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ABSTRACT 

This research presents a digital twin concept and prototype to represent human operators in the material 
handling industry. To construct the digital twin, we use a simulation-based framework for data collection 
and analysis. The framework consists of three modules: Data Collection Module, Operator Analysis and 
Feedback Module and Digital Twin Module. A motion capture system assists in the development of the 

digital twin, which captures simulated material handling activities, similar to those which take place in an 
actual environment. This paper outlines the processes involved in the development of the digital twin and 
summarizes the results of pilot experiments to analyze the operator’s fatigue as the operator completes 
repetitive motions associated with lifting tasks. Fatigue, in this study, is a function of change in joint angles. 
The digital-twin based tool provides feedback to the operator in real-time to enable correction of those 
factors which potentially cause injuries to the operator. 

1 INTRODUCTION 

Digital twins (DT) are virtual and exact representations of physical objects or systems over their life cycle 
(Mikell and Clark 2018). The main characteristics  of DT include scalability (analyze varying information), 
interoperability (track multiple variables real-time), expansibility (ability to extend on the go), and fidelity 
(similarity to the real physical system). DTs add real-time capabilities for visualization, analysis, prediction, 
and optimization (Schleich et al. 2017). 

Some practitioners have used digital twins and simulation interchangeably. However, we point out the 
following differences between simulation and digital twins. Simulation provides an understanding of a 
physical system using numbers. It leads to time and cost advantages by helping developers  to better 
understand real-world product behavior and elevating  product lifecycle management (ABB 2019).  

While a simulation  provides static information like design elements, materials, and operating 
conditions, starting its life as a static model, a DT simulation becomes active. Its ability to change with the 

flow of data dynamically, yields more valuable information which is not generated by a traditional 
simulation (Maloney 2019). A simulation model does not tend to involve the other parts of business beyond 
research & development whereas the continuous flow of data with a DT keeps the business provider in 
perfect synchronicity with the business operations. To summarize, the use of DTs  allow the developers, 
supply chain managers, and customers, to ‘drive’ and experience the product in real-time, as it grows.  
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Expected challenges in the development of a DT include data analysis, enhanced manufacturing process 
and effectiveness of predictive analysis (Howard 2019). The economic value of DTs vary widely based on 
factors like development, implementation, and maintenance costs. The abstraction level of DTs range from 

the lowest component (data received & analyzed from an individual part ), to asset (data from a machine 
e.g. tool life for predictive maintenance), to system or unit (production line in a facility) and the highest 
component, process (business-level view) (Woods 2018). 

Digital Twin (DT) technology is increasingly penetrating the manufacturing and logistics sectors. 
Providing a digital representation of the material handling facility and supply chain system or finding the 
optimal conditions for enhanced performance, DT is beneficial to the researchers and technology companies 

(Jimenez 2020). Estimating the response of the real system to identify the factors affecting its environment 
and allowing communication and collaboration between other simulation models and digital twins, 
companies such as TESLA, GE, DHL have been working towards building digital twin versions for 
vehicles, engines and warehouses respectively (Schleich et al. 2017) (DHL Press releases 2019). 

In 2017, The global DT market size was valued at USD 2.26 billion, with an estimated compound 
annual growth rate of 38.2% from 2018 to 2025 (Grand View Research 2018). International Data 

Corporation (IDC) anticipate 70% of manufacturers will use DT technology to conduct simulations and 
scenario evaluations by 2022. 1% to 3% increase in productivity was achieved by Unilever in Brazil, by 
using DT to cut down its facility’s energy use, as a result of which, it led to a savings of approximately $2.8 
million (Smith 2019). 

Besides the use of DT technology in ‘Automotive & Transport’ and ‘Manufacturing’ industries, scarce 
research has been done to develop DTs for human manufacturing operators. Collecting data since 1972, the 

‘Injuries, Illnesses, and Fatalities’ program of the U.S. Bureau of Labor Statistics shows that  injuries and 
fatalities  incurred by workers has decreased (Reeve et al. 2019). However, the results show that there is 
still a need for research to make workers safe on the job. 

Alderson and Johnson (2016) build a personalized digital athlete as an approach to create a digital 
version of an on-field athletic performance (Alderson and Johnson 2016). The use of big data architectures 
allowed the creation of a personalized ‘digital athlete’. On the basis of extensive datasets, missing individual 

data was estimated with the goal of reducing the use of traditional experimental designs to evaluate the 
ergonomics of humans in the sports biomechanics community. Researchers proposed the use of a Deep 
Learning Neural Network (DNN) scheme to estimate the missing data (ground reaction forces) using only 
motion capture trajectories as the input. Romero et al. (2016) introduced the concept of Operator 4.0, i.e. 
humans assisted by machines and technologies to enhance their physical, cognitive, and sensorial 
capabilities to perform their manufacturing tasks. Use of tools such as wearable tracking, Augmented 

Reality (AR), Virtual Reality (VR), robots, exoskeletons and data analytics were discussed, to enhance 
worker’s capabilities. Jimenez (2020) explains the opportunities of building industrial digital twins of 
material handling operators. These include: 1) training based on digital copies of highly skilled operators, 
2) real-time ergonomic evaluations and feedback, 3) workplace optimization and testing, 4) personalized 
health plans, and 5) communication between human-based and equipment-based digital twin agents. 
Sharotry et al. (2020) presents a framework to build digital twins’ representations of manual and repetitive 

tasks in the material handling industry. Hernandez et al. (2019) proposed the use of Recurrent Neural 
Networks (RNN) to predict the motion of a human body which further can be used to predict fatigue in 
human operators for the specific material handling operation. 

This paper is an extension of the research presented in Sharotry et al. (2020) to demonstrate the 
capabilities of the digital twin framework providing calculations and visualizations of real-time body 
kinematics of material handling workers. The body kinematic evaluations attempt to describe the worker’s 

fatigue distribution as a function of the time elapsed as repetitive motions are completed as part of a ‘lifting’ 
exercise. This research article presents a comprehensive model for digital twin development of a human 
operator to analyze fatigue in MMH operations. Utilizing the real-time and predictive analysis component 
of a DT, we believe this research addresses the gap between conventional fatigue assessment methods and 
advanced industry 4.0 environments. 
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The remaining parts of this paper are organized as follows. In Section 2, the pre-existing ergonomic 
evaluation tools and their limitations are discussed briefly. Section 3 provides the process of 
conceptualizing a DT. Section 4 presents a case study, showcasing the application of proposed framework. 

Finally, a conclusion and an outlook are provided. 

2 REAL-TIME ERGONOMIC EVALUATIONS AND FEEDBACK 

A significant amount of manufacturing and material handling activities are highly manual (Visentin et al. 
2018). Material handling is one of the most physically demanding tasks, and thus, can quickly become 
leading factors contributing to the operators’ accumulation of both mental and physical fatigue (Visentin et 
al. 2018). According to the Bureau of Labor Statistics, 114 Million people were employed in the 

Warehousing and Storage Industry Group in 2018 (Data USA: Warehousing & storage 2018). These 
statistics show that 22% of the workforce are “Laborers & freight, stock & material movers, hand,” and 
17% work in stocking, order filling, or packaging by hand . According to Reeve et al. (2019), the industry 
sectors “Construction,” “Transportation & Warehousing,” and “Manufacturing” reported a cumulative total 
of 13,782; 10,952; and 5,177 fatalities from 2003 to 2016, respectively. The study also listed that ‘Back – 
including spine – spinal cord’ was the most frequently injured body part with 17% of cases involving days 

away from work and about 36% of cases involved sprains and strains. The study highlighted that human 
operators need a safer environment to work. The substantial reduction of fatalities over-time proves the use 
of safer practices but still corroborates the need for research in this field. 

Factors such as personal characteristics, training, experience, and health conditions can influence the 
accumulation of fatigue in workers, which in turn impacts the performance of an activity (Visentin et al. 
2018). While performing basic manual material handling tasks, workers experience physical fatigue, which 

occurs as a result of repetitive lifting/ loading and leads to high risk for low back, trunk, spine, hip, and 
knee injuries (Boocock et al. 2019). 

Multiple tools have been introduced to measure fatigue in the workforce. Methods such as standard 
questionnaires after completing a job or using on-body sensors have been used in the past to analyze fatigue 
in construction workers (Yu et al. 2019). Despite their use, the on-body sensors tend to cause discomfort 
for the human workforce while performing tasks. 

Various ergonomic assessment tools such as Rapid Upper Limb Assessment (RULA) and the job strain 
index method are commonly practiced in the industries to identify the repetitive movements (McAtamney 
and Corlett 1993) (Moore and Garg 1995). In order to identify strained postures, observational tools like 
Rapid Entire Body Assessment (REBA) and the Ovako Working Assessment System (OWAS) provide 
feedback based on an experienced user’s scoring system (Hignett and McAtamney 2000) (B. Scott and R. 
Lambe 1996). The National Institute for Occupational Safety and Health’s (NIOSH) lifting equations, 

Snook tables, and Liberty Mutual tables provide information on safe load capacity (TR et al. 1993) (Snook 
1978). The commonly used Borg scale and Likert Scale assess fatigue by subjective worker feedback (Borg 
1982). The majority of the methods described above require post experiment evaluation, resulting in an 
inability to provide real-time feedback to the operator. 

Virtual human factor (VHF) tools such as virtual reality, digital human models, and discrete event 
simulation allow the user to perform an ergonomic assessment to the systems not yet constructed. A novel 

tool created by Greig et al. (2018) used methods like biomechanical regression modelling and Methods-
Time Measurement to predict worker demand and element time, along with assisting the user in line layout 
and task balancing, although this tool possesses the limitation of being used only in the design stage of the 
process (Greig et al. 2018). The study was also restricted to light assembly work and considered loads at 
the shoulder joint. Research by Visentin et al. (2018) proposed the use of energy expenditure to measure 
the physical fatigue in manual material handling workers. The study induced a model for fatigue 

accumulation and rest allowance but was limited to less demanding activities. Activities, where high energy 
expenditure rate is experienced due to repetitive movements of the operator, were regarded as a drawback 
to this methodology (Visentin et al. 2018). 
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Results from the study by Vignais et al. (2013) and Boocock et al. (2019) has proven the use of real-
time feedback for ergonomic evaluations, to reduce the risk of musculoskeletal injuries (Vignais et al. 2013) 
(Boocock et al. 2019). It is clear that using sensors, auditory and visual feedback to the operator, reduces 

the risk of injury. 

3 METHODS 

The following sections describe the methodology used to conceptualize the proposed framework. The 
framework, shown in Figure 1, has the following modules: 1) Data Collection Module, 2) Operator Analysis 
& Feedback Module, and 3) Digital Twin Module. 

 

Figure 1: Framework of operator centric Industry 4.0 environment. Adapted from Digital Twin concept in 
Sharotry et al. 2020. 

3.1 Data Collection Module 

Digital twin development features advanced big data architectures, using passive & active imaging, multi-

sensor integration, data mining, real-time image processing and non-linear data science analytics (Alderson 
and Johnson 2016). Conclusions have been made by researchers, regarding the lack of standard datasets in 
the field of material handling which acts as a barrier for validating operator behavior (Golan, Cohen and 
Singer 2019) (Peruzzini, Grandi and Pellicciari 2018). In Johnson et al. (2018), a significant number of data 
captures have been carried out for sport-specific applications, providing access to about 20,066 motion 
capture files (Johnson et al. 2018). The sports-specific exercises include walking & running trials, football 

kicking and baseball pitching; these exercises do not follow the motion patterns we find in industrial manual 
material handling applications. Hence, the data collection module is focused on creating structural databases 
and training sets for the development of a digital twin vision of an industrial manual material handler. 

In order to accomplish the vision of a true DT of an operator, it is necessary to build specific datasets 
with required variables. We have identified the body kinematics and biometrics of the individual as 
important factors to determine body fatigue. Our novel approach tends to collect data specific to the motions 

carried out by a manual material handling operator while performing such tasks on the shop floor. Data 
collection simulates an actual manual material handling (MMH) operation in a controlled environment, 
collecting the motion and physiological data. Figure 2 shows the overall design of the study, including 
elements considered in development of this module. 
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 Figure 2: Overall design of the study.  

Previous research by Karg et al. (2014) concluded that, as the humans accumulate fatigue, observable 
changes in joint kinematics such as range-of-motion (ROM), angular velocities, and angular acceleration 
can be observed (Karg et al. 2014). Hence, optical motion capture methodology with infrared cameras can 
be used to compute body kinematic parameters. Motion capture technologies provide more accurate 
measurements as compared to computer vision and inertial measurement units (IMU). 

For the design of experiments to be performed by the human subjects performing ‘lifting’ task, a 2k 
factorial design is created for 50% of the population for their factor levels, based on the Hazard Analysis 
Tool (Snook 1978). The factors determined for this study were: ‘Gender of Subject’, ‘Height of lifting 
operation’, ‘Height of subject’ and ‘time interval of the experiment’. The factors and their respective levels 
are mentioned in Table 1. Based on gender, time interval and lift distance category of the subject, the weight 
of the box to be lifted was decided as per guidelines proposed by Snook (1978). 

Table 1: Design of Experiment details. 

Factor Levels Number of Levels 

Gender of Subject Male, Female 2 

Height of Lifting operation (cm) 25, 51, 76 3 

Height of Subject Short, Medium, Tall 3 

Interval of Experiment (seconds) 9, 14 2 

 
The proposed framework (Figure 2) uses optical motion capture technology to record the motion of 

different segments of the body, to which retro-reflective markers are attached. Biometrics of the subject 
performing experiments are monitored for the physiological datasets via a smart suit. The motion capture 
provides the x-y-z coordinates of  the segment, which are then analyzed for body kinematic parameters 
such as joint angle, angular velocity and angular acceleration using inverse kinematics (Qualisys AB n.d.). 

The biometric suit provides physiological data such as the electrocardiogram (ECG), heart rate, breathing 
rate, and heart rate variability, among other variables, which helps to monitor and characterize the impact 
of the material handling exercise on the subject. Along with the above discussed data, the human subject’s 
Borg Scale of Perceived Exertion (RPE) is also measured (Borg 1982). The conducted experiments lead to 
datasets with respective motion capture, biometrics, RPE and activity metrics of the subject performing the 
MMH activity. These datasets are then merged to create a single dataset of an individual for further analysis, 

which will be discussed in the next section. 

3.2 Operator Analysis & Feedback Module 

This module of the DT framework conceptualizes the data analysis, optimization, and forecasting based on 
real-time data collection in the first module (Figure 1). Industries have identified human involvement, as 
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an essential factor in the productivity of the system. MMH task risks are associated with the nature of the 
load, type of task, work environment and the operator (Workplace Safety & Prevention Services 2011). 
Characteristics of the operator include physical factors like the height of the human, reach, flexibility, 

musculoskeletal health history, and physiological factors, among many others. Environmental conditions 
like temperature, relative humidity, lighting, noise levels, time constraints, and physical conditions are some 
of the other factors affecting human operator productivity. Among the above listed factors, task conditions 
like repetitions, job time, resting period, hazardous postures, handles, and weight of the load are a few 
conditions recently researched as leading to creating a safe environment for the operator. 

The proposed framework currently aims to incorporate real-time fatigue evaluation based on changes 

in joint angles. Body joints of concern were identified as: Left Elbow, Right Elbow, Left Knee, Right Knee 
and Back. The marker data collected in real-time via optical motion capture technology (Section 3.1) were 
analyzed to measure the change in these joint angles as the subject accumulates fatigue. This fatigue 
accumulation influences the postural control and movement coordination of the subject (Karg et al. 2014). 
Hence, the change in joint kinematics such as range-of-motion (ROM), joint angles, angular velocities, and 
angular acceleration reflect body fatigue. To analyze the selected joint angles while the person performs a 

‘lifting’ task, we divide the activity based on ‘Motion with Load’ and ‘Motion without Load’. ‘Motion with 
Load’ is the activity carried out by the subject as he/she grabs the lifting container and then lifts it to its 
location of placement at the required height (Table 1). This ‘Motion with Load’ is identified as a ‘segment’. 

A segmenting filter developed for the application, identifies and splits the motion capture data for real-
time analysis into the desired segments. The collected data is also stored in a local database after merging 
the collected x-y-z marker data, biometrics and RPE data in segments (Figure 2). This complete dataset 

with all the required data points then can be utilized for further in-detail analysis of the motion performed 
by the subject. 

Apart from the analysis of operator fatigue, we believe that this module can support the incorporation 
of additional operator centric statistics such as worker scheduling, rest interval, guidelines for safe practices, 
emergency contact, etc. 

3.3 Digital Twin Module 

Researchers in the field of ergonomics, Body-in-White production systems, and hybrid production systems 
have been developing frameworks for digital twins (Caputo et al. 2019) (Kousia et al. 2019) (Biesinger et 
al. 2018). The research is being done to develop real-time ergonomic assessment tools to ensure operator 
safety. To the best of the authors’ knowledge, despite above mentioned developments, the application of 
DT technology within the field of MMH is scarce. 

This module of the framework bridges the gap between the conventional workplace and an advanced 

interconnected factory floor.  In order to be a true digital twin, we believe this component of the framework 
should be connected to the ‘Operator Analysis & Feedback Module’. The fatigue analysis from the previous 
module will serve as a real-time assistant for the manual material handler. The operator fatigue determined 
as a change of joint angles in the previous module shall act as the input to the digital twin component. The 
future implementation of this component is aimed at the development of a machine learning model for 
understanding the implications of the entire workspace of an operator. 

A series of experiments were carried out, to demonstrate the practicality of this proposed framework. 
It summarizes the use of methodologies discussed in Section 3. The digital twin module for this study has 
been showcased as a real-time feedback to the human subject on the correct method of performing the 
‘lifting’ task. 

4 CASE STUDY 

The test environment is located in the Center for High Performance Systems (CHiPS) laboratory at the 

Ingram School of Engineering at Texas State University, San Marcos, Texas, USA. For the pilot 
experiment, subjects were recruited from the university student population. Participants with any muscular 
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injury or primary treatment were excluded from the study. Ethical approval for this study was obtained 
from Texas State University’s Institutional Review Board (IRB). To the best of authors’ knowledge, the 
student participants were neither skilled in MMH activities nor performed manual material handling in their 

routine work. Participants performed a prescribed ‘lifting’ task to induce muscular fatigue (Boocock et al. 
2019). As discussed earlier in Section 3.1, the optical motion capture methodology was used for data 
collection. 

A fleet of twelve Qualisys cameras sampling at 100 Hz tracked forty-four reflective markers, attached 
to the human subject (Qualisys AB n.d.). The position of reflective markers was based on recommendations 
by Color Atlas of Skeletal Landmark Definitions (Sint Jan 2007). For physiological data, each subject 

concurrently wore a smart suit, Hexoskin® Shirt, which contains body sensors within the suit, and is paired 
with a Hexoskin® Smart Device for monitoring the biometrics of the subject at 60Hz (Hexoskin Health 
Sensors & AI n.d.). The data analysis of the operator’s biometrics is not part of the scope of this study. As 
per the design of experiments, the subject was asked to perform a lifting activity. An audible cue was 
provided to the subjects, in order to initiate each lifting task in the loop at the selected time interval (9 
seconds or 14 seconds). Additionally,  at intervals of one minute, the subjects were asked to provide info 

on their rate of perceived exertion (RPE) using the 20-point Borg Scale of Perceived Exertion (Borg 1982). 
The subjects were asked to continue the ‘lifting’ task until they sensed exhaustion (fatigue) or they informed 
the value of 20 on the Borg Scale. Researchers ensured the use of the proper procedure for calibration and 
subject setup as recommended by the manufacturer of the equipment in the laboratory. 

Figure 3 shows the laboratory environment of a male subject performing the lifting task at a floor – 
knuckle range of 25 cm. 

 

Figure 3: A subject performing the lifting task. 

3D coordinate marker data along with biometrics data collected by the Hexoskin® Shirt was stored in 
a database for further analysis.  

For the subject’s fatigue analysis, an evaluation of change in selected joint angles and range of motion 
(ROM) was carried out. The angles were computed using inverse kinematics from the 3D motion capture 
data (Yu et al. 2019). Figure 4 shows the change of the Left Elbow joint angle in degrees when taking the 

whole set of motion into consideration. A segment in Figure 4 ranges from frame number 2749 – 2885. It 
is further displayed as ‘Seg2’ in Figure 5. Segmented data (Motion with Load), results for ten individual 
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segments, extracted from the original complete motion file, are shown in Figure 5. The solid lines depict 
the change in angles during the first five segments (first five iterations of the activity) and the dotted lines 
show the last five segments (last five iterations of the activity) of the recorded activity. It can be seen that 

a substantial change in angle is observed as well as the duration of each lift also varies. At the beginning of 
the lifting experiment, the subject’s elbow joint angle varies between 116° and 129.3° whereas at the end 
of the experiment, the same angle lies between 87.22° and 105.41° (towards 180° = elbow extension; 
towards 0° = elbow flexion).  As a result of this change in joint angle, we deduce that in the initial five lifts 
(Seg1 – Seg5), the individual started with their elbows more extended and moved through a greater ROM. 
Whereas, towards the end of the activity (Seg65 – Seg69), the elbow extension reduces towards the 

beginning of ‘lift’, but the elbow flexion remains almost similar. Overall, the ROM was less when the 
subject was fatigued. 

 

Figure 4: Change in left elbow joint angle segments with time.  

 

Figure 5: Change in left elbow joint angle segments with time. 
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For the real-time proof of concept, data collected during the experiment was further used for creating a 
digital twin of the operator using a software development kit (SDK), an interface between the Qualisys and 
Unity software (Qualisys AB n.d.) (Unity n.d.). The flowchart in Figure 6 displays the schematics for this 

DT development. 
3D coordinate data collected real-time in Qualisys is used for avatar development. As per the U.S. 

National Library of Medicine, in order to prevent back injury while lifting, bending the knees is considered 
a vital point. This allows the weight to act on the thighs and hips instead of the spine (MedlinePlus n.d.). 

 

Figure 6: Digital Twin data flow. 

Hence, the right and left knee joint was taken into consideration for the biofeedback trigger point. As 

the human subject performed the ‘lifting’ task without bending the knees (Right & Left), a red beacon and 
buzzer sound was activated in the avatar environment, providing an audio-visual cue. Rotation of the thigh 
bone was analyzed to determine the logic of this cue. Joint rotation values (in degrees) were evaluated at 
each frame in Unity for the ongoing lifting task during the Motion with Load. The threshold for joint 
rotation was measured before the lifting task by the research group for individual subject ( = 345°). Figure 
7a shows the side view of the subject in the original position before beginning the task. Figure 7b shows 

the correct and incorrect lifts performed by the subject in real-time.  

 

Figure 7: Real-time biofeedback. 

5 LESSONS LEARNED  

The proposed framework methodology, tends to fulfill the four dimensions of a true digital twin (DT), as 
concluded by Shao et al. i.e. connectivity, analyzability, visibility and granularity (Shao et al. 2019).  
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The first component, ‘Connectivity’ deals with the DT being a copy of the real system. In the 
framework, the Data Collection Module helps document the actual moves done by the operator in everyday 
work. The real-time data collection of the operator on the factory floor with technologies like Inertial 

Motion capture Units (IMU) & 3D vision shall allow on-site implementation of the concept. 
The second dimension ‘Analyzability’ assists the DT in decision making, assisting the human operator 

in real-time. Evaluating the motion data as discussed in the Operator Analysis & Feedback module allows 
fulfillment of this component of the true DT development. The current use case focuses on the evaluation 
of joint angles for fatigue evaluation. Upon further development, the predictions can be made based on 
analysis of motion data (Hernandez et al. 2020). The application of this  approach is not limited to operator 

fatigue but can also be used in making real-time decisions such as optimized scheduling, allocation of 
human resources, operator specific job tasks, and training new workforce. 

With the real-time demo, the ‘Visibility’ element of this DT development was demonstrated. With 
advanced tools and dedicated SDKs dashboard development can be customized on-demand. The framework 
integrated Qualisys and Unity software to represent a futuristic avatar of the operator with real-time 
diagnosis of a ‘lifting’ motion (Qualisys AB n.d.) (Unity n.d.). 

The discussed framework is a conceptual model with a high abstraction level, taking minimum details 
of the system into consideration with regard to the development of a true DT. Whereas, the fatigue analysis 
of the operator sits at a lower abstraction level, considering the very specifics of the operator body fatigue 
based on body joint movements. Hence, fulfilling the initial requirement of the fourth dimension of DT 
development i.e. ‘Granularity’. 

6 CONCLUSIONS AND FUTURE RESEARCH 

This study presented a digital twin framework for a manual material handling operator with a real-time 
proof of concept. Three modules of development were presented to achieve the goal of real-time analysis 
of an operator. In the Data Collection Module, a motion capture system was used to collect the precise 
positional data of the subject performing ‘lifting’ tasks along with worker fatigue measurements. The 
Operator Analysis and Feedback Module compared change in joint angles for all the repetitions of the 
lifting experiment as compared to the fatigue measures. In the Digital Twin Module, a real-time application 

displayed a real-time audio-visual cue to the operator on the basis of their knee joint movement. This real-
time tool demonstrates a process to evaluate the risk of musculoskeletal disorders in a manual material 
handler by providing real-time feedback on proper lifting motions. 

Future research will develop a predictive analysis tool and providing real-time feedback on operator 
fatigue levels on the basis of change in joint angles. Evaluating additional parameters such as forces acting 
on different body joints, heart rate and breathing rate can be included to study their effect on operator fatigue 

in real-time scenarios. Economic impact due to introduction of Digital Twins of operator in the workplace 
is also identified as a scope of future study. 
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