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ABSTRACT 

Current algorithms, computations, and solutions that predict how humans will engage in smart 

manufacturing are insufficient for real-time activities.  In this paper, a digital-twin implementation of a 

manual, manufacturing process is presented. This work (1) combines simulation with data from the 

physical world and (2) uses reinforcement learning to improve decision making on the shop floor. An 

adaptive simulation-based, digital twin is developed for a real manufacturing case. The digital twin 

demonstrates the improvement in predicting overall production output and solutions to existing 

problems. 

1 INTRODUCTION 

Improving shop-floor performance is critical to the future success of manufacturing. In recent years, major 

manufacturing countries have made strategical responses that will help make those improvements. For 

example, there are “Smart Manufacturing” in the USA, “Industry 4.0” in Germany, “Made in China 2025” 

in China, and “Industrial Value Chain Initiative” in Japan. If successful, these collective responses will 

enable the transition from today’s automated shop floor to tomorrow’s “smart” shop floor. “Smart” is 

realized by information and communication technologies and the capability to use manufacturing data for 

a better decision making in an integrated system of a shop floor. Such a smart shop floor will require smart 

production systems, smart manufacturing resources, smart manufactured products, smart raw materials, and 

smart human operators. Smart production systems, for example, will include order planning, production 

planning, job scheduling, quality control, on-time delivery, and automated fabrication. All production-

system functions have two major objectives: minimize energy and minimize cost. 

 In a smart shop-floor, the manufacturing resources should be easily reconfigured to respond to the 

changing market demands and changing shop conditions (Wang et al. 2017; Helu et al. 2020). The former 

includes customer orders and raw materials; the latter includes the real-time status of the operators, 

processes, equipment, and environment.  That status is used as inputs to real-time, data-analytics tools 

whose goal is to make optimal decisions (Zhang et. al. 2019). Despite the significant progress, generating 
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that status and making those decisions is still difficult given the typical challenges and problems on the 

shop-floor. The related technologies that help address these challenges include Digital Factory, Internet of 

Things (IoT), Cloud Computing, and Service-oriented Manufacturing System. 

 The aerospace, defense, and space industry are some of the top users of these technologies.  

Nevertheless, since their parts are normally very sophisticated and in low volume, humans are still an 

essential part of their production processes. There are usually about 5000 to 15 000 parts in production with 

different arrival times. The manufacturing process can get very complicated when it comes to a low-volume 

high-value product. This will add uncertainty and unpredictable breakdowns, which makes it difficult for 

production/factory managers to optimize or strategize the manufacturing operations. Most factory-floor 

inefficiencies are related to production plans. The use of digital twins will provide the production managers 

with timely meaningful insights to improve demand management, forecasting, schedule planning, 

production control, inventory management, and procurement.  

 There is a common misconception in the small and medium-sized enterprises (SMEs) that digitalization 

or digital twin modeling of their operations is too difficult or even impossible, especially in the manual 

process-based manufacturing industries. Therefore, the SMEs are concerned about making any significant 

changes in their manufacturing floor. In this paper, we demonstrate the argument made by Shao and Helu 

(2020) that digital twin implementations really depends on the context and viewpoint required for a specific 

use case, i.e., the digital twin is a fit-for-purpose digital representation by developing (1) A specific digital 

twin of a manufacturing process that has intensive human involvement and (2) a real case study to validate 

the adaptive simulation-based, digital twin.  

 The remainder of this paper is organized as follows: Section 2 provides some background information 

about digital manufacturing and digital twin. Section 3 introduces the general concept and the components 

of a digital twin for manufacturing processes. Section 4 discusses a case study of a manufacturing process 

to exemplify digital twins. Section 5 discusses the benefits and the limitation of the digital twin 

implementation. Section 6 concludes the paper and discuss the future work. 

2 BACKGROUND 

2.1 Digital Manufacturing 

Digital manufacturing is an integrated approach to manufacturing that is supported by information 

technologies. The integration of products, processes, and resources helps manufacturers make better 

decisions. It not only enables data-driven, decision-support tools but also stimulates the development of 

new production forms such as smart manufacturing and Industry 4.0. Digital manufacturing will be essential 

to the creation of new solutions for manufacturing industries (Zhou et al. 2012).  

 Current literature in the digital manufacturing domain usually concentrate on building static models 

where digitalization is completely separated from the actual production floor. For increasingly complex 

production needs, the digitalized model lacks adaptability because of its stagnant model premise. 

  Digitalization provides manufacturers with more data for their products, production, and systems. 

Meanwhile, computing has emerged as the cheapest, most abundant resource that we can deploy to analyze 

that data. Stochastic simulation has been used to generate future “what if” scenarios; and, manufacturers 

use those scenarios to improve cost, quality, time-to-market, and throughput. In general, by combining the 

capabilities of data analytics, simulation, optimization, and real-time synchronization (Shao and Kibira 

2018); a digital twin for manufacturing problems can be created.  Of course, a specific digital twin 

implementation will totally depend on the scope, objective, and technologies selected for the manufacturing 

problem. 

2.2 Digital Twin in Manufacturing 

An on-going ISO standard effort defines a digital twin in the manufacturing context as “fit for purpose 

digital representation of an observable manufacturing element with a means to enable convergence between 
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the element and its digital representation at an appropriate rate of synchronization (ISO 2020; Shao and 

Helu 2020).” The concept of a digital twin was first adopted in spacecraft design by NASA (Boschert and 

Rosen 2016; Brenner and Hummel 2017; Ferguson, Bennett, and Ivashchenko 2017.  Grieves 2014; Grieves 

and Vickers 2017), viewed a digital twin as a combination of modeling-based methods and optimization-

based methods. (Alam and Saddik 2017; Soderberg et al. 2017), on the other hand, as a real-time simulation 

with the capability of transferring information from adjacent, product, lifecycle phases.  

 Schleich et al. (2017) introduced a conceptual framework for building digital twins for specific 

applications. That framework ensured certain model properties such as scalability, interoperability, 

expansibility, and fidelity.  Latif et al. (2019) discussed an industrial, information-integration method using 

Open Platform Communications Unified Architecture (OPC UA) between the real process control and a 

simulation of that same process. Redelinghuys et al. (2019) propose a six-layer architecture that comprises 

physical twin as levels 1 and 2, local data repositories as level 3, IoT gateway as level 4, cloud-based 

repositories as level 5, and emulation and simulation as level 6. ISO is developing a standard “Digital Twin 

Framework for Manufacturing” to provide a generic guideline and a reference architecture for case-specific 

digital twin implementations (ISO 2020).  

 Currently, many case studies of digital twin implementations are within a laboratory environment. For 

example, an Automated Guided Vehicle (AGV) or Cyber Guided Vehicle (CGV) with self-adapting 

behavior was developed for solving a material handling problem (Bottani et al. 2017). There are also a few 

industrial cases of the digital twin implementation and evaluation. For instance, Liu et al. (2018) introduce 

a digital twin for an automated flow-shop, Zhang et al. (2019) show a digital twin driven cyber-physical 

production system, and Lin et al. (2019) describe a digital twin case study for the steel industry. However, 

the literature about digital twin in manufacturing does not cover the manual assembly-based situation yet. 

SMEs are still in the rudimentary level where workers are receiving raw materials, processing parts, 

assembling component parts, and inspecting the final product. The digitalization of this type of process will 

be challenging, but once implemented, it will help eliminate non-value-added production time and other 

inefficiencies. The digital twin of a human-involved operation will guide the operators interactively and 

provide production managers with actionable information that enables them to make their decisions more 

effectively. This paper provides a specific prototype of a digital twin implementation for a manufacturing 

process with intensive human involvement, where most of the operations and related data collection are 

manual or semi-automatic, to demonstrate the benefits and value of a digital twin.  

3 DIGITAL TWINS OF A MANUFACTURING PROCESS 

This Section introduces the general concept and the components of a digital twin for manufacturing 

processes. Creating a digital twin for a manufacturing process starts with establishing pipelines of 

manufacturing data. Some of the design and manufacturing data may be collected semi or fully 

automatically. There are normally two kinds of manufacturing operational data: real-time and historical. 

The real-time operational data may be collected using smart sensors and historical data may come from 

existing manufacturing applications. As shown in Figure 1, a digital twin must have the following basic 

components: a physical element, a digital element, and their integration. 
Depending on the context of the manufacturing problem and technologies selected, a digital twin may 

contain a variety of computational or analytic models pertaining to its real-world counterpart. Those models 
could range from principles-driven (natural laws), data-driven (statistical, machine learning/artificial 
intelligence), and geometry-driven (3D CAD), and visually-driven (virtual and augmented reality). A digital 
twin does not have to have all these functionalities, it should be composed entirely based on specific use 
case requirements (Shao and Helu 2020). In general, a digital twin can simulate the state, predict the 
behavior, and optimally respond to the changing conditions of its physical element through the modeling 

and analytics of relevant data. A feedback loop from the digital twin to the physical element, may be 
controlled by a user, transfers the recommendations, which provide actionable decision guidance for the 
production managers. This decision aid should be intuitive and help tweak or adjust the manufacturing 
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process parameters. The process may be repeated continuously until the best-case scenario or production 
target is achieved. 

 

 

Figure 1: Concept of the Digital Twin of a Manufacturing Process 

3.1 Physical Elements 

In the manufacturing world, a physical element refers to the manufacturing equipment, systems, and 

processes on the production floor. A manual-intensive, manufacturing process may involve workers, 

workstations, assembly lines, and the products. The component parts arrive as raw materials. After going 

through all the different workstations, a final product is completed. For instance, a semiconductor process 

consists of raw material arrivals, fab test, die package, assembly, inspection, and delivery. Each of these 

elements can be the physical element of a digital twin. 

3.2 Digital Elements 

The digital element of a manufacturing process is the digital representation of its corresponding physical 

element. Depending on the use case requirements, it might include an optimization model that captures 

constraints and performance objectives. Or, it might include a simulation model where simulation logic and 

reasoning mechanisms are designed to mimic the physical operation. Or, then again, it might include a data 

analytics model to explore the insight of any collected data.  

 A database may be necessary for the digital twin to store real-time data, historical data, intermediate 

results, and recommendations (e.g., control commands). Data collected from the physical elements are 

crucial for the dynamic modeling of the manufacturing process. The data may include process parameters, 

product data, production-line-layout information, and information about production equipment and their 

operations, workpieces, material, tools, and fixtures. From a product lifecycle point of view, it may include 

as-designed data (product design specifications, process and engineering data), as-manufactured data 

(production equipment, material, method, quality, and operators), and as-maintained data (real-time and 

historical configuration and operation states, and maintenance records). The data may also include time and 

resources required to complete an operation. For a manual manufacturing processes, the data collection can 

also be a manual process. 

3.3 Integration 

A digital twin’s feasibility and effectivity entirely depend on the integration between the digital element 

and the physical element, i.e., the two-way communication (Shao et al. 2019). The integration should be 

dynamic, bi-directional, and possibly real-time.  

 Other than the real-time data sent from the physical element to the digital element, a feedback loop 

(better if automated) is needed from the digital element to the physical element for a digital twin to be 
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successfully integrated. In reality, a feedback loop often involves human interaction, e.g., production 

managers select a recommendation. Once the recommendations are applied, the quality, the efficiency, the 

time, and the cost for production will be effectively improved.   

4 THE CASE STUDY OF A DEFENSE PRODUCT ASSEMBLY 

In this study, we focus on a defense product that requires a manual, assembly process and a receiving, 

staging area. The objective of the study is to find the best sequence of assembly operations, given the 

uncertainties in part-arrival times, machine-breakdown times, data-communication times, integration, and 

part-obsolescence times. The physical system is approximated as a linear, discrete-event, time-invariant 

system. The users of the digital twin are the production managers. All data are collected monthly from the 

production floor.  

 A high-level instantiation of the digital twin concept (Figure 1) is shown in Figure 2. The top half 

depicts the digital elements and the bottom half represents the physical elements of the manufacturing 

process. From a database, historical data is fed into the digital twin, which is an adaptive simulation, as 

initial inputs. Initial data comes into two varieties: first pass yield (FPY) and hour per unit (HPU). The 

digital twin model provides process recommendations as the feedback loop. Then, the production managers 

can select and apply the recommendations to the manufacturing process. Real-time data is fed to the digital 

twin from the physical manufacturing process.  
 

 

Figure 2: Data Flow of the Case Study 

4.1 Physical Elements 

The manufacturing process produces one product, called Z, which needs 44 raw materials - at different 

production stages - from various suppliers. Those stages involve 79 operational workstations including 

testing, assembling, soldering, torqueing, and inspecting. Each workstation is denoted as "opxx" where xx 

is the operation number. Operations along with FPY and HPU are collected for a two-year time frame 

starting from April 2017 to April 2019. Important assumptions about the process, for the purpose of data 

processing, are given below.  
 

• Each day is 8 h and each month is 30 d. 

• Only one operation can be processed at a time for an individual operation.  

• There are no interruptions during the process of an individual operation, which means that the work 

on an operation cannot be paused in the middle and then continued later.  

• All workstations are at their own location and the material is transported from one operation to 

another where the subsequent operation is performed. Due to missing information about transport, 

the time needed to transport material from one to another operation is set to zero.  
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• Breaks at work, failures, troubleshooting, etc. are included in the processing times.  

• Maintenance work is not considered.  

• The number of workers at the workstations is not considered. 

• The work orders are dependent on each other. The operations are sequential based on their operation 

numbers. 

4.2 Digital Elements 

4.2.1 Physical Process Map 

Creating a digital twin of a manufacturing process requires a good understanding of the process. First, a 

process map needs to be created with information about all the raw materials and operations.  Since the 

core module of the digital twin is a simulation model, the process map provides the requirements for the 

development and execution of the model. The key requirements include (1) the definitions of the assembly 

scenario to be carried out, (2) the operational data captured and analyzed for identifying the key parameters, 

(3) the critical process parameters and operational constraints to determine the behavior of the physical 

elements, and (4) the simulation of the assembly scenarios and optimization according to a set of constraints.  
 An “input_final” text file is prepared to capture the process map. In Figure 3, the incoming operations 
are provided on the right-hand side of the vertical bar and the output operation is provided on the left. The 
incoming raw materials are listed based on alphabetical order such as AB, AC, and AD. Operation numbers 
are defined by ‘opXX’ and ‘AssyX,’ where X is the operation number. For instance, op50 consists of op40; 
material AB, AC, AD; and assembly operation 1. 

 

 

Figure 3: A section of the physical process map. 

4.2.2 Data Processing 

The initial dataset was taken from the first month of the data stored in an excel spreadsheet. This dataset 
includes operation numbers along with the time required to complete (FPY and HPU), incoming raw 

materials and their estimated numbers, and assembly operations. The data is pre-processed and converted 
into the CSV (Comma-Separated Values) format. The pre-process handles several data issues such as 
missing records of operations, missing operation-end timestamps, unintentional and deliberate errors, 
security issues related to privacy, and nondisclosure of business secrets. The clean CSV-formatted dataset 
is stored in a file for the simulation model to use as needed.  

4.2.3 Simulation Logic 

As indicated in Figure 2, the core of the digital twin is an adaptive simulation model. Traditionally, the off-

line simulation has a minimal feedback loop, runs for the entire time period at once, and rarely provides 

2664



Latif, Shao, and Starly 
 

 

assistance to the user for the next cycle. The adaptive simulation-based digital twin provides the decision-

making assistance, allows real-time data input, and enables adjustment capability. The simulation runs for 

a specific time period (i.e., 1 month) with an initial/historical dataset (FPY and HPU for each operation).  

When a real-time dataset is collected, the simulation replaces that month’s data with the real-time data. 

However, if it does not find the real-time dataset, the simulation continues with the existing dataset. The 

real-time dataset comes from the manufacturing process, and the data is collected, cleaned, processed, and 

stored in the CSV format. The simulation ends once the entire time period completes (i.e., 12 months).  A 

recommendation list is generated by the digital twin; the list gets re-ranked constantly based on the score 

of each item on the list.  

 Figure 4 shows the simulation logic in a nutshell. When the adaptive simulation moves into the “wait” 

mode, it asks the users if they want to review the process for the worst performing operations. If the user 

wants to review the recommendation list, based on the latest information, the digital twin shows the five 

worst performing operations and the user selects one of them to review. Once the user selects and applies 

the recommendations from the list, the digital twin generates a dataset with improved parameters for that 

operation. Since the operations are picked from future time periods, the generated dataset waits for the 

actual operation to happen. Once the actual operation happens and the real-time data for that operation 

updates the dataset, the generated dataset is compared with the updated dataset. If the difference between 

the datasets stays below a pre-defined threshold value (30 % of the real-time dataset), it signifies that the 

recommendation has improved the process output. On the contrary, if the difference stays above the 

threshold value, it shows the selected recommendation has not worked better. Either way, the feedback goes 

to the recommendation list and re-ranks the list for the next cycle of usage.  

4.2.4 Simulation Execution 

The adaptive simulation model was developed using Python 3.6. When a specific operation (e.g., op560) is 

executed, assuming it is from the worst 5 operations, the user can compare the real-time dataset (FPY and 

HPU) with the generated dataset (10 % improved FPY and 10 % decreased time). After applying the 

recommendations, the real-time data should demonstrate significant improvement from the generated data. 

If the parameters (FPY and HPU) of the real-time dataset are more than 30 % of the parameters of the 

generated dataset, the applied recommendations will be regarded as a failure, will get a score of 0, and will 

get pushed down on the recommendation list. If the parameters are similar (real-time data is within 30 % 

of generated data), it indicates that the recommendations work well, it will get a score of 1, and will get 

push up in the recommendation list. In either cases, the recommendation list will be updated and stored in 

the database for use in the next cycle as the initial dataset. With this rule, the recommendation list for the 

operations always gets updated; this reflects the reinforcement learning (RL). 

 RL is a “trial-and-error” approach that the learning agents learn optimal decisions by interacting with 

the environment. The “trial-and-error” rule means RL agents make a trade-off between known decision 

exploitation and new decision exploration to achieve an optimal policy. Figrure 5a shows the RL model 

(Barto and Sutton 1997). A RL agent and its environment interact over a sequence of discrete time steps. 

At each time period t, the agent completes an iteration with the environment. The action at are the chocies 

made by the agent in state st. In the tth iteration, the agent observes the current environment state st, and 

chooses an action at. After that, the environment transfers from the state st to st+1 following the a state 

transition probability and returns a reward rt(st, at) according to the performance of at. So the rewards are 

the basis for evaluating agents’ chocies. Figure 5b is an instantiaiton of the general RL concept for  this 

case study. The environment is the recommendation list, the agent is the threshold value, the state is the 

simulation period, the reward is generated simulation data, and the action is to re-rank the recommendation 

list. In a different state, new data enters into the equation and the threshold value is compared with the 

generated input. A new recommendation list is created. 
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 Eventually, all items in the recommendation list will truly represent the recommendations that have 

been tested and verified with a proven track record. In figure 6, the default initial recommendation list 

(Figure 6a) and the re-ranked recommendation list (Figure 6b) for Op560 in the next cycle are shown. The 

re-ranked recommendation list is showing “Find An Alternative Material” at number 1 because in the 

previous run, the user has selected and successfully found that the recommendation is helpful. 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

Figure 4: Simulation logic for the digital twin of the manufacturing process. 
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   Figure 5a: The RL model.       Figure 5b: RL architecture for the case study. 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 6a: Initial recommendation list.    Figure 6b: Re-ranked recommendation list.  

4.2.5 Model Validation 

To validate the model, 24 months of actual data is collected. The first 12 months data is used as initial data. 
The rest of the 12 months data is used to validate the model. In addition to that, a desk audit has been 
performed to validate the output of the adaptive simulation model. In future work, formal verification and 
validation techniques will be applied.  

4.3 Integration 

The digital twin includes two-way communications: (1) the real-time data is collected from the 

manufacturing process, processed, and updated in the digital twin and (2) the recommendation list is 

generated by the digital twin and applied to the manufacturing process. In this case study, most of the data 

are collected manually, processed in a separate application.  

 A Python-based parser was developed to interpret the CSV files, a text file provides the operation 

sequence. The recommendation list is saved in JSON. Each time the user manually enters a recommendation 

or updates the recommendation list, a new JSON file replaces the older one for that specific operation. For 

instance, if a user makes an update on OP560, the simulation first looks for a JSON file in the 
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recommendation list. If it does not find the JSON file, it shows the default recommendation list. Based on 

user’s selection, the recommendation list gets updated and saved in the OP560 JSON file. Next time, 

whenever the user wants to see the recommendation list for OP560, the OP560 JSON file is shown for the 

user. The Python parser does all the data transfer except the initial CSV file generation. The data is 

transferred once in every month, so the overall effort to run the digital twin is minimal. Even though the 

data transfers monthly, the data comes from the real-manufacturing floor, and therefore, it is considered as 

real-time data. 

 In this case study, the initial dataset comes from the historical database. It is the data from April 2017 

to March 2018. The simulation will ask for the real-time data for each month, e.g., April 2018, May 2018, 

or June 2018, once the real-time data is available, simulation replaces the existing dataset with the real-time 

data, and recalculate the output at the end of the simulation. If the user wants to improve the efficiency or 

reduce the processing time of the operation, the simulation provides the worst, five, performing operations 

that have the highest potential to be improved and a recommendation list for the improvement of each 

operation. The equation used to find the worst five operations is given below. 
 

          𝑥 = 𝐻𝑃𝑈 ∗ 𝐹𝑃𝑌2 . (1) 
 

For instance, OP560 has two parameters: FPY as 1.0 and HPU as 0.75. OP560’s ‘x’ value calculates as 

0.75. With a similar calculation, the top, five, worst operations are derived based on the lowest ‘x’ value. 

Therefore, operations with a lower yield rate and higher HPU will show up as a worse performing operation.  

 The collected data is fed into the digital twin to replace the previous dataset. Therefore, the digital twin 

can periodically adjust its prediction output and point out the areas to improve. The recommendation list 

brings useful insight to the worst operations. Based on the application and processed data feedback, the 

recommendation list constantly gets evolved. The successful recommendations come at the top of the list 

and the failed ones go to the bottom of the list. Therefore, every operation shows a unique list that has been 

tested and verified over the period of time. For instance, after multiple runs of the digital twin, a 

recommendation list can show the recommendations that have been successful for the similar situation 

multiple times. Therefore, the user can make a better decision. 

5 DISCUSSION 

The digital-twin concept is still new in the manufacturing domain. There are not many successful digital 

twin implementations available especially for those processes that have a lot of human interactions (Ma 

et al. 2019). In addition to the confusion of the digital twin concept, the advent of new information 

technologies also plays a role in this, because designing, implementing, and integrating digital twins 

with those technologies could get very complicated. The idea of a digital twin has to be a comprehensive 

virtual replication of all physical and functional activities within a shop floor makes it difficult for 

manufacturers to adopt, invest, and implement digital twins. Completing specific use cases of digital 

twins with a manageable scope will help them better understand the efforts they need to involve and 

benefit they will get. This case study provides a success story of digital twin implementation even for a 

manual, complicated, shop-floor problem with uncertainties associated with multiple materials, 

operation sequences, human interactions, and real-world data. The case also provides an implementation 

procedure. 

 Part of that procedure involves creating a process map. Other parts include data collection, data 

processing, and data integration. Users (i.e., production managers) need to understand the impact of 

these data-related issues on the digital twin output. In addition, since most of the operations involve 

manual assembly, managers need to understand how process variability contributes to the variability in 

the data. In our case, we simply used the average of the data to nullify that variability. However, an 

advanced level of mathematical technique could be deployed to tackle the variability problem.   
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 Because of all these uncertainties, a dynamic simulation model is built. The simulation output is a 

recommendation list that includes what to make, when to make it, and how to make it. The 

recommendation list evolves continuously. Although the recommendation list should reflect the 

appropriate solutions for the manufacturing operations, the impact of each recommendation has been 

assumed equal. In real-life the impact is obviously different, however, for simplicity, the difference 

between impacts has not been accounted. Similarly, the threshold value for the comparison of the two 

parameters between the generated dataset and real-time data set should be different based on the 

operations. For implementation feasibility, the threshold point is kept the same for all the operations. 

6 CONCLUSION AND FUTURE WORK 

The digital twin can provide concrete value and help production managers take the key strategic 

decisions. A digital twin can have many applications across its life cycle depending on its context and 

purpose. It can answer the critical what-if questions more accurately in real-time. It is expected that the 

applications of digital twins can contribute to improved operations management, operations execution, 

resource utilization, lead times, and due-date reliability. 

 In this paper, an adaptive, simulation-based, digital twin has been implemented. The real, case study 

showed proof of concept. It further proves that digital twin needs to be use case specific. Specifically, 

this work targets a human-involved manufacturing process where automation is not completely 

available. It can be speculated that this approach will have instructional significance when 

manufacturing industries build or revamp a plant, arrange the facilities or staff, and polish up the process 

flow.  

 With more data and applications, further issues and challenges of the development, implementation, 

validation of the digital twin in real manufacturing environments will be identified. As a future activity, 

the authors would like to apply the approach to more manufacturing problems including a more detailed 

evaluation of the machine’s health and the planning of the maintenance activities.    
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