
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

DATA-DRIVEN FAULT TREE MODELING FOR RELIABILITY ASSESSMENT OF
CYBER-PHYSICAL SYSTEMS

Sanja Lazarova-Molnar
Parisa Niloofar

Gabor Kevin Barta

Mærsk Mc-Kinney Møller Institute
University of Southern Denmark

Campusvej 55
Odense, 5230, DENMARK

ABSTRACT

Reliability of a system is a measure of the likelihood that the system will perform as expected for a
predefined time period. Fault tree analysis, as a popular method for analyzing reliability of systems, has
gained a widespread use in many areas, such as the automotive and aviation industry. Fault trees of systems
are usually designed by domain experts, based on their knowledge. Since systems change their behaviors
during their lifetimes, knowledge-driven fault trees might not accurately reflect true behaviors of systems.
Thus, deriving fault trees from data would be a better alternative, especially for non-safety-critical systems,
where the amounts of data on faults can be significant. We present an approach and a tool for Data-Driven
Fault Tree Analysis (DDFTA) that extract fault trees from time series data of a system, and uses simulation
to analyze the extracted fault trees to estimate reliability measures of systems.

1 INTRODUCTION

Reliability of a system is a measure of the likelihood that the system will perform as expected for a predefined
time period. Reliability, however, can be a difficult metric to measure, and engineers have struggled with
it throughout history. Most of the tragic accidents that have happened in the field of engineering were
due to overestimating reliability of a system (Yuge et al. 2016). Fault tree analysis is a prominent method
in analyzing safety and reliability of systems (Ruijters and Stoelinga 2015). It has been adopted as a
standard reliability model by many industries such as automotive, aviation, and nuclear power (Lambert
2004; Griffor 2016; Haasl et al. 1981).

Fault tree analysis investigates which components influence failure of a system through modeling
probabilistic causal chains of events that end in a global system failure. These causal relationships, which
shape the graphical structure of fault trees, are usually constructed by domain experts, based on their
experience and the information they have gathered on the topic (Berikov 2004). Therefore these fault trees
are mostly knowledge-driven and not data-driven. Fault trees of complex systems with huge number of
components are more prone to uncertainties and faults, which cannot be always accurately captured through
experts experience.

Nowadays, using the power of computers and new technologies, it has become easier to gather, store
and process large amounts of data. Hence, researchers are able to use data-driven methods to extract
information about the status of a system under study. Extracting a model from data is known as data-driven
modeling (Lazarova-Molnar and Li 2019). Data-driven modeling approaches are gaining attraction in many
areas for their ability to analyze data from system in order to derive behaviours of systems (Solomatine

2719978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Lazarova-Molnar, Niloofar, and Barta

et al. 2008; Kim et al. 2017). Consequently, using data sets and data streams, stemming from fault-related
behaviours of a system, could be a fundamental step in deriving fault trees of systems.

The goal of this paper is to introduce a method for Data-Driven Fault Tree Analysis (DDFTA), and
a tool that implements it. The tool extracts and analyzes fault trees from time series data of a system to
estimate the system’s reliability measures. Deriving reliability models from data can be more insightful
than utilizing solely expert knowledge, as it captures the true behavior of a system, after it has been put into
use. The data-driven models can, however, very well be supplemented by expert knowledge for validation
and approval of extracted models.

2 FAULT TREE ANALYSIS: BACKGROUND AND RELATED WORK

Fault tree analysis (FTA) works by modeling, both logically and graphically, the paths to failure for a
system or component (Volkanovski et al. 2009). Thus, a fault tree is a directed acyclic graph (DAG) whose
leaves are the basic events (typically basic faults), and the root represents the top event, which is typically
a system failure. The gates in a fault tree represent the propagation of failure through the tree (Ruijters
and Stoelinga 2015).

Repairable fault trees consider both faults and repairs in a system. Hence, for each basic event that is
typically associated with a fault, there is a probability distribution that describes the fault’s occurrences,
and potentially a probability distribution of the times to repair. Correspondingly, the relevant fault-related
time series data of a system consists of a sequence of status change times for each basic event and the
system state.

There are two essential analysis techniques for fault trees, qualitative analysis and quantitative analysis
(Geymayr and Ebecken 1995). Qualitative analysis considers the structure of the fault tree, while the
quantitative analysis computes failure probabilities, reliability, etc. of the fault tree. The first step towards
computing reliability of a system is to extract the structure of the system’s underlying fault tree. Once the
structure of the fault tree is discovered, using the probability distribution functions of the basic events, we
can calculate the reliability of the system, the likelihood of a top event occurrence, as well as those of the
basic events that have caused the occurrence of the top event. Lee et al. wrote a survey paper explaining
different methods of fault tree analysis (Lee et al. 1985). They mention techniques of automated fault tree
construction such as using Synthetic Tree Model (STM), Computer Automated Tree (CAT), which uses
decision tables, and automatic fault-tree synthesis from the reliability graphs.

Until recently, the only source to build structures of fault trees was experts’ knowledge. Considering
the complexity of nowadays systems, adaptability of these knowledge-based fault trees can be questionable
(Linard et al. 2019). Furthermore, systems often evolve during their lifetime, exhibiting behaviors that are,
even, unpredictable during design time. Thus, there have been some notable efforts that attempt to utilize
data, detailed as follows.

As one of the earlier attempts, Mukherjee and Chakraborty (2007) describe a technique to automatically
generate fault trees using historical maintenance data in text form. Their technique relies on domain
knowledge and linguistic analysis. The above-mentioned techniques also use data to construct a fault tree,
however they do not use time series data, but rather other types of data, such as text and reliability graphs.
More recently, Nauta et al. (2018) introduced LIFT to learn the structure of static fault trees from untimed
data bases with Boolean event variables. The relationships between events in a fault tree are causal, so
they applied Mantel-Haenszel statistical test to infer the most likely causal relationships among the events.
Linard et al. (2019) applied an evolutionary algorithm to learn fault trees from untimed Boolean basic
event variables. Instead of the independence test in the LIFT algorithm, they used a score based algorithm
to extract fault trees. Also their data bases did not need any information about intermediate events. Before
the work of Nauta et al. (2018) and Linard et al. (2019), observational data were used to generate FTs
with the IFT algorithm (Nolan et al. 1994) based on standard decision-tree statistical learning. Our method
is different from those we discovered in the literature since we consider time series data of a system’s
fault-related events, and provide a complete solution to calculate reliability measures from observational

2720

Lazarova-Molnar, Niloofar, and Barta

data. A challenge in working with time series data is that in case of a system with rare events (as faults
typically are), we need to monitor the system for a long time, and collect a lot of observational data, in order
to make sure that we have information about almost all factors leading to the system failure. This challenge
can be overcome through collaborative data analytics (Lazarova-Molnar et al. 2018; Lazarova-Molnar et al.
2019).

3 DATA-DRIVEN RELIABILITY ANALYSIS

In this section, we describe the methods and techniques that we developed to enable the data-driven
reliability modeling and analysis. The process workflow of the proposed approach is shown in Figure 1,
where we can see that our approach depends on the availability of time series data on faults’ occurrences
and the time it takes for them to be repaired. Furthermore, Algorithm 1, describes the pseudocode of our
method.

Time Series
of Faults Data

Reconstructed
Fault Tree

Reliability
Estimates

Figure 1: Process workflow for the data-driven reliability analysis.

The DDFTA (Algorithm 1) comprises of two main steps: 1) structure learning part which is also known
as qualitative analysis and 2) quantitative analysis based on the output of the first step. In the structure
learning step, we extract the minimal cut sets from the time series data set, and then use Boolean algebra to
build a fault tree that aims to be mathematically identical to the true fault tree of the system. Although there
are other methods (Nauta et al. 2018; Linard et al. 2019) to learn the structure of a fault tree, for building
non-dynamic repairable fault trees, Boolean algebra is still an efficient method. Comparing the performance
of different algorithms in modelling more complex systems can be proposed for future research. In the
second step, the distribution functions of the basic events are approximated from the time series data.
These reliability and repair distribution functions of components associated with basic events, along with
the fault tree structure, are inputs to the proxel-based simulation, which is then used to calculate system’s
reliability measures, in form of transient complete solutions. The proxel-based simulation is well-known
for its ability to cope with stiff models, as fault models are typically (Lazarova-Molnar and Horton 2003;
Lazarova-Molnar 2005). Namely, the proxel-based simulation has proved more accurate and less sensitive
to rare events than Monte Carlo, and also efficient once the improvement of extrapolation of solutions has
been implemented.

Quantitative reliability analysis can be performed both analytically and through simulation. The
analytically computed reliability distribution shows only the probability that the system is operating
correctly before the first failure. It does not consider if the components were to be repaired. Therefore,
this analytically computed reliability is different from the simulation-based computed reliability of the
system. An example result of analytically computed reliability assessment for the top event in a fault tree
is shown in Figure 2, where we have the PDF (probability density function), CDF (cumulative distribution
function), Reliability and Failure Rate for the top event. In contrast to the analytically computed reliability,
the simulation-based computed reliability shows the reliability of the top event when failures and repairs
are taken into account.

2721

Lazarova-Molnar, Niloofar, and Barta

Algorithm 1 Data-Driven Fault Tree Analysis: DDFTA
1: procedure STRUCTURE(timeseries dataset)
2: binary dataset← Binary(timeseries dataset) . Converts timeseries into binary data set
3: MC←MCS(binary dataset) . Extract the minimal cut sets
4: FT BooleanEquation← BooleanAlgebra(MC) . Shows the fault tree in terms of boolean equation by simplifying the MCS using

Boolean algebra
5: FaultTree← Graph(FT BooleanEquation) . returns the graphical structure of the Boolean equation
6: return FaultTree
7: procedure MCS(binary dataset)
8: data← binary dataset
9: t← number of rows(data)

10: CutSet← 0
11: for i← 1 to t do . Identifying the cut sets
12: if data[i, TopEvent]=1 then
13: BESet← indices of Basic events with state 1 in the ith row
14: CutSet←CutSet ∪BESet . Set of all cut sets
15: CutSetUnique← Remove duplicate sets(CutSet)
16: c← number of sets(CutSetUnique)
17: for i← 1 to c do . Refining the cut sets into MCS
18: if ∃ C ∈CutSetUnique s.t. C ⊂Ci then
19: remove Ci from CutSetUnique
20: return CutSetUnique
21: procedure RELIABILITY(FaultTree, timeseries dataset) . Calculates the reliability measures given a fault tree structure
22: N← Number of Basic events
23: for k← 1 to N do
24: RelDistk ← DistributionFitt(time-to-failure for BasicEventk)
25: MainDistk ← DistributionFitt(time-to-repair for BasicEventk)
26: MT T Fk ← average(time-to-failure for BasicEventk)
27: MT T Rk ← average(time-to-repair for BasicEventk)
28: OpeAvak ← Operational availability(BasicEventk)
29: InsAvak ← Proxel(FaultTree,BasicEventk)
30: RelDistTop← DistributionFitt(time-to-failure for TopEvent)
31: MainDistTop← DistributionFitt(time-to-repair for TopEvent)
32: MT T FTop← average(time-to-failure for TopEvent)
33: MT T RTop← average(time-to-repair for TopEvent)
34: OpeAvaTop← Operational availability(TopEvent)
35: InsAvaSystem← Proxel(FaultTree,TopEvent)
36: return RelDist, MainDist, MTTF, MTTR, OpeAva, InsAva

DDFTA, described by Algorithm 1, consists of three functions: ST RUCTURE (lines 1-6) returns the
skeleton of the fault tree, MCS (lines 7-20) which extracts the minimal cut sets is a sub function here,
RELIABILITY function (lines 21-36) applies the output of the ST RUCTURE function and returns the
reliability measures of the system.

To illustrate DDFTA, let us consider the fault tree configuration shown in Figure 3 as the ground truth.
We use abbreviations BEn to denote Basic Event n. Time series are generated from this fault tree with
the reliability and maintainability distributions shown in Table 1. An example of the generated time series
data is shown in Figure 4.

Table 1: Reliability and maintainability distribution functions of the basic events in Figure 3.

Distribution BE1 BE2 BE3 BE4 BE5
Reliability N(4 ,1) Exp(0.333) N(4 ,1) Exp(0.333) LogN(4 ,1)
Maintainability Exp(0.5) N(4 ,1) LogN(4 ,1) Weibull(5,2) Exp(0.5)

The first elements in the time series of each event show the time of failures for the component associated
with that event. For example, the basic event BE1 first occurs at time 4.5911. The second element illustrates
the repair time for the component modeled by that event. It means that the component modeled by basic
event BE1 is back in operation at time 5.0549. Again, the third element represents a failure and the fourth
element, the corresponding repair time, and so on.

2722

Lazarova-Molnar, Niloofar, and Barta

Figure 2: Example result of an analytically calculated reliability of a top event.

Figure 3: Ground truth fault tree.

The structure of the fault tree is learnt from the time series data, through discovering the combinations
of basic events that lead to system failure (details are discussed in section 3.1). Once the structure is
learnt, the probability distributions and reliability metrics can then be estimated from the data and the
reconstructed fault tree. An example solution for the above-described scenario is shown in Figure 5. In the
plot, availability changes over time and if we compare it with the operational availability, the instantaneous
availability is firstly oscillating, but it also approaches the operational availability.

3.1 Qualitative Analysis: Learning the Structure of a Fault tree

In our approach, the fault tree structure is determined solely based on time series data, using basics of
qualitative analysis of fault trees. Specifically, cut sets and minimal cut sets (MCS) are used in determining
the structure (Lee et al. 1985). A cut set in a fault tree is a set of basic events whose (simultaneous)
occurrence ensures that the top event occurs. A minimal cut set is a cut set which has no subset that is a
cut set. This, essentially, means the minimal cut set cannot be reduced to a smaller set which will cause a
system failure. In Table 2, cut sets and minimal cut sets of the fault tree of Figure 3 are listed. Minimal
cut sets, extracted from the time series data, provide information about what basic events have caused a
system failure, and from this we can deduce the gate connections between the basic events.

2723

Lazarova-Molnar, Niloofar, and Barta

Figure 4: An example of the generated time series data from the ground truth fault tree of Figure 3.

Figure 5: System availability, calculated using the proxel-based simulation method for the fault tree of
Figure 3.

In order to obtain the minimal cut sets, we need to identify the cut sets of the fault tree by examining
the time series of the top event (Lines 11-15 in Algorithm 1). At each time-of-failure of the top event
we determine which combination of the basic events (cut sets) have caused the failure, or in other words,
which basic components are in a failed/faulty state. Then, we refine the cut sets into minimal cut sets
(Lines 17-19). In the following, we illustrate the fault tree structure learning algorithm using time series
data and the techniques from Boolean algebra.

Let us consider the time series data in Figure 4. The original time series data can be converted into
a data set with binary entries for basic events and the top event (see Table 3). Each event is given a state
of 0 or 1, representing if the component associated with the event is operational or not, respectively. For
example, we observe that the component associated with basic event BE3 is in a faulty state from time
3.3619 to 4.2205, when it begins operating till its broken again at time 5.7557 to 8.8919.

Table 2: Sets of cut sets and minimal cut sets for the fault tree of Figure 3.

Cut sets Minimal cut sets
{BE3, BE4, BE1} {BE3, BE4, BE1}
{BE3, BE4, BE2} {BE3, BE4, BE2}
{BE3, BE4, BE1, BE2}
{BE3, BE5, BE1} {BE3, BE5, BE1}
{BE3, BE5, BE2} {BE3, BE5, BE2}
{BE3, BE5, BE1, BE2}
{BE4, BE5, BE1} {BE4, BE5, BE1}
{BE4, BE5, BE2} {BE4, BE5, BE2}
{BE4, BE5, BE1, BE2}
{BE3, BE4, BE5, BE1, BE2}

2724

Lazarova-Molnar, Niloofar, and Barta

Table 3: Time series of Figure 4 converted into a binary data set.

Time BE1 BE2 BE3 BE4 BE5 TopEvent
0.6982 0 1 0 0 0 0
1.6238 0 1 0 1 0 0
3.3619 0 1 1 1 0 1
4.1153 0 0 1 1 0 0
4.2205 0 0 0 1 0 0
4.5911 1 0 0 1 0 0
5.0550 0 0 0 1 0 0
5.7557 0 0 1 0 0 0
7.7566 0 1 1 0 0 0
8.2877 1 1 1 0 0 0
8.4317 1 1 1 1 0 1
8.7740 0 1 1 1 0 1
8.8919 0 1 0 1 0 0

Considering the system failure times in Table 3, or the rows in which the top event is in a failure state
(has the label 1), we extract the cut sets. At times 3.3619 and 8.7740, components associated with basic
events BE2, BE3 and BE4 are all failed at the same time, and also the system fails. Obviously there are
more cut sets, like {BE1,BE2,BE3,BE4} at time 8.4317, leading to system failure, that are not shown
in our illustrative data set example here. If the time series data set is a representative and large enough
sample of the true system under study, then the minimal cut sets represented in the first column of Table
2 can be extracted from the data.

Now we use laws of Boolean algebra (see Table 4) on the extracted minimal cut sets, to represent the
reconstructed fault tree as a Boolean equation. Symbol “+” is used to represent the logical OR operator
and the symbol “.” is used to represent the logical AND operator (One can refer to Haasl et al. (1981) for
a more comprehensive rule tabulation and discussion of Boolean algebra).

Table 4: Some selected rules of Boolean algebra.

Rule Mathematical form
Commutative rule A.B=B.A

A+B=B+A
Associative rule A.(B.C)=(A.B).C

A+(B+C)=(A+B)+C
Distributive rule A.(B+C)=A.B+A.C

A+(B.C)=(A+B).(A+C)
Idempotent rule A.A=A

A+A=A
Absorption rule A.(A+B)=A

A+A.B=A

Table 5 illustrates the steps in building a fault tree in terms of Boolean equations from the minimal
cut sets. Step 1, begins by putting an OR gate between the minimal cut sets. In step 2 the distributive law
is applied.

Table 5: Reconstructing a fault tree based on minimal cut sets of Table 2.

Step Boolean representation
1 T=(BE1.BE3.BE4)+(BE2.BE3.BE4)+(BE1.BE3.BE5)

+(BE2.BE3.BE5)+(BE1.BE4.BE5)+(BE2.BE4.BE5)
2 T=BE1.(BE3.BE4+BE3.BE5+BE4.BE5)

+BE2.(BE3.BE4+BE3.BE5+BE4.BE5)
3 T=(BE1+BE2).(BE3.BE4+BE3.BE5+BE4.BE5)
4 T=IE1.IE2

2725

Lazarova-Molnar, Niloofar, and Barta

Step 3, indicates that there is an OR gate between basic events BE1 and BE2. Also (BE3.BE4+
BE3.BE5+BE4.BE5)means that there is a 2/3 voting gate between basic events BE3, BE4 and BE5. Finally
if take (BE1+BE2) as intermediate event IE1, and (BE3.BE4+BE3.BE5+BE4.BE5) as intermediate
event IE2, these intermediate events are connected by an AND gate. So the fault tree in step 4, which is
constructed from the minimal cut sets of Table 2, is identical to the ground truth fault tree in Figure 3.

There is not one correct fault tree for a problem but many correct forms which are equivalent to one
another. The rules of Boolean algebra can thus be applied to restructure the tree to a simpler, equivalent
form for ease of understanding or for simplifying the evaluation of the tree (Haasl et al. 1981).

3.2 Quantitative Analysis: Computing the Reliability of the System

Once the structure of the fault tree is extracted from data, we use it to obtain reliability metrics such as
mean time to failure (MTTF), mean time to repair (MTTR), and operational availability of the system. The
first step to the quantitative analysis is to estimate reliability and maintainability probability distribution
functions of the basic events based on the time series data.

The average of the times-to-failure yields the MTTF and, correspondingly, the average of the times-
to-repair data samples yields the MTTR. Furthermore, to also consider non-exponential events, probability
distribution fitting techniques, featuring parametric or regression methods (Oosterbaan 2019), are used to
determine the reliability and maintainability probability distribution for each basic event from the sample data
sets of times-to-failure and times-to-repair, respectively. Since reliability is complementary to probability of
failure, reliability of each basic event can also be estimated. Reliability of the whole system is then obtained
using probability algebra. For example, for two basic events BE1 and BE2, if they are connected by an AND
gate then: R(t) = R1(t).R2(t), and if they are connected with an OR gate: R(t) = 1−(1−R1(t)).(1−R2(t)).

The proxel-based simulation is used to determine the instantaneous availability of basic components
and the entire system. After reconstruction of the fault tree, the reliability and maintainability distribution
of each basic component are used to calculate the availability with respect to time. We then propagate the
availability of each individual component through the fault tree to calculate the availability of the system.
The availability is the probability that the component or system is operational.

4 SIMULATION EXPERIMENT

In this section we illustrate our method by a simulation study of a repairable fault tree. The original
repairable fault tree of Figure 6(a) with eight basic events and five gates (three AND, an OR and a 2/3
voting gates) is used to generate 10000 failure and repair times from the reliability distribution function
of Exp(0.1) and maintainability distribution function of Exp(0.5) for all basic events. All the minimal cut
sets were extracted from the binary version of the time series data set and the final reconstructed fault tree
is shown in Figure 6(b). Using this reconstructed fault tree and the methods of section 3.2, we estimate
the reliability and maintainability distributions and obtain the reliability measures of the top event as well
as those of the basic events. Figure 7 illustrates the results for the basic event BE1 and Figure 8 shows the
top event’s results.

5 SUMMARY AND OUTLOOK

Fault trees and other reliability models enable describing fault behaviors of systems and evaluating how
reliable they are. Reliability is one of the most important underlying quality measures for a system’s
performance. Accurate prediction of reliability of an operational system would help schedule maintenance
and replace unreliable components in a timely manner. We developed a method to construct a fault tree
from time series data from faults of an arbitrary system. A screenshot of the interface of the developed
tool is shown in Figure 9.

To test our approach, we constructed a framework to design fault trees that could generate time series
data representing time-of-failures and time-of-repairs for both basic components and the entire system.

2726

Lazarova-Molnar, Niloofar, and Barta

(a)

(b)

Figure 6: (a) The original fault tree, (b) Reconstructed fault tree from a time series data fabricated from
the original fault tree.

2727

Lazarova-Molnar, Niloofar, and Barta

(a)

(b)

Figure 7: Results of the reliability analysis for the basic event BE1 of the fault tree in Figure 6. Reconstructed
lines are estimated from time series data and the theoretical lines are the true distributions that the time
series data are generated from (a) Reliability distribution analysis, (b) Maintainability distribution analysis.

(a)

(b)

Figure 8: Results of the reliability analysis for the top event of the fault tree in Figure 6 (a) Reliability
distribution analysis, (b) Maintainability distribution analysis.

2728

Lazarova-Molnar, Niloofar, and Barta

Figure 9: Part of the Graphical User Interface of the developed tool.

Using the time series data we conducted qualitative and quantitative analysis techniques to reconstruct
the fault tree. We evaluated the quality of the reconstruction by comparing the original fault tree with
the reconstructed fault tree. We compared both structural aspects of the fault trees and the reliability
and maintainability distributions of the individual components. Based on these, we determine reliability
and maintainability of the system. Using the proxel-based method, we also determine the instantaneous
availability of the components and the system. Our algorithm is efficient in terms of computation time
in constructing the structure of the fault tree. However the proxel-based simulation in the quantitative
analysis, is more computationally expensive in proportion to the number of basic events. The entire fault
tree reconstruction process is a data-driven modeling technique that models the behavior of a system with a
fault tree. The algorithm constructs a white-box model, since the fault tree allows us to understand how the
individual basic events cause the top event to occur. By using this method, the fault-related behavior of a
system can be determined by analyzing time series data. The proposed method can work very well for non-
safety-critical systems, where faults are more common occurrence and do not have associated catastrophic
consequences. A large portion of manufacturing systems belongs to this category, and therefore, we see
a great potential for its application within the Industry 4.0 development (Lazarova-Molnar and Mohamed
2019). This also forms one of the focuses for our future work.

REFERENCES
Berikov, V. 2004. “Fault Tree Construction on the Basis of Multivariate Time Series Analysis”. In Proceedings of the 8th

Russian-Korean International Symposium on Science and Technology. June 26th- July 3rd, Tomsk, Russia, 103–106.
Geymayr, J. A. B., and N. F. F. Ebecken. 1995. “Fault-tree Analysis: A Knowledge-engineering Approach”. IEEE Transactions

on Reliability 44(1):37–45.
Griffor, E. 2016. Handbook of System Safety and Security: Cyber Risk and Risk Management, Cyber Security, Threat Analysis,

Functional Safety, Software Systems, and Cyber Physical Systems. 1st ed. Massachusetts: Syngress Publishing.
Haasl, D. F., N. H. Roberts, W. E. Vesely, and F. F. Goldberg. 1981. “Fault Tree Handbook”. Technical Report No. 82-003645,

U.S. Nuclear Regulatory Commission, Washington.

2729

Lazarova-Molnar, Niloofar, and Barta

Kim, B. S., B. G. Kang, S. H. Choi, and T. G. Kim. 2017. “Data Modeling Versus Simulation Modeling in the Big Data Era:
Case Study of a Greenhouse Control System”. Simulation 93(7):579–594.

Lambert, H. E. 2004. “Use of Fault Tree Analysis for Automotive Reliability and Safety Analysis”. SAE transactions 113:690–696.
Lazarova-Molnar, S. 2005. The Proxel-Based Method: Formalisation, Analysis and Applications. Ph. D. thesis, Otto-von-Guericke

University, Magdeburg.
Lazarova-Molnar, S., and G. Horton. 2003. “Proxel-based Simulation of Stochastic Petri Nets Containing Immediate Transitions”.

In On-Site Proceedings of the Satellite Workshop of ICALP. June 30th- July 4th, Eindhoven, The Netherlands.
Lazarova-Molnar, S., and X. Li. 2019. “Deriving Simulation Models from Data: Steps of Simulation Studies Revisited”. In

Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. Bae, S. Lazarova-Molnar, M. Rabe,
C. Szabo, P. Haas, and Y.-J. Son, 2771–2782. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Lazarova-Molnar, S., and N. Mohamed. 2019. “Reliability Assessment in the Context of Industry 4.0: Data as a Game Changer”.
Procedia Computer Science 151:691–698.

Lazarova-Molnar, S., N. Mohamed, and J. Al-Jaroodi. 2018. “Collaborative Data Analytics for Industry 4.0: Challenges,
Opportunities and Models”. In 6th International Conference on Enterprise Systems. October 1st-2nd, Limassol, Cyprus,
100–107.

Lazarova-Molnar, S., N. Mohamed, and J. Al-Jaroodi. 2019. “Data Analytics Framework for Industry 4.0: Enabling Collaboration
for Added Benefits”. IET Collaborative Intelligent Manufacturing 1(4):117–125.

Lee, W. S., D. L. Grosh, F. A. Tillman, and C. H. Lie. 1985. “Fault Tree Analysis, Methods, and Applications: A Review”.
IEEE Transactions on Reliability R-34:194–203.

Linard, A., D. Bucur, and M. Stoelinga. 2019. “Fault Trees from Data: Efficient Learning with an Evolutionary Algorithm”.
In International Symposium on Dependable Software Engineering: Theories, Tools, and Applications, edited by N. Guan,
J. Katoen, and J. Sun, 19–37. Shanghai: Springer.

Mukherjee, S., and A. Chakraborty. 2007. “Automated Fault Tree Generation: Bridging Reliability with Text Mining”. In 2007
Annual Reliability and Maintainability Symposium. January 22nd-25th, Orlando, USA, 83 - 88: Institute of Electrical and
Electronics Engineers, Inc.

Nauta, M., D. Bucur, and M. Stoelinga. 2018. “LIFT: Learning Fault Trees from Observational Data”. In Quantitative Evaluation
of Systems: 15th International Conference, edited by A. McIver and A. Horvath. Beijing, China: Springer.

Nolan, P., M. Madden, and P. Muldoon. 1994. “Diagnosis Using Fault Trees Induced from Simulated Incipient Fault Case Data”.
In Second International Conference on Intelligent Systems Engineering. September 5th-9th, Hamburg-Harburg, Germany,
304 - 309.

Oosterbaan, R. 2019. “Software for Generalized and Composite Probability Distributions”. International Journal of Mathematical
and Computational Methods 4:1–9.

Ruijters, E., and M. Stoelinga. 2015. “Fault Tree Analysis: A Survey of the State-of-the-art in Modeling, Analysis and Tools”.
Computer Science Review 15-16:29–62.

Solomatine, D., L. See, and R. Abrahart. 2008. “Data-Driven Modelling: Concepts, Approaches and Experiences”. In Practical
Hydroinformatics, edited by R. Abrahart, L. See, and D. Solomatine, Volume 68, 17–30. New York: Springer.

Volkanovski, A., M. Čepin, and B. Mavko. 2009. “Application of the Fault Tree Analysis for Assessment of Power System
Reliability”. Reliability Engineering & System Safety 94(6):1116–1127.

Yuge, T., M. Maruyama, and S. Yanagi. 2016. “Reliability of a k-out-of-n System with Common-cause Failures Using Multivariate
Exponential Distribution”. Procedia Computer Science 96:968–976.

AUTHOR BIOGRAPHIES
SANJA LAZAROVA-MOLNAR is an associate professor with the Faculty of Engineering at the University of South-
ern Denmark. Her current research interests include modeling and simulation of stochastic systems, reliability modeling
and data analytics for decision support. Sanja Lazarova-Molnar obtained her PhD in Computer Science from the University
in Magdeburg, Germany in 2005, specializing in the area of Modeling and Simulation. Her email address is slmo@mmmi.sdu.dk.

PARISA NILOOFAR is a Postdoc researcher with the Faculty of Engineering at the University of Southern Denmark. Her current
research interests include Bayesian networks, simulation and modelling, data science and reliability modeling. Parisa Niloofar
obtained her PhD in Statistics, in 2013, specializing in the area of Graphical modeling. Her email address is parni@mmmi.sdu.dk.

GABOR KEVIN BARTA is a M. Sc. in Software Engineering graduate from the University of Southern Denmark. His
research interests included Artificial Intelligence and Modeling Simulation. He is currently working as a Python developer at
a financial services firm in Budapest, Hungary. His email address is gkevinba@gmail.com.

2730

mailto://slmo@mmmi.sdu.dk
mailto://parni@mmmi.sdu.dk
mailto:// gkevinba@gmail.com

	INTRODUCTION
	FAULT TREE ANALYSIS: BACKGROUND AND RELATED WORK
	DATA-DRIVEN RELIABILITY ANALYSIS
	Qualitative Analysis: Learning the Structure of a Fault tree
	Quantitative Analysis: Computing the Reliability of the System

	SIMULATION EXPERIMENT
	SUMMARY AND OUTLOOK

