most common media to document construction fieldwork. In recent years,
the ubiquity of digital cameras, mobile devices (e.g., smartphone and tablet computer) with internet
connectivity, and unmanned aerial vehicles (UAVs), also known as drones, equipped with onboard
cameras has exponentially increased the volume of visual data collected on a daily basis. By some
estimates, more than 1 trillion images were taken in 2018 (The Conversation 2018), which is 50% more
than the 657 billion taken only four years prior to that, in 2014 (Kleiner Perkins 2014). In particular to
construction, visual data can be used to generate progress reports and requests for information (RFIs),
conduct quality inspection, monitor crew productivity, manage resource deployment, perform safety
training, and litigate claims.

Timely and reliable harvesting and delivery of information from this big visual data requires
significant long-term investments in skilled human resources and computing infrastructure (Business
Higher Education Forum 2017). Meanwhile, artificial intelligence (AI) and its latest derivatives such as
hybrid intelligence (a.k.a., human-in-the-loop AI) (Kamar and Redmond 2016) hold promise for
expanding human knowledge, especially when confronted with large amounts of data. Examples of using
AI-assisted tools for analyzing construction visual data, particularly those using vision-based algorithms,
include content retrieval from site photos (Nath et al. 2019), identifying construction materials and
resources (Dimitrov and Golparvar-Fard 2014), monitoring worker safety (Nath et al. 2020; Kim et al.
2019), and 3D reconstruction of infrastructure (Brilakis et al. 2011). In these and similar applications,
object detection (i.e., identifying the location and category of objects in a given image) is one of the most
common tasks, and of particular interest to machine-driven autonomous systems. For example, in the
fully-automated construction site of the future, unmanned vehicles must identify obstacles and calculate
an accident-free path to their destinations. Similarly, construction robots tasked with lifting concrete
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blocks, tying rebar, or laying bricks must first identify the correct objects (e.g., concrete block, rebar,
brick) to work with. Moreover, an AI model trained with both object detection and human behavior
coding can alert workers of unsafe actions or imminent accidents. Lastly, to monitor material inventory,
an AI-enabled vision system should be able to recognize the quantity and layout of warehouse objects
from video surveillance.

All vision-based algorithms (including object detection) perform remarkably better when the quality
of the input image is high. Past studies have shown that poorly-textured objects in the images captured by
a stereo camera can lead to the generation of unreliable depth maps and found that high-resolution images
provide more key points to accurately calculate the disparities between the stereo images (Geiger et al.
2010). Researchers have achieved a 30% improvement in facial recognition by deblurring low-quality
photos (Li et al. 2018). Similarly, in medical imaging, high-resolution imagery is desirable to retrieve
vital biological, anatomical, physical, and metabolic information which might be difficult to catch in a
low-resolution (noisy or blurry) image (Trinh et al. 2014). Another area where higher resolution images
capture more crucial pieces of evidence for future investigations include video surveillance (e.g., for
public security, traffic monitoring, military reconnaissance) (Kumar et al. 2016).

High quality visual data could be also very important for creating data-driven models to simulate
ongoing jobsite operations. Since high-resolution images contain richer information and insight about the
real-world, they can help close the gap between simulation and reality. In the construction domain, for
example, high quality images have been used to model digital twin of a construction site to monitor
spatiotemporal activities, analyze physical vulnerabilities, and optimize the spatial layout and workflows
to increase productivity and minimize potential risks (Ham and Kim, 2020). In another example, high
fidelity images were used to create augmented reality (AR) and virtual reality (VR) simulations for
advanced construction management (Ahmed, 2018).

Despite the advantages of high-resolution images in many applications, it may not be always practical
to obtain such images due to the limitation of hardware, cost of acquiring and operating large-scale image
capturing devices, and adversarial surrounding environment (Yue et al. 2016). For example, in a
construction site, given the dynamic and complex workflow, depending on camera position and angle,
photos may contain several small objects at various distances and poses. Therefore, even if a scene is
captured with high-resolution, the number of pixels corresponding to some objects (especially those that
are smaller in size, farther from the camera, or partially occluded by other objects) might be too few,
which can limit the performance of object detection.

One way to overcome this challenge is to enlarge the entire image or some parts of it (a.k.a. up-
sampling) by interpolating the intermediate pixels, for example, using bilinear, bicubic or Lanczos
filtering (Shan et al. 2008). However, these methods rely only on the local information stored in the low-
resolution image, and as such, may generate exceedingly blurry images that fail to preserve critical
features (e.g., textures and edges) for object detection (Shan et al. 2008). On the contrary, example-based
methods, that rely on training images, learn a general process to restore missing pixels with rich and fine
details based on the spatial contexts in the given low-resolution image (Freeman et al. 2002). To this end,
deep learning-based methods have achieved remarkable performance in recent days (Ledig et al. 2017).
Particularly, past research has found that generative adversarial network (GAN) is more reliable in
producing realistic and natural up-sampled images (Ledig et al. 2017).

In this paper, the authors investigate a GAN-based method to enhance the resolution (and quality) of
an input image. By post-processing low-resolution images, this method eliminates the need for additional
hardware resources, thus lowering the overall time and cost. The developed model learns what key
information is generally hidden in the low-resolution input image and reconstructs an enlarged version of
the image by interpolating missing information. Building upon the authors’ past work, in this paper, the
performance of the model is assessed by testing it on images containing construction-related objects (e.g.,
building, equipment, worker, hard hat, safety vest).

2448



Nath and Behzadan

2 PROBLEM STATEMENT

This paper utilizes a GAN technique for reconstructing higher resolution versions (a.k.a., super-resolved)
of low-resolution input photos taken from construction sites. The performance of this technique in
detecting objects in low-resolution images and their GAN-generated super-resolved images without
additional training is measured using two you-only-look-once (YOLO) (Redmon and Farhadi 2018)
models previously developed by the authors. The first model is trained and tested to detect common
construction objects, e.g., building, equipment, and worker (Nath and Behzadan 2020), while the second
model is designed for monitoring personal protective equipment (PPE) compliance by detecting hard hat,
safety vest, and worker (Nath et al. 2020). It will be demonstrated that GAN and YOLO, together, can
process an image in high-speed (i.e., <200 milliseconds, or >5 frames per second, FPS) on a GPU-
equipped Dell XPS 7590 laptop.

3 GANMODEL FOR IMPROVING IMAGE QUALITY

A GAN model has two components, a generator G and a discriminator D (Goodfellow et al. 2014). In the
problem at hand, given a low quality or low-resolution image IL, the objective of G is to generate the same
image but with higher resolution and enhanced quality, a.k.a. super-resolved image, IS (Ledig et al. 2017).
However, each low-resolution image (IL) has a ground-truth high quality counterpart image (IH) . The
goal of D is to accurately distinguish between the IS (generated) and IH (real) images. During training, G
and D compete with one another to improve their performance (Goodfellow et al. 2014). Particularly, G
tries to generate IS images similar to IH images so that D fails to catch the differences. On the other hand,
D tries to improve its ability to learn more subtle differences between IS and IH images so that G cannot
deceive it. From the perspective of game theory (Freund and Schapire 1996), this constitutes a minimax
game where G and D are two agents and the game settles when each agent achieves the minimum level of
competency that is perceived as maximum by the other agent (Goodfellow et al. 2014). The training
process is known as adversarial training (Goodfellow et al. 2014) with the expectation that at the end of
the training, a discriminator D is obtained which can differentiate IS and IH images with human-level
accuracy. Equally important is a generator G which is capable of generating high-quality IS images that
are difficult to distinguish from the IH images by the high-performing D , and with the same token, by a
human.

3.1 The Architecture of the Generator and Discriminator Models

Figure 1 illustrates the structure of the generator (G) and discriminator (D). As shown in the Figure,
the generator is a fully-convolutional autoencoder, based on residual blocks (He et al. 2016), which
performs a series of convolutions, batch normalizations, additions, and activations, e.g., leaky rectified
linear unit (ReLU) and parametric ReLU (PReLU), on the input image (Ledig et al. 2017). While the
other layers keep the dimensions of the input image unchanged after performing operations, the up-
sampling layer doubles the height and width of the input image. Thus, the two up-sampling layers in G
(Figure 1), collectively increase the image dimensions by a factor of 4. Overall, the generator takes a low-
resolution image, IL, and generates 4×4 times higher resolution version of it, called IS. On the other hand,
the discriminator (D) is based on the VGG network containing both convolutional and fully-connected
(a.k.a. dense) layers (Simonyan and Zisserman 2014). This network takes a high-resolution image, IS
(generated) or IH (real), and outputs the probability of the image being real ( IH ). In other words, the
discriminator performs a binary classification of the input image.

To note, the fully-convolutional functionality of the generator provides flexibility to operate on an
arbitrarily-sized input image. Therefore, given an input image IL of size w× h, the network will generate
image IS with size 4w × 4h. However, the dense layers in the discriminator mandate that the size of the
input be fixed. Moreover, the discriminator is only used in the training phase. Therefore, during training,
IL of 48×48 resolution is used, which means that the resolution of IS and IH would be 192×192 in the
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training phase. However, in the testing phase, the restriction on the input size is removed and different
input resolutions, e.g., 52×52, 72×72, 96×96, 144×144, and 208×208, for IL are investigated.

Figure 1: Architecture of the generator and discriminator networks, inspired by Ledig et al. (2017).

3.2 Loss Functions

To train the generator and discriminator networks, three loss functions, namely the binary cross-entropy,
content loss, and perceptual loss are used (Ledig et al. 2017). In particular, given an image IH (yTrue = 1)
or IS (yTrue = 0), if the discriminator predicts the image as IH with the probability of yPred , the binary
cross-entropy loss (Aggarwal 2018) is defined by Equation (1).

Lbinary =− yTrue log yPred + (1 − yTrue) log 1 − yPred (1)

To calculate content loss, a VGG-19 model, without the fully-connected layers, and pre-trained on the
ImageNet dataset, is used (Simonyan and Zisserman 2014). Given the IS and IH images, the network
extracts the two-dimensional feature maps FS and FH, respectively, each of size wF × hF. The content loss
is then defined as the Euclidean distance between these two feature maps (Ledig et al. 2017), as expressed
in Equation (2).

Lcontent =
1

wFhF i=1
wF

j=1
hF Fi,j

H − Fi,j
S 2�� (2)
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Finally, the perceptual loss is defined as the weighted average of content loss and binary cross-
entropy loss (Ledig et al. 2017), as shown in Equation (2).

Lperceptual = Lcontent + 10−3Lbinary (3)

3.3 Training of the Generator and Discriminator Models

As shown in Figure 2, at each iteration of training, a single batch of training images (IL) is first fed to the
generator (G) and outputs (IS) are recorded. Next, generated images (IS) and corresponding ground-truth
images (IH) are assorted and fed to the discriminator (D) to check if it can distinguish between them. This
task is analogous to binary classification where the job of the discriminator is to classify any given image
into two classes: ISor IH . Based on D’s output, the binary cross-entropy loss is calculated using Equation
(1), and subsequently, its weights are updated using backpropagation (Aggarwal 2018).

Next, the process is repeated with another batch of IL images and binary loss is calculated, but
without updating D’s weights. This time, G’s outputs (IS ) and corresponding ground-truths (IH ) are also
fed to the VGG-19 model and the content loss is calculated using Equation (2). Based on the VGG-19’s
content loss and D’s binary loss, the perceptual loss is subsequently calculated using Equation (3) and G’s
weights are updated. This sequential updates of D and G accomplish one iteration of training. The number
of iterations in one epoch is equal to the number of training images divided by the number of images in
one batch (a.k.a. batch size), rounded to the lowest integer.

Figure 2: Schematic diagram of one iteration of training GAN models.

4 DATASET DESCRIPTION

This study uses the combination of two previously developed datasets by the authors, Pictor-v2 (Nath and
Behzadan 2020) and Pictor-v3 (Nath et al. 2020). As shown in Figure 3, Pictor-v2 contains 1,994 training
and 513 testing images, labeled with three object classes – building (B), equipment (E), and worker (W).
On the other hand, Pictor-v3 contains 1,184 training and 288 testing images, also labeled with three object
classes – hat (H), vest (V), and worker (W). The GAN model will be evaluated based on the performance
of two YOLO models, namely YOLO-BEW and YOLO-PPE, which are trained on the training subsets of
Pictor-v2 and Pictor-v3 datasets, respectively. To ensure that these YOLO models do not encounter any
images on which they are already trained, the union of the testing subsets of Pictor-v2 and Pictor-v3
datasets is used for evaluating the GAN and YOLO models and, therefore, excluded from training the
GAN models. This results in a total of 1,906 training and 744 testing images for the GAN models, as
shown in Figure 3.
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Figure 3: Number of images in the training and testing subsets.

5 METHODOLOGY

5.1 Data Preparation

To prepare the data for training and testing the GAN model, the colors of the images are linearly scaled
(a.k.a., normalized) so that all values remain in the range of [ − 1, + 1]. Next, images are divided into two
subsets of training and testing. Only the training images are randomly augmented, as shown in Figure 4.

Figure 4: Preparation of training data through random augmentation.

First, randomly selected 50% of the original training images are flipped horizontally. Next, color-
shifting is performed by multiplying the color of each pixel by a random value drawn from a normal
distribution N(1.0, 0.1), and adding another random value drawn from N(0.0, 0.1) distribution. Following
this step, m× n rectangular tiles are generated for each image. For the images with an aspect ratio (i.e.,
the ratio between image width and its height) between 0.5 to 2.0, m = 2 and n = 2 are used. For other
aspect ratios (i.e., <0.5 or >2.0), 2 rectangular tiles, stacked along the longer dimension of the image, are
generated. Next, each tile is randomly scaled by multiplying its box size with a factor drawn from
N(1.0, 0.25) distribution. Also, tile centers are further shifted along X and Y directions, each by a length
from N(1.0, 0.167) distribution, multiplied by their size along that direction. To note, the use of the
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normal distributions is based on Krizhevsky et al. (2017), however, the mean and standard deviation of
these distributions are selected empirically by examining the dataset.

During the scaling and translation of the tile boxes, if any box is moved outside the image boundaries,
it is trimmed so that the residual part remains inside the image. Next, the portion of the image within each
tile box is cropped. Each cropped image is then resized to a 192×192 square-sized image which is treated
as the high-resolution (ground-truth) image, or IH . The IH is subsequently resized to 48×48 resolution
which serves as the low-resolution version, or IL , corresponding to the IH . Finally, IL and IH images are
stacked in batches to allow the GPU to perform operations (e.g., convolutions) on all the images in one
batch simultaneously, rather than treating each image individually, thus leading to a significantly lower
computational time.

5.2 Training of GAN Models

At the beginning of each epoch, all training images are randomly augmented following the method
described in Subsection 5.1. Such random augmentation allows the model to encounter slightly different
versions of the training images in each epoch of training. Thus, instead of memorizing the training images,
the model tries to learn the latent features of the images. Next, models are trained following the process
illustrated in Subsection 3.3. The weights of the D and G are updated through backpropagation using
Adam optimizer (Aggarwal 2018) with a starting learning rate of 1 × 10−4. However, after 150, 250, and
300 epochs, the learning rate is reduced by a factor of 5. Finally, training is terminated after 330 epochs.

5.3 Testing

As mentioned earlier, two object detection models, based on the YOLO algorithm (Redmon and Farhadi
2018) are tested on the low-resolution images (IL) and super-resolved images (IS) generated by the trained
G model. One model (referred to as YOLO-BEW) is trained on Pictor-v2 dataset to detect common
construction objects, namely buildings (B), equipment (E), and workers (W) (Nath and Behzadan 2020).
Another model (referred to as YOLO-PPE) is trained on the Pictor-v3 dataset to detect workers (W) and
personal protective equipment (PPE), e.g., hat (H) and vest (V) (Nath et al. 2020). Each model takes a
416×416 resolution image and outputs bounding boxes for detected objects.

To investigate the influence of different image resolutions, IL images are created by letterboxing the
original testing images to sizes 52×52, 72×72, 96×96, 144×144, and 208×208 resolutions. Following this
step, to test the performance of object detection model on low-resolution images (referred to as Model-
LR), IL images are directly fed to the YOLO models and bounding boxes for detected objects are recorded.
On the other hand, to test the performance of object detection model on GAN-improved images (referred
to as Model-SR), first, each IL image is broken down to 2 × 2 tiles and stacked into one batch of 4 images.
Next, the batch is given to the trained G model to generate corresponding 4 super-resolved images, which
are then tiled back to create the full image IS. Finally, this IS image is supplied to the YOLO models and
detected bounding boxes are recorded.

5.4 Performance Evaluation

To evaluate the quality of the generated IS images, the content loss is calculated using Equation (1) to
determine how much useful content is missing in IS images compared to the IH (ground-truth) images
(Ledig et al. 2017). The lower value of content loss implies higher perceptual similarities between the two
images. Additionally, another metric, called blind (or referenceless) image spatial quality evaluator
(BRISQUE), is used (Mittal et al. 2012) to evaluates an image as a whole and measure the possible loss of
naturalness in it. Similar to content loss, the lower score of BRISQUE indicates better quality of the
image. Finally, the performance of YOLO object detection models is measured by calculating average
precision (AP) for each class and taking the average of these, a.k.a., mean AP (mAP) (Nath et al. 2020).
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6 RESULTS AND DISCUSSION

Example of IL , IS and IH images are shown in Figure 5 and results are discussed in the following
Subsections.

Figure 5: Examples of low-resolution (IL), GAN-generated (IS), and high-resolution (IH) images.

6.1 Evaluation of Quality of the Generated Images

Table 1 lists the content loss and BRISQUE score of the IL and IS images for different resolutions.
The Table shows that the higher the input resolution the lower the content loss. Intuitively, the higher
resolution images preserve the contents of the original image. It can be seen that for 52×52, 72×72, and
96×96 images, IS images have lower content loss than the corresponding IL images, indicating that some
of the contents lost in the IL images (when resized from IH images) are successfully retrieved by the GAN
model in the IS images. However, for higher resolutions, i.e., 144×144 and 208×208, IL images have
slightly better contents than the IS images. One possible reason is that the GAN model is trained on low-
resolution (48×48) images and, therefore, performs better on those images. The BRISQUE scores in
Table 1 show that IS images have smaller score (or distortion) and thus, higher naturalness compared to
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the IL images. Moreover, the score does not vary much with the change in input resolution, indicating a
consistent level of naturalness in the IS images.

Table 1: Content loss and BRISQUE score of the low-resolution ( IL ) and GAN-improved ( IS ) images
(lower is better).

Input Size 52×52 72×72 96×96 144×144 208×208
Model IL IS IL IS IL IS IL IS IL IS

Content Loss 61.3 57.2 51.0 48.5 40.8 39.2 23.7 26.4 12.2 16.0
BRISQUE 85.4 43.8 75.0 45.1 68.5 45.4 65.0 45.7 60.9 46.1

6.2 Performance of Object Detection

The performances of Model-LR and Model-SR for different resolutions of IL and IS images are
summarized in Table 2 and Table 3, which show that, in general, the SR models outperform the LR
models. There is only one case, i.e., the detection of vest (V) in 208×208 input images, where the AP of
SR model is almost the same as the LR model (i.e., 83%). However, for all other cases, the AP of the SR
model is 2% to 32% better than the corresponding LR model. This finding unequivocally indicates that
GAN improves the quality of the image for better object recognition.

Table 2: Performance of Model-LR and Model-SR in detecting building, equipment, and worker in
Pictor-v2 dataset.

Input Size 52×52 72×72 96×96 144×144 208×208
Model LR SR LR SR LR SR LR SR LR SR
Mean AP (%) 8 22 19 32 30 40 45 51 58 62
Building AP (%) 8 20 18 28 28 32 41 46 54 56
Equipment AP (%) 8 16 15 26 24 38 41 50 60 65
Worker (%) 8 29 24 41 38 48 52 58 62 66
Time (ms) 68 104 63 145 64 169 65 432 65 857

Table 3: Performance of Model-LR and Model-SR in detecting hat, vest, and worker in Pictor-v3 dataset.

Input Size 52×52 72×72 96×96 144×144 208×208
Model LR SR LR SR LR SR LR SR LR SR
Mean AP (%) 11 29 25 46 43 56 62 69 71 76
Hat AP(%) 8 19 17 30 31 42 49 59 61 68
Vest AP (%) 15 39 32 64 58 72 77 80 83 83
Worker (%) 11 29 26 44 39 55 61 68 70 76
Time (ms) 82 100 61 145 63 171 69 432 64 856

The mAP of the models for Pictor-v2 and Pictor-v3 datasets is illustrated in Figure 6, which shows
that with the increase of input size, the performance of both models improves. Particularly, for lower
resolution input images, the SR models perform significantly better than the counterpart LR models. For
example, for 52×52 images, compared to the LR model, the SR model is 14% better for the Pictor-v2
(BEW) test dataset and 18% better for the Pictor-v3 (PPE) test dataset. However, for higher resolution
images, the difference in the performances of LR and SR models slightly drops. For example, for
208×208 images, compared to the LR model, the SR model is only 4% and 5% better when tested on
Pictor-v2 (BEW) and Pictor-v3 (PPE) datasets, respectively. This indicates that when the input resolution
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is lower, the GAN model can generate significantly better content-rich images. On the contrary, image
resolutions that are sufficiently good, leave less improvement room for the GAN model.

(a) (b)

Figure 6: mAP of the LR and SR models for (a) Pictor-v2 (BEW) and (b) Pictor-v3 (PPE) datasets.

Figure 7 shows an example of object detection by YOLO-PPE model for IL and IS images with an
input size 96×96. The Figure shows that for both images, workersW1, W3, andW4, as well as their PPE
components (hat and vest) are detected correctly. However, for workerW2, the model missed the hat and
incorrectly detected the yellow bucket as a hat in IL image. Meanwhile, in the IS image, the model not
only did detect W2 ’s hat and vest correctly but also detected the vest with higher confidence (85%)
compared to the 49% confidence in the corresponding detection in IL image. This example highlights
some of the primary reasons why YOLO models achieve better mAP on the IS images than the
counterpart IL images.

Figure 7: An examples of object detection by YOLO-PPE for low-resolution (IL) and GAN-generated (IS)
images with an input size of 96×96.

6.3 Processing Times

The average processing times for the LR and SR models, shown in Table 2 and Table 3, indicate that the
SR models require more time to process images compared to the LR models. This is expected given that
the SR models apply both GAN and YOLO models, while the LR models only apply the YOLO model.
However, for 52×52, 72×72, and 96×96 images, the average processing time for one image is less than
200 milliseconds or more than 5 frames per second (FPS), leading to the conclusion that the SR models
can be still used for real-time object detection. For the other resolutions, the SR models process images at
>1 FPS which is sufficient enough for near real-time object detection.
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7 SUMMARY AND CONCLUSION

Although high-resolution images are more reliable (and thus, desirable) for computer vision and
simulation applications, in many cases, it may not be possible or practical to obtain such images. For
instance, in the construction domain, where jobsites are dynamic and complex, and many projects take
place in harsh outdoor environments under varying lighting and atmospheric conditions, taking high
quality, well-lit, and occlusion-free imagery of field activities is not a trivial task. Therefore, researchers
often rely on post-processing the available low-resolution images before applying computer vision
algorithms. In this study, the authors proposed and validated a GAN model to enlarge a low-resolution
image by a factor of 4 along its height and width. The proposed model learns from 1,906 training images
on how to reconstruct the high-resolution image with rich and fine details. Results show that for 52×52,
72×72, and 96×96 IL (low-resolution) images, GAN-generated IS images have less content loss, indicating
that the model restored useful contents that were missing in the original input images. Moreover, the low
BRISQUE score of the IS images indicate a higher level of naturalness reconstructed in the generated
images.

Two YOLO models, YOLO-BEW trained on Pictor-v2 dataset (building, equipment, worker) and
YOLO-PPE trained on Pictor-v3 dataset (hat, vest, worker), were tested on both IL and IS images. Results
show that in all cases, models tested on the IS images performed equally or better than those tested on the
IL images. Particularly, for 72×72 input images, YOLO-PPE detected vests in IS images with 64% AP
which is twice the AP of vest detection in IL images. Overall, these models achieved 4% to 21% better
mAP when the input image was improved by GAN, which shows that GAN can improve the quality of
low-resolution construction site photos for better object detection. Therefore, the proposed framework can
be reliably used to generate high-fidelity input images for vision-based applications including simulation
modeling and intelligent machine control. Furthermore, GAN and YOLO models, together, process one
image in 100 to 857 milliseconds, making them suitable for real-time object detection.
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