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ABSTRACT

Initiatives like lean manufacturing, pooling, and postponement have been effective in mitigating the cost-
service trade-off by maintaining high levels of service while reducing system inventories. However, such
initiatives exacerbate supply chain disruptions during a catastrophic event, thereby creating a new trade-off
between robustness during disruptions and efficiency during normal operations. We evaluate stocking
decisions in the presence of operational disruptions, which represent different risks from those associated
with demand uncertainties as they stop production flow and typically persist longer. Operational disruptions
can therefore be much more devastating though their likelihood of occurrence may be low. Using stochastic
simulation, we combine the newsvendor and order-up-to models capturing demand uncertainty costs with
catastrophe models capturing not only the cost of supply disruption, but also the cost of recovery, to obtain
insights for managing inventory under disruption risk.

1 INTRODUCTION

Man-made or naturally occurring, catastrophic events impact not only human lives and assets, but also perturb
the functioning of the economic system resulting in indirect losses (Hallegatte 2014). While catastrophe
modeling of property damage is well developed, modeling of operational disruption and the resulting
business interruption appears to suffer from the crude nature of functional relationships in catastrophe
models that translate property damage into operational disruption. Moreover, estimating business losses is
more complicated as it depends largely on decisions during recovery that mitigate losses by using remaining
resources more efficiently to maintain business continuity and to accelerate recovery. Hashemi et al. (2015)
propose a probabilistic framework for modeling business interruption and reputational losses for process
facilities. Rose and Huyck (2016) introduce an approach for improving hazard loss estimation from an
insurance perspective.

Inventory management models, on the other hand, are well developed for managing the trade-off
between customer satisfaction and the cost of service. Guided by these models, innovative operational
initiatives such as lean manufacturing, pooling, and postponement have been successfully introduced to
mitigate the cost-service trade-off by maintaining high levels of service without significantly increasing
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system inventories. However, such initiatives have also reduced the buffers that a firm could fall back on in
the event of a disruption, exacerbating the costly effects of operational disruptions. However, as indicated
by Pournader et al. (2020), there needs to be a clear definition of the term disruption, which is typically
understood to be an adverse event that disrupts the flows of goods or services in supply chains. Under this
definition, a minor machine breakdown and a pandemic fall into the same category. However, there should
be a clear differentiation between different types of disruptions with varied levels of impact/likelihood, as
they require different responses, including different kinds of recovery and resilience planning.

The objective of this paper is therefore to explicitly incorporate the low-probability/high-impact opera-
tional disruptions in inventory models. To this end, using stochastic simulation, we combine the newsvendor
and order-up-to models capturing demand uncertainty costs with catastrophe models capturing not only
supply uncertainty costs, but also business disruption and recovery costs to obtain insights for managing
inventory under disruption risk.

1.1 Literature Review

Operational disruptions are fundamentally different from the risks arising from demand uncertainties as
they completely stop the production flow and typically persist longer (Kleindorfer and Saad 2005); as
a result, the impact of supply chain disruptions can be much more devastating while their likelihood of
occurrence is very low. Unfortunately, reinsurance companies report that frequency of natural hazards is
on the rise, further increasing the cost associated with supply chain disruptions.

Supply chain disruptions have therefore started receiving increasing attention in the literature. In an
empirical study, Hendricks and Singhal (2005) document the negative impact that supply chain disruptions
inflict on a firm’s financial performance and the slow recovery from such shocks. A comprehensive review
of models is provided by Snyder et al. (2014). An equally comprehensive list of approaches for mitigating
supply chain disruptions is discussed by Tang (2006). These approaches could be anchored on classical
inventory models as in Parlar (1997) and Arreola-Risa and DeCroix (1998), on network design principles
as in Aydin et al. (2011), Lim et al. (2013) and Gao et al. (2019), and on big data analytics as in Araz et al.
(2020). Most of these studies, however, adopt a high-level perspective in modeling operational disruptions
whereby a facility (typically depicted as a node in a network) becomes unavailable following an underlying
stochastic process. For example, Snyder and Shen (2006) model disruptions through a two-state Markov
chain in which the UP and DOWN states represent the non-disrupted and disrupted states, respectively.
To capture the frequency of various categories of disruptions, Schmitt and Singh (2012) use a triangular
distribution whose parameters are estimated through discussions with business continuity personnel. Our
work differs from the above literature in that we explicitly model the impact of catastrophic events that
result not only in down time, but also in loss of inventory, and incur significant clean-up costs.

Catastrophic events typically result in significant harm to humans and substantial damage to the
environment along with possible loss of the firm’s ability to operate (Lohmann and Yue 2011). Manufacturing
firms are uniquely susceptible to these categories of loss due to the diverse range of interconnected supply
chains. For example, as reflected in 100 Largest Losses 1978-2017 compiled by Marsh, the accumulated
value of the hundred largest losses in the energy sector is more than $34 billion and the single largest loss is
approximately $1.8 billion due to an explosion at Piper Alpha in the North Sea. Hallegatte (2014) estimates
the economic impact of Hurricane Katrina in Louisiana. MacKenzie et al. (2012) show the impact of the
Fukushima disaster on production and logistics. There exists a sizeable literature in catastrophe modeling
of both natural and man-made disasters. As a detailed review is beyond the scope of the current paper,
we mention Embrechts et al. (2012) and Chavez et al. (2016) as basic references for natural extreme
events. Lohmann and Yue (2011) offer a simulation-based approach to catastrophe modeling. Watson and
Johnson (2004) describe the components of hurricane catastrophe modeling and approximation techniques
to estimate loss severity. Ehlen et al. (2012) evaluate large-scale chemical plant and supply disruptions
caused by a hurricane with homeland security implications using agent-based simulation methods. Kappes
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et al. (2012) outline concepts for extending single-hazards risk analysis to multi-hazard modeling and
discuss the challenges of these approaches.

As for man-made disruptions, Deleris et al. (2004) offer a conservative probabilistic estimate for the
supply chain risk. Industry-specific models can be found, for example, in Rossetti and Bright (2019) for
oil and gas, Elkins et al. (2007) for automotive, and in Hashemi et al. (2015) for process industries.
Finally, Barker and Haimes (2009) discuss the impact of extreme events on interdependent infrastructure
sectors. Similarly, Barker and Santos (2010) extend the dynamic inoperability input-output model to assess
productivity degradations due to disasters; in particular, they evaluate the impact of inventories on the
resilience of disrupted interdependent systems.

1.2 Our Contributions

Research streams on inventory management and catastrophe modeling have evolved largely independently
from each other. This paper is an attempt to intertwine them. More specifically, this paper studies inventory
policies in the presence of operational disruptions caused by natural disasters (e.g., floods or earthquakes)
or by man-made disasters (e.g., fire or site contamination). We focus on two settings: a single-site, single-
period setting with heavy-tailed customer demand and a single-site multi-period model with light-tailed
customer demand. Using stochastic simulation, we combine the newsvendor and the order-up-to models
capturing the cost of demand uncertainty with catastrophe models capturing the cost of disruption/recovery
to obtain insights for managing inventory under disruption risk. Motivated by the growing evidence in the
literature that heavy tailed demand can be observed in practice, our single-period model takes into account
the heavy-tail behavior of the demand distribution and derives optimal inventory levels capturing heavy-tail
demand uncertainty costs and disruption/recovery costs. It is important to note that the inclusion of the
recovery costs in the newsvendor model and the order-up-to model makes it impossible to compute the
optimal inventory levels and the associated expected total costs. This is where the use of Monte Carlo
simulation becomes critical. Similarly, the consideration of multiple recovery days from the disruption
calls for discrete-event simulation.

We find that, while for light-tailed demand operational disruptions drive the optimal inventory levels
lower with a corresponding degradation in customer service levels, optimal inventory levels increase in the
presence of heavy-tailed demand. In all cases, the functional form of the cost of recovery, which captures
the cost of unmet demand due to lost inventory as well as the costs associated with cleaning up the facility
and resuming production, is the key driver of the expected cost.

The remainder of this paper is organized as follows. Section 2 introduces the notation used throughout
the paper. Section 3 presents a mathematical analysis for a newsvendor model with heavy-tailed demand
under multiple sources of uncertainty. Section 4 extends the newsvendor model to multiple periods. Section 5
presents a comprehensive simulation study that relaxes some of the key assumptions associated with the
analytical models. Section 6 concludes with future research directions.

2 NOTATION

Our focus is on inventory stocking problems in the presence of disruptions caused by random events such
as natural disasters or man-made disturbances. Our models combine the well-known newsvendor model
for the single-period setting and the base stock policies for the multi-period setting capturing the cost
of demand and supply mismatch with catastrophe models capturing the cost of business disruption and
recovery. To this end, we will use the following notation in the remainder of the paper:

Random variables

X , demand at a location with cdf F
p, probability of a disruptive event at a location
γ , fraction of inventory lost due to the disruptive event at a location
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Model parameters

c, unit procurement cost of inventory
h, unit inventory holding cost at a location
s, unit shortage cost at a location
R(K), cost of recovering K units of inventory following the disruptive event at a location
α , the discount rate

Decision variables

K, quantity of on-site inventory at a location
y, the order-up-to (base stock) level

3 SINGLE-SITE, SINGLE-PERIOD MODEL WITH HEAVY-TAILED DEMAND

Among several distributions that can represent heavy-tailed demand, power-law distribution is shown to fit
well to empirical data. For example, among others, Chevalier and Goolsbee (2003) show that the empirical
distribution of book demand at Amazon follows a power-law distribution. Similarly, Gaffeo et al. (2008)
investigate book demand in Italy and conclude that power-law is a good model to capture the right-tail
behavior of book demand. Bimpikis and Markakis (2016) analyze the demand of a large number of movies
at Netflix and find that the number of ratings per movie follows a power-law distribution. Natarajan et al.
(2018) fit the demand data for 36 spare parts SKUs of a European automobile manufacturer to 17 demand
distributions and find that the best fit is obtained by power-law distribution, extreme value or t-distribution.
Motivated by these findings in the literature, we also use a power-law distribution in this paper to capture
the heavy-tailed demand behavior.

Our goal in this section is thus to characterize the optimal on-site inventory minimizing the mean of
the total cost under the demand that follows a power-law distribution. Total cost function is composed of
inventory holding cost, demand shortage cost, and the cost of recovering the inventory due to the disruptive
event. Similar to Lodree and Taşkin (2008) and Biller et al. (2019), the expected total cost I as a function
of the on-site inventory K is given by

I(K) = (1− p)
{∫ K

0
h(K− x) fX(x;Ψ)dx+

∫
∞

K
s(x−K) fX(x;Ψ)dx

}
+ p

{∫ (1−γ)K

0
h((1− γ)K− x) fX(x;Ψ)dx+

∫
∞

(1−γ)K
s(x− (1− γ)K) fX(x;Ψ)dx+R(K)

}
The first-order optimality condition satisfies

∂ I(K)

∂K
= (1− p)(h+ s)FX(K;Ψ)+ p(h+ s)(1− γ)FX((1− γ)K;Ψ)+ p

∂R(K)

∂K
− s(1− pγ). (1)

Plugging in power-law CDF

FX(K;β ) = 1−
(

K
xmin

)1−β

into Equation (1) yields

(1− p)(h+ s)

[
1−
(

K
xmin

)1−β
]
+ p(h+ s)(1− γ)

[
1−
(
(1− γ)K

xmin

)1−β
]
+ p

∂R(K)

∂K
− s(1− pγ).

Assuming a linear recovery cost R(K) = γK and taking xmin = 1 w.l.o.g., we obtain the following optimal
inventory level:

K∗ =
(

h− γ ph+ pγ

(h+ s)(1− p+ p(1− γ)2−β )

) 1
1−β

, β > 1. (2)
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If p = 0 (i.e., there is no disruptive event), then (2) simplifies to

K∗ =
(

h+ s
h

) 1
β−1

, β > 1.

This formula is consistent with the optimal newsvendor quantity derived in Bimpikis and Markakis (2016).
We observe that the optimal inventory level K∗ is decreasing in the parameter β .

If we assume that γ = 1 (i.e., in the case of a disruptive event all inventory is lost), then the optimal
inventory level derived in (2) simplifies to:

K∗ =
(
(h+ s)(1− p)
h(1− p)+ p

) 1
β−1

, β > 1.

Consider the following setting where demand is distributed according to a power-law with parameters
β ∈ {4,6,10}. Notice that as β increases, the tails become less heavy. In all experiments, we set xmin = 1
and we normalize the mean to 20. The likelihood of a disruptive event, p ∈ {0.01,0.05} while the frac-
tion of inventory lost, γ ∈ {0,0.20,0.50,0.80}. The cost of recovery takes a linear (R(K) = γK), a cubic
(R(K) = γK3), and an exponential (R(K) = γeK) form. Table 1 presents the optimal inventory levels K∗, and
the expected costs E[Cost], for varying levels of γ and different recovery cost functions for p = 0.01 while
Table 2 does the same for p= 0.05. In both tables, expected costs have been generated through a Monte Carlo
simulation under the optimal order-up-to levels K∗. One million independent replications were run in Matlab
for each setting to estimate the expected total cost with common random numbers across the different settings.

Table 1: Optimal inventory levels with p = 0.01.

R(K) = γK R(K) =γK3 R(K) = γeK

β p γ K* E[Cost] K* E[Cost] K* E[Cost]

β = 4

0.01 0.0 18.0961 71.3454 18.0961 71.3454 18.0961 71.3454
0.01 0.2 18.1409 71.5238 18.1354 83.2717 18.1374 1.48E+05
0.01 0.5 18.3028 72.3681 18.2886 102.4865 18.2938 4.35E+05
0.01 0.8 19.4882 74.5986 19.4601 132.6269 19.4709 2.25E+06

β = 6

0.01 0.0 19.2180 40.2125 19.218 40.2125 19.2180 40.2125
0.01 0.2 19.2800 40.5353 19.2774 54.6501 19.2782 4.65E+05
0.01 0.5 19.7806 41.7861 19.7735 79.8642 19.7757 1.91E+06
0.01 0.8 28.5946 97.0597 28.5553 280.5000 28.5717 2.02E+10

β = 10

0.01 0.0 19.6831 21.4363 19.6831 21.4363 19.6831 21.4363
0.01 0.2 19.7932 21.9057 19.7920 37.1830 19.7923 7.78E+05
0.01 0.5 22.6698 35.6644 22.6649 93.0221 22.6665 3.44E+07
0.01 0.8 49.3786 292.778 49.2820 1.24E+03 49.3126 2.06E+19

We note the following behavior:

• For fixed β and p, the optimal inventory level K∗ and the expected cost both increase with the
proportion of inventory lost (γ). The increase is more dramatic as we move from γ = 0.5 to γ = 0.8.
This observation holds for all types of recovery functions.

• As we move from a linear recovery function R(K) = γK to an exponential recovery function
R(K) = γeK , we observe that there is no significant change in the optimal inventory levels, K∗.
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Table 2: Optimal inventory levels with p = 0.05.

R(K) = γK R(K) =γK3 R(K) = γeK

β p γ K* E[Cost] K* E[Cost] K* E[Cost]

β = 4

0.05 0.0 18.0961 71.3454 18.0961 71.3454 18.0961 71.3454
0.05 0.2 18.3193 72.2012 18.2908 133.0473 18.3012 8.85E+05
0.05 0.5 19.1035 76.7853 19.0210 247.8090 19.0521 4.68E+06
0.05 0.8 23.8251 98.1055 23.5557 617.1808 23.6657 7.56E+08

β = 6

0.05 0.0 19.2180 40.2125 19.2180 40.2125 19.2180 4.02E+01
0.05 0.2 19.5226 41.7749 19.5090 115.6301 19.5132 2.97E+06
0.05 0.5 21.5920 51.1445 21.5433 299.7098 21.5607 5.76E+07
0.05 0.8 38.7671 191.6859 38.2672 2.42E+03 38.4514 1.99E+15

β = 10

0.05 0.0 19.6831 21.4363 19.6831 21.4363 19.6831 21.4363
0.05 0.2 20.1939 23.9513 20.1874 105.7895 20.1891 5.84E+06
0.05 0.5 26.4040 68.7767 26.3623 524.5559 26.3785 7.12E+09
0.05 0.8 59.2396 381.274 58.4386 8.33E+03 58.5699 1.09E+24

However, expected costs increase dramatically. This is expected because the value of the recovery
cost function that is added to the expected cost keeps increasing when we move from R(K) = γK
to R(K) = γK3 and to R(K) = γeK as there is no significant change in K∗ values.

• For fixed p and γ , we observe that expected costs generally decrease with increasing β . Two cases
where this observation does not hold are when γ = 0.8 and R(K) = γeK .

• Optimal inventory levels and expected costs increase with increasing p.

4 SINGLE-SITE MULTI-PERIOD MODEL

The natural extension of the newsvendor model in a single-site, single-period setting onto a single-site,
multi- period setting is the order-up-to (base stock) policy. To this end, let xt represent the inventory level
at the beginning of period t. A positive value for xt indicates that xt units of inventory were carried from
the previous period while a negative value for xt indicates that a backlog of −xt units is carried from
the previous period. Let yt − xt ≥ 0 denote the size of the replenishment order in period t, resulting in a
procurement cost of ct(yt− xt) and an increase in inventory level to yt . To keep the exposition simple, let
us assume that the replenishment is instantaneous. As a result, note that xt+1 = yt−Dt . The optimization
problem over a horizon of T periods can then be written as:

C1(x1) = minyt≥xt E
[ T

∑
t=1

α
t−1ct(yt − xt)+Gt(yt)

]
+α

T cT+1, (3)

where Gt(yt) is the newsvendor loss function. Under the assumption of stationarity (i.e., ct ≡ c,ht ≡ h,st ≡ s)
with independent and identically distributed (IID) demands across all periods, the finite-horizon discounted
costs converge when the discount rate α < 1. The optimization problem in (3) can then be written as

C(x) = miny≥x{c(y− x)+G(y)+αE[C(y−D)]},

where the newsvendor loss function is given by

G(y) = (1− p){hE[(y−D)++ sE[(D− y)+]}+ p{hE[((1− γ)y−D)++ sE[(D− (1− γ)y)+]+R(y)}.
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Recall that R(y) is the cost of recovering y units of inventory following the disruptive event. In this setting
a myopic policy would order (ym− x)+ units, where ym minimizes the current cost

Cm = c(1−α)y+G(y). (4)

Surprisingly, under the mild assumption that demand takes only non-negative values, the myopic policy
turns out to be optimal. We then find the optimal order-up-to (base stock) level, y∗, by differentiating (4):

∂Cm

∂y
= c(1−α)+(1− p)(h+ s)F(y)+ p(1− γ)(h+ s)F((1− γ)y)− s(1− pγ)+ p

∂R(y)
∂y

≡ 0.

We follow the experimental setting in Section 3 except that we consider the case where demand is IID
across periods under a normal distribution with a coefficient of variation of 0.05 and 0.5. Table 3 shows the
optimal order-up-to levels for various settings. The last two columns in the table, which show the expected
cost and the expected fill rate, respectively, have been generated through a Monte Carlo simulation under
the optimal order-up-to levels y∗. For each setting, one million independent replications were run in Matlab
to estimate the expected total cost with common random numbers across the different settings.

Table 3: Optimal order-up-to levels with demand CV of 0.05.

p γ R(y) y∗ E[Cost] E[fill rate]
0.01 0.00 y 19.7981 99.77 0.9746

0.20 y 19.8056 100.32 0.9730
0.50 y 19.8007 101.25 0.9700
0.80 y 19.7957 102.22 0.9668

0.01 0.00 y3 19.7981 99.77 0.9746
0.20 y3 19.7977 115.88 0.9728
0.50 y3 19.7807 139.66 0.9693
0.80 y3 19.7637 164.57 0.9658

0.01 0.00 ey 19.7981 99.78 0.9746
0.20 ey 8.5631 220.91 0.4272
0.50 ey 7.6425 230.82 0.3802
0.80 ey 7.1682 235.95 0.3556

0.05 0.00 y 19.7981 99.78 0.9745
0.20 y 19.8373 102.56 0.9666
0.50 y 19.8116 107.30 0.9510
0.80 y 19.7857 112.09 0.9353

0.05 0.00 y3 19.7981 99.78 0.9746
0.20 y3 19.7959 179.83 0.9654
0.50 y3 19.7072 298.41 0.9480
0.80 y3 19.6167 414.30 0.9302

0.05 0.00 ey 19.7981 99.77 0.9746
0.20 ey 6.9422 238.61 0.3436
0.50 ey 6.0039 249.42 0.2926
0.80 ey 5.5114 255.20 0.2647

We note that while both the likelihood of a disruptive event, p, and the fraction of inventory lost, γ ,
reduce the optimal order-up-to levels, y∗, it is the functional form of the recovery cost that has the most
significant impact on the optimal inventory investment. We also note that lower order-up-to levels also
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result in drastically lower fill rates. This, in turn, implies that, to maintain the same service level, the firm
would need to hold additional inventory at an independent secondary site.

In the next section, we relax some of the fundamental assumptions underlying the base-stock models
through more detailed discrete event simulations where we calibrate our models with industry data.

5 SIMULATION STUDY

In this section, we develop a discrete-event simulation, which additionally accounts for disruptions that last
for multiple periods. A high-level description of this model is presented in Section 5.1 and preliminary
results are provided in Section 5.2.

5.1 Description

The simulation mimics the flow of inventory through a distribution center where customer orders are received
on a daily basis. The upstream warehouse from which the distribution center replenishes its inventory is
considered not to be subject to any capacity constraints. We further assume a negligible replenishment
lead time. We simulate this inventory flow, illustrated in Figure 1, using a discrete-event simulation model
developed in SAS Simulation Studio (Hughes et al. 2018).

Figure 1: Inventory flow simulated by SAS Simulation Studio.

When the length of the simulation is restricted to one day, the discrete-event simulation setting of this
section reduces to the single-site, single-period model of Section 3 (Table 2), where p = 0.05, γ = 0.8,
R(K) = γK, and the daily average customer order size is 20 units with β = 10. However, the discrete-event
simulation extends the length of the simulation to 30 days with the possibility of a disruptive event on each
day of the 30-day horizon. It is for this reason that we set the initial inventory level at simulation time zero
to 60 units given that K∗ is presented as 59.2396 in Table 2. At the beginning of each day, the inventory
position (i.e., units of inventory on hand – daily average customer order size – units of backlogged customer
orders) is checked to determine whether to place a replenishment order to bring the inventory position to
the order-up-to level, assumed to be 60 units. Because the replenishment lead time is assumed to be zero,
the replenishment decision is driven by the records of on-hand inventory, the daily average customer order
size, and the number of units backlogged. The simulation is designed to observe the size of the customer
order two hours into the day; however, it is possible to experience disruption before the realization of the
demand on any day.

Consistent with the modeling assumptions made in Sections 3 and 4, we set the daily cost of holding
unit inventory, h to 10 dollars and the unit back-ordering cost, s and the unit procurement cost, c to 15
dollars and 5 dollars, respectively. However, the key distinguishing feature of the simulation model is the
incorporation of the number of days it would take for the facility to recover from the disruptive event.
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While we have the flexibility to represent stochastic recovery durations, we design the experiments of the
following section by assuming a deterministic recovery duration of one day, two days, and five days for
each of the disruptive events that could realize. More specifically, we load the simulation with outage
entities, each of which is defined to have the following attributes: time of arrival, identifiers of product and
distribution center, likelihood (i.e., p), percentage inventory loss (i.e., γ), type of the recovery cost function
(which is linear, cubic or exponential), and the number of days to recovery. Thus, our model possesses the
flexibility of representing multiple distribution centers each of which may be exposed to different types of
outages at different times with their own specific attributes. It is also possible that the system suffers from
another disruption before fully recovering from the previous disruption.

If it takes only one day to recover from the disruption, then the only effect of this event would be the
loss of a γ fraction of inventory on hand, which could result in partial fulfillment of the incoming customer
orders, incurring back-ordering cost on the day of the disruption only. However, if it takes more than one
day to recover from the disruption, then the distribution center would still place a replenishment order, but
be unable to receive it immediately during the duration of recovery, in addition to losing a fraction of its
on-hand inventory. However, a replenishment order is never lost and any customer order received at the
distribution center is eventually fulfilled. Those replenishment orders that cannot be fulfilled instantaneously
during the recovery period, despite the zero lead-time assumption, are tracked and utilized in the calculation
of the inventory position (i.e., units of inventory on hand + units of outstanding replenishment orders –
daily average customer order size – units of backlogged customer orders) at the beginning of each day of
recovery.

We conduct 1,000 independent replications and record the output data to enable the calculation of unit
fill rate and total cost as the key performance indicators. Specifically, the unit fill rate is computed for
each day of the simulation horizon as the ratio of the number of customer-order units fulfilled to the size
of the customer order received. The mean unit fill rate presented in the following section is the unit fill
rate averaged across the 30 consecutive days simulated. The total cost is, on the other hand, the sum of
time-averaged inventory holding cost, back-ordering cost, cost of procuring the replenishment orders and
cost of recovering from all the disruptions that the system has been exposed to.

5.2 Preliminary Results

We run the discrete-event simulation for five different scenarios (Table 4). The scenarios differ from each
other by the form of the cost function and the duration of recovery. Table 4 presents the fill-rate predictions
for the first three scenarios where the form of the cost function is linear but the duration of recovery
increases from 1 day to 5 days. We observe that increasing the recovery duration from 1 day to 5 days
reduces the unit fill rate from 98% to 75%. In addition to this significant impact on the average fill rate,
we also observe a considerable increase in the standard deviation of the fill rate.

Table 4: Fill-rate prediction: mean and standard deviation.

Experiment Cost Function Duration Mean Fill Rate Standard Deviation
Scenario 1 linear 1 day 98.42% 0.92%
Scenario 2 linear 2 days 90.88% 15.74%
Scenario 3 linear 5 days 74.95% 25.54%

Table 5 shows the impact of the form of the recovery cost function on the mean and standard deviation
of the total cost. We observe, from Table 5, that the significant effect of the recovery function’s form,
observed in Section 3 and Section 4, continues to hold while being even more strongly felt in the case of
simulating the inventory flow across multiple periods. Table 6 further decomposes the average total cost
into its four components associated with holding inventory, back-ordering, procurement, and recovery. As
we switch from Scenario 1 to Scenario 3, we observe the total recovery cost to decrease even though the
duration of recovery increases. However, it is reasonable to expect the total recovery cost to be higher under
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Scenario 3 than under Scenario 1. The explanation of this observation is that as recovery from disruption
lasts longer, it takes us longer to receive incoming inventory from the warehouse. Therefore, the amount
of on-hand inventory decreases. When a second disruption is realized, we lose a fraction of the already
reduced amount of inventory. Because the recovery cost function is linear under Scenario 3, the impact
on total recovery cost appears to decrease, masking the seriousness of how severely the inventory flow is
affected by the disruptive events. In this case, a better indicator of the situation is the sharp increase in the
back-order cost incurred as we fail to meet an increasing number of customer orders on time.

Table 5: Total cost prediction: mean and standard deviation.

Experiment Cost Function Duration Mean Total Cost Standard Deviation
Scenario 1 linear 1 day $ 20,884 $ 186
Scenario 2 linear 2 days $ 23,747 $ 15,493
Scenario 3 linear 5 days $ 32,512 $ 26,363
Scenario 4 cubic 5 days $ 412,694 $ 593,051
Scenario 5 exponential 5 days $ 8.964E+77 $ 2.835E+79

Table 6: Mean total cost decomposition.

Experiment Inventory Cost Back-order Cost Procurement Cost Recovery Cost
Scenario 1 $ 17,027 $ 108 $ 3,653 $ 123
Scenario 2 $ 15,626 $ 4,572 $ 3,486 $ 115
Scenario 3 $ 12,876 $ 16,575 $ 3,018 $ 96
Scenario 4 $ 12,876 $ 16,575 $ 3,018 $ 487,509
Scenario 5 $ 12,876 $ 16,575 $ 3,018 $ 1.149E+78

Significant increase in variability tabulated in this section from Scenario 1 to Scenario 5 arises from the
differences of sample paths experiencing small exposure to the disruption risk and those experiencing large
exposure to the disruption risk. The simulation model can be further utilized to extract rules about how to
mitigate the impact of disruption depending on the type of the sample path realized. Therefore, integration of
this simulation with predictive models of disruption as well as with the simulation optimization techniques
suitable for sequential decision making would be of great value in the management of the disruption risk.
This is the subject of the ongoing work.

6 CONCLUSION

Using stochastic simulation, we combine the newsvendor and the order-up-to models capturing the cost of
demand uncertainty with catastrophe models capturing the cost of disruption/recovery to obtain insights
for managing inventory under disruption risk. Motivated by the growing evidence in the literature that
heavy tailed demand can be observed in practice, our single-period model takes into account the heavy-tail
behavior of the demand distribution and derives optimal inventory levels capturing heavy-tail demand
uncertainty costs and disruption/recovery costs. We observe that, while for light-tailed demand operational
disruptions drive the optimal inventory levels lower with a corresponding degradation in customer service
levels, optimal inventory levels increase in the presence of heavy-tailed demand. In all cases, the functional
form of the cost of recovery, which captures the cost of unmet demand due to lost inventory as well as the
costs associated with cleaning up the facility and resuming production, is the key driver of the expected
cost.

An alternative to adjusting the inventory levels in the face of catastrophic risk is to have an emergency
plan to evacuate the inventory ahead of the potentially catastrophic event –provided that there is sufficient
time to do so. For instance, it is common for chemical manufacturers to have an emergency response plan,
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which prescribes the relocation of chemicals during a Category 3 or greater storm. Simulation models as
presented in this work, which considers the frequency of extreme weather events, equipment reliability,
disruptions severity, and resource availability, can inform optimal policy decisions which can be used for
strategic scenario planning.
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