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ABSTRACT

Resource allocation problems with performance constraints (RAP–PC) are a category of optimization
problems on queueing system design, widely existing in operations management of manufacturing and
service systems. RAP–PC aims at finding the system with minimum cost while guaranteeing target
performance, which usually can be obtained only by simulation due to complexity of practical systems.
This work considers the optimization of the integer–ordered variables, which the system performance
is monotonic on. It proposes an algorithm providing a sample–path exact solution within finite time.
Specifically, the algorithm works on the mathematical programming model of RAP–PC and uses logic–
based exact and gradient–based approximate feasibility cuts to define and reduce the feasible region. Results
on randomly generated instances show that the proposed approach can solve at optimality up to 9–dimension
problems within two hours and feasible good quality solutions can be found faster than the state–of–the–art
algorithm.

1 INTRODUCTION

The resource allocation problem (RAP) of queueing systems represents a category of optimization problems
in queueing system design, which deals with the decision about the amount of resources, such as servers
and queue capacity, to allocate to each stage. It generalizes the well–known buffer allocation problem and
server allocation problem. Exactly as in the mentioned problems, which RAP is a generalization of, the
main aspect, from an operational perspective, is the trade–off between the system performance and the
overall cost. Roughly speaking, increasing the quantity of the allocated resources allows to reach a higher
performance, but, on the other hand, it will also increase the cost. RAPs can be categorized depending
on whether the performance and/or the cost is managed through objective function or constraints. This
work considers, specifically, the RAP with performance constraints (RAP–PC) in queueing systems. In
the studied problem, once a set of performance indicators have been identified, a target is set to each of
them as constraint, and the objective is to achieve the minimum total cost. Applications of RAP–PC can
be widely found in the field of manufacturing and service system operations management, such as call
center staffing, buffer allocation, emergency room staffing, etc.

As queueing systems representing practical settings are usually subject to blocking, dispatching policies
and non-Markov property, discrete event simulation (DES) is one of the most used tools for performance
evaluation, and, hence, simulation–optimization algorithms have to be used for RAP–PC. More specifically,
the relevant research field is discrete optimization via simulation with stochastic constraints, since resources
are represented by integer–ordered variable and the feasibility of a system design can only be identified after
simulation. This work proposes a sample average approximation (SAA) algorithm, which finds a global
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optimal solution for RAP–PC of given sample paths within finite time. Once applying SAA, a stochastically
constrained problem becomes a deterministic problem, but still with unknown feasible region.

Several approaches has been proposed to solve constrained problems. In sampling–based algorithms,
both globally convergent approaches (e.g., nested partition (Shi and Ólafsson 2000) and probabilistic branch
and bound (Norkin et al. 1998)) and locally convergent approaches (e.g., COMPASS (Hong and Nelson
2006) and adaptive hyperbox approximation (Xu et al. 2013)), the unknown feasible region makes it
troublesome to efficiently partition the areas and, hence, to efficiently compute promising solutions. In
this case, a penalty–type method could be applied together with the sampling–based methods, leading to a
sequence of unconstrained problems that optimize the sum of the objective function and of the penalty for
constraint violation. However, as the penalty parameter is usually iteratively tuned and the optimization
model keeps being changed, which makes the approach inefficient from a computational point of view.
Gradient–based approaches, such as R-SPLINE (Wang et al. 2013), can handle the unknown feasibility,
but are only locally convergent.

The approach for the solution of RAP–PC proposed in this work, includes features that make it able to
provide the global optima of the SAA model within finite time and avoid the use of intensive simulation
budget for searching for global optima. The algorithm works on the mathematical programming (MP)
model of RAP–PC and its original contribution is the use of exact and approximate feasibility cuts to define
and reduce the feasible region. Specifically, using gradient to generate approximate cut has never been
investigated in literature. The gradient estimation on the integer variable, i.e., the resource capacity, is
enabled by exploring the structure of the DES through its mathematical programming representations (MPR)
(Chan and Schruben 2008). This gradient estimation approach takes the simulation experiment of one design
point only, which provides the algorithm high efficiency in finding good solution within finite time. The
exact cuts are logic constraints, which are formulated based on the property of the optimization problem.
Thus, the approach proposed in this work considers neither the simulation model nor the optimization
problem as purely black–box.

The reminder of the paper is organized as follows. In Section 2, RAP–PC is formally defined, together
with the approach to identify a so–called resource–type variable through the MPR of DES. The algorithm
and the cut formulation are presented in Section 3. Numerical analysis is discussed in Section 4, while
Section 5 gives concluding remarks and future research directions.

2 PROBLEM DEFINITION

In this paper, a system composed of J multi–resource stages is considered. All the resources in one stage
are identical and working in parallel, and resources in different stages can differ from each other; the
requirement to be identical implies that a stage cannot be considered as a monolithic composition of both
servers and queues. The capacity of each stage j, i.e., the amount of parallel resources in it, is the decision
variable of RAP–PC, denoted by x j, and the vector x = [x1,x2, ...,xJ]

T is the compact representation of
the set of all the decision variables. The initial search area X is considered as a box–shape subset of
integer–ordered lattice of dimension J, i.e., each variable x j is bounded by a lower bound a j and an upper
bound b j. The set X should be well defined to avoid having unstable systems, which is usually not tough.
Using vector c to collect in a compact form the cost of each single resource, RAP–PC can be mathematically
formulated as follows:

RAP−PC : min
x∈X
{cT x}

s.t. hl(x)≤ p∗l ∀ l = 1, ...,L (1)

The left hand side of constraints (1) represents the performance of the system with resource capacity x,
and the right hand side is the target performance. Multiple performance constraints (indexed by l) can be
handled.

The variable vector x is not a generic integer–ordered variable vector; instead, a variable is defined as
resource–type if the system performance is monotonic on it. They are formally defined as follows:
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Definition 1 An integer–ordered variable is a resource–type variable, if and only if the system performance
will not be worsened by increasing its value, assuming that all the other variables representing the system
design are unchanged. Formally, a variable x j is a resource–type variable if and only if the following
inequality holds:

hl(x)≥ hl(x+ ê j), ∀x, x+ ê j ∈ X, l = 1, ...,L

where ê j is a vector of dimension J, its j-th entry is equal to one, and all the other entries are equal to zero.
According to Definition 1, if x̄ is a feasible solution satisfying constraints (1), then any x greater than

or equal to x̄ is feasible. If x̄ is an infeasible solution violating constraints (1), then any x smaller than
or equal to x̄ is infeasible. (Vector x is defined to be greater than or equal to x̄ if every element x j of x
is greater than or equal to the same element x̄ j in x̄.) Thus, the feasible region of RAP–PC has a stair
shape boundary on lower left side, and multiple local optima exist. Resource–type variables widely exist in
manufacturing and service systems (Buzacott and Shanthikumar 1993). For instance, the buffer and server
capacity in multi-stage serial, assembly/disassembly, split/merge systems are resource–type.

3 FINDING THE GLOBAL OPTIMA OF THE SAA MODEL

The proposed algorithm is based on a mixed integer programming (MIP) model of RAP–PC (denoted by
RAP–PC–MIP) in which the feasible region is defined through feasibility cuts. Since the feasible region
is unknown at the beginning, RAP–PC–MIP is initialized with X; then, the feasibility cuts are gradually
generated and added when infeasible solutions are visited, and the solution to be simulated in the next
iteration is obtained by solving the MIP. For each infeasible solution, two types of cuts, approximate and
exact, can be developed from simulation experiments. The approximate cut is based on the gradient of the
performance, while the exact cut is a logic constraint based on the definition of resource–type variables.
Using approximate cuts usually leads to defining as infeasible a large set of solutions especially when the
solution under study is far from the boundary, thus it largely reduces the feasible region; however, it causes
the risk of recognizing the optima as infeasible, and then missing optimality. Using exact cuts, instead, is
inefficient, since the partition is very conservative in defining infeasible solutions. To efficiently search for
the global optimum, the proposed algorithm uses both approximate cuts and exact cuts. Specifically, the
approximate cuts are used in RAP–PC–MIP allowing the search to approaching the boundary and finding
feasible solutions at the early time of the solution process, which are also candidates of incumbent solutions.
Each time a feasible solution is found, approximate cuts are replaced by exact cuts, and the lower bound
of the optimum could be then updated. The procedure stops when the gap between the incumbent solution
and the lower bound reaches zero (or is considered negligible because it is below a given threshold).

In the next sections, approximate cuts and exact cuts are presented, followed by the pseudo code of
the overall solution algorithm.

3.1 Gradient–Based Approximate Cut

In this section, for sake of simplicity, a single performance measure is considered (i.e., the index l of
performance constraints is dropped), and the variable x is extended to be real-valued. For an infeasible
solution x̄ violating the performance constraint h(x)≤ p∗, the gradient of h(x) at x̄ is denoted by λλλ (x̄) and
the following approximate cut CA(x̄) is defined:

CA(x̄) : λλλ
T (x̄)(x− x̄)+h(x̄)≤ p∗. (2)

Equation (2) has the same form as the generalized Benders feasibility cut (Geoffrion 1972). The approxima-
tion of the cut (2) arises from the fact that the generalized Benders decomposition framework is developed
under the assumption of h(x) being convex, while the convexity for h(x) is not assumed in this work.

Generally speaking, any gradient estimator can be used in equation (2). However, considering the
complexity of generic queueing systems, constructing an estimation of λλλ (x̄) is not easy. In this work, an
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approach to approximately estimating the gradient vector λλλ (x̄) for resource–type variables x in generic
queueing systems using simulation runs of only one design point is proposed. The gradient estimation is
based on an equivalent linear programming model (LPM) describing the dynamics in the DES trajectory
with fixed sample paths (i.e., whose solution provides the same result as launching the simulator (Chan
and Schruben 2008)). In the context of linear programming, sensitivity analysis can direct the gradient
estimation, which involves the dual solution, i.e., Lagrangian multipliers, of the LPM.

The LPM representation of the simulation run of the queueing system is developed using the modeling
framework presented in Chan and Schruben (2008). Even though Chan and Schruben (2008) proposed the
LPM of single-replicate simulation only, extending the formulation to suit multiple-replicate simulation is
trivial. The LPM of K replicates is introduced in the following.

min h(x̄) = 1
K ∑

K
k=1 ∑(ξ ,i, j)∈E f ξ

i, je
ξ

i, j,k (3)

s.t. eξ
′

i′ , j′ ,k
− eξ

i, j,k ≥ tξ ,ξ
′

i, j,i′ , j′ ,k
: uξ ,ξ

′

i, j,i′ , j′ ,k

∀ (ξ , i, j),(ξ
′
, i
′
, j
′
) ∈ E /{(ξ , i, j),(ξ

′
, i
′
, j
′
)} ∈P, k = 1, ...,K (4)

eξ

i, j,k ∈ R+ ∀ (ξ , i, j) ∈ E , k = 1, ...,K

The real-valued variables eξ

i, j,k represent the time of event execution; specifically, it refers to the i-
th execution of event type ξ in stage j in the k-th replicate. The objective function (3) represents the
performance measures h(x̄) as linear combination of event occurring times (e.g., the average system time
of replicate k is written as 1

I ∑i(e
departure
i,J,k − earrival

i,1,k ), where edeparture
i,J,k is the time of departure from the last

stage, and earrival
i,1,k is the time of arrival at the system, and I is the total number of parts). Constraints (4)

represent the triggering relationships between event eξ

i, j,k and eξ

i′ , j′ ,k
. The left hand side states that after the

execution of eξ

i, j,k, it is possible to add event eξ
′

i′ , j′ ,k
into the future event list. For instance, earrival

i, j,k −edeparture
i, j−1,k

states that the arrival at stage j must happen after the departure from upstream stage ( j−1). The right
hand side is equal to the lag between the two event occurrences. For instance, tdeparture, arrival

i, j−1,i, j,k = 0 shows
that once a job leaves station ( j− 1), it can enter station j immediately. The dual variables related to

the constraints are denoted by uξ ,ξ
′

i, j,i′ , j′ ,k
. E represent the set of all possible combinations of event type,

occurrence and stage, and P represents the set of all the possible pairs of triggering and triggered events,
respectively. Not all the possible constraints (4) are a–priori added to the model, but the needed ones are
added when the events realize, in a next–event time advanced mechanism framework.

The LPM is generated automatically from an event–based DES model during its realization, hence,
it is not constructed as a simulator, but as a record of simulation history. An event–scheduling simulator
is executed in the following way: the next event eξ

i, j,k (i.e., the event with the earliest time in the future)

occurs and the global clock is advanced to its occurring time ēξ

i, j,k, the event occurrence changes the state

of the system, and the state change enables to add new events eξ
′

i′ , j′ ,k
to the event list together with their

occurring time ēξ
′

i′ , j′ ,k
. Thus, a triggering relationship between event eξ

i, j,k and event eξ
′

i′ , j′ ,k
is identified,

since the occurrence of event eξ

i, j,k schedules event eξ
′

i′ , j′ ,k
, and the left hand side of a constraint is written as

eξ
′

i′ , j′ ,k
−eξ

i, j,k. As for the right hand side, tξ ,ξ
′

i, j,i′ , j′ ,k
is replaced by ēξ

′

i′ , j′ ,k
− ēξ

i, j,k representing the lag between

the two actual occurring times, where ēξ

i, j,k is a number representing the actual occurring time, while eξ

i, j,k
represents a variable. All the triggering relationships are transformed into constraints (4) in the same way.
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Even though, the event occurring times, i.e., the primal solution of the LPM, can be easily collected
during the simulation run as eξ

i, j,k = ēξ

i, j,k, meaning that the LPM is never solved with mathematical

programming methods, obtaining the dual solution uξ ,ξ
′

i, j,i′ , j′ ,k
is not as easy as primal solution. However,

also the dual solution can be obtained after a simulation run as follows. The LPM has an equivalent graph
representation, which is a directed spanning tree with nodes representing events and arcs representing
triggering relationships, the so–called event relationship graph (ERG). The dual of the LPM is a maximum

flow problem on the spanning tree (Chan and Schruben 2008), and the dual variables uξ ,ξ
′

i, j,i′ , j′ ,k
are the flows

carried by the arc from eξ

i, j,k to eξ
′

i′ , j′ ,k
. The coefficient 1

K f ξ

i, j,k constrains the flow balance of node eξ

i, j,k. If

f ξ

i, j,k is positive, the node is a sink, while if it is negative, the node is a source. The dual solution can be
obtained by finding the path from each sink to the root node of the spanning tree, which is unique for each
sink, and calculating the flow of each arc as the sum of all the flows passing by.

Knowing the LPM and its dual solution, the gradient can be calculated. In fact, among all the constraints
(4), there are some that are particularly relevant to RAP–PC, which are specifically

earrival
i, j,k − edeparture

i−x̄ j, j,k ≥ 0 : uarrival, departure
i, j,i−x̄ j, j,k ∀i, j,k. (5)

Constraints (5) state the fact that the i-th arrival cannot be earlier than the i− x̄ j departure in the same
resource stage j, due to the blocking caused by the limited capacity x̄ j of the resource. If a perturbation ∆x̄ j
is applied to x̄ j, and it introduces the perturbation δ j(x̄ j) on the right hand side of equation (5), and the dual
optimal solution is known to be ūarrival, departure

i, j,i−x̄ j, j,k , based on the sensitivity analysis of linear programming,
the j-th component of the gradient vector λ j(x̄) can be estimated as:

λ j(x̄) =
δ j(x̄ j)

∆x̄ j

K

∑
k=1

∑
i

ūarrival, departure
i, j,i−x̄ j, j,k .

If the capacity x̄ j is increased by one, i.e., ∆x̄ j = 1, the left hand side of equation (5) becomes earrival
i, j −

edeparture
i−(x̄ j), j

= earrival
i, j − edeparture

i−(x̄ j+1), j +(edeparture
i−(x̄ j+1), j− edeparture

i−(x̄ j), j
) ≥ edeparture

i−(x̄ j+1), j− edeparture
i−(x̄ j), j

, showing that the pertur-

bation to the right hand side δ j(x̄ j) can be approximated by the negative inter–departure time. Thus, δ j(x̄ j)
∆x̄ j

can be set to the negative inter–departure time of stage j, denoted by −τ j, and the j-th component of the
gradient vector λλλ (x̄) is as follows:

λ j(x̄) =−τ j

K

∑
k=1

∑
i

ūarrival, departure
i, j,i−x̄ j, j,k .

3.2 Exact Cut

The exact cut is based on the definition of resource–type variables- Before dealing with the cut generation,
the concept of dominance of one solution x̄1 to another solution x̄2 has to be defined. If the vector of
difference between the two solutions x̄1− x̄2 has only non–negative entries, then x̄1 dominates x̄2. According
to Definition 1, h(x̄1) ≤ h(x̄2), thus if x̄1 violates some performance constraint, x̄2 will also violate the
same constraint. Therefore, an exact cut at the infeasible solution x̄ partitions the feasible region X into
two sets, an infeasible set including all the solutions x̄−x′ , where x′ has non–negative entries only, and
the complementary set. To formulate the partition with integer linear constraints, a set of binary variables
y j,k ∈ {0,1} are introduced as follows:

y j,k =

{
1, ∀ k ≤ x j

0, ∀ k ≥ x j +1,
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guaranteed by the following constraints:

y j,k ≤ y j,k−1 ∀ j = 1, ...,J, k = a j +1, ...,b j

x j = a j +
b j

∑
k=a j+1

y j,k ∀ j = 1, ...,J,

where a j and b j are the lower bound and the upper bound on the value of x j, respectively. The exact cut
CE(x̄) is then formulated as:

CE(x̄) : ∑
j: x̄ j<b j

y j,x̄ j+1 ≥ 1.

The dominance between exact cuts CE(x̄1) and CE(x̄2) exists if x̄1 dominates x̄2, since the infeasible
set partitioned by CE(x̄2) is a subset of the infeasible set partitioned by CE(x̄1). Thus, finding dominating
infeasible solutions (DIS) can define larger infeasible region with fewer cuts, which improves the computation
efficiency.

A heuristic to find DIS based on the approximate gradient λλλ (x̄) is here proposed. In the gradient vector
λλλ (x̄), if the absolute value of one or several elements are significantly greater than the other elements
satisfying the equality λ j(x̄)

λmax(x̄) ≥ α , where λmax(x̄) denotes the maximum element of λλλ (x̄) and α is a user–
defined threshold, then the performance is more impacted by the resource capacity limitation of such stages,
and they can be regarded as the bottlenecks of the system. A dominating system x̄d(x̄) = [x̄d,1, ..., x̄d,J]

T of
infeasible solution x̄ can be constructed by setting the resource capacity of all the non–bottleneck stages
to the upper bound and keeping the capacity of the bottlenecks unchanged, i.e.,

x̄d, j =

{
x̄ j, ∀ j = 1, ...,J such that λ j(x̄)

λmax(x̄) ≥ α,

b j, ∀ j = 1, ...,J such that λ j(x̄)
λmax(x̄) < α.

The dominating system is then simulated, and, if it is infeasible, a tighter exact cut CE(x̄d(x̄)) can be
generated and the cut of the original system CE(x̄) is replaced by CE(x̄d(x̄)); otherwise, if it is feasible,
the DIS will be the original system itself, i.e., x̄d(x̄) = x̄.

Figure 1 shows the partition made by the approximate cut CA(x̄), the original exact cut CE(x̄), and the
dominating exact cut CE(x̄d(x̄)) with x̄ = [1,4]T in a two–dimension problem. The approximate cut has a
linear shape in the two-dimension space, and its slope shows the gradient of the performance, while the
left side of the line is the infeasible set. Some feasible solutions are misleadingly assigned to the infeasible
area. The infeasible set defined by the exact cut at [1,4], i.e., the left lower corner of the line, includes only
solutions dominated by [1,4], which is a very small set. The slope of the approximate cut shows that the
system performance is more sensitive to x1, thus stage 1 is the bottleneck of the system. The dominating
system is constructed as [1,8], by setting x2 to upper bound 8 and keeping x1 unchanged. After simulating
[1,8], it is found infeasible, so it is a DIS of [1,4]. An exact cut at [1,8] is then generated, and it defines a
larger infeasible set compared with the original exact cut, but it does not exclude feasible solutions from
the future search area.

3.3 Algorithm

The complete algorithm for solving RAP–PC is summarized in Algorithm 1. The resource capacities are
initialized to the lower bound. The searching region of RAP–PC–MIP is initialized to X, and the lower
and upper bounds of the objective function, CL and CU , respectively, are set considering the upper bound
and lower bound of the capacity of each stage. Lines 7 to 11 show that approximate cuts are generated
and used in the model when infeasible solutions are found. Once a feasible solution is visited, the upper
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Figure 1: Approximate, exact, and dominating exact cuts.

bound CU , which is also the candidate of incumbent solution, can be updated after comparing the value
of the found feasible solution and that of the current incumbent. Then, as shown in lines 13 to 18, all
the currently used approximate cuts are replaced by exact cuts of the DIS. If there are only exact cuts in
RAP–PC–MIP, the solution is the new lower bound CL. The algorithm terminates when the gap between
the upper bound and lower bound is within a tolerance or the time limit is exceeded.

4 NUMERICAL ANALYSIS

The proposed approach is applied to the server allocation problem of serial–parallel queueing system, aiming
at finding the server number in each stage that allows to achieve the minimum cost while guaranteeing
that the average system time over all the jobs does not exceed a target value. As each stage cannot be
considered a monolithic entity of buffer and servers, the serial–parallel queueing system has to be seen as
composed by a sequence of stages of servers s j alternated by stages of buffers b j (Figure 2). Jobs arrive
at the first stage of the system, which is a buffer with infinite capacity, with a general arrival process. In
each buffer stage, which has a finite given capacity (with the exception of the first one), jobs are managed
by a first–in–first–out policy. In a stage of servers, the first finished job is the first to be released to the
next stage, which is a stage of buffer. After being processed by the last server stage, each job immediately
leaves the system.

Figure 2: Serial–parallel queueing system.

The algorithms are implemented in Java and Cplex 12.10 is used for solving the master problem.
The experiments are conducted on a cluster of DELL M630 with Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz processors and 256 Gb RAM. Cplex can use up to 16 threads.

Two experiment settings, namely ‘Norm’ and ‘Exp’, have been used and are listed in Table 1. Stage
number J is varied from ‘min J’ to ‘max J’, where ‘max J’ represents the maximum number of stages for
which the problem can be solved within 2 hour time limit. Five replicates have been run for each parameter

2773



Zhang, Matta, and Alfieri

Algorithm 1 MIP–based algorithm.
Input:

Lower bound a = [a1, ...,aJ] and upper bound b = [b1, ...,bJ] of resource capacity x, such that a j ≤
x j ≤ b j ∀ j = 1, ...,J.
Number of replicates K, and the sample paths of the K replicates.
Tolerance of optimality gap εopt .
Optional input: time limit of the algorithm Tlim.

Ensure:
Sample-path global optimal x∗.

1: Initialize system with lower bound x← a
2: Initialize incumbent with upper bound x∗← b.
3: Initialize lower bound of the objective CL← cT a.
4: Initialize upper bound of the objective CU ← cT b.
5: Add initial constraints which defines X to the RAP–PC–MIP.
6: while CU −CL > εopt and Tlim is not exceeded do
7: while There exists at least one violated performance constraint do
8: Generate one approximate cut CA(x̄, l) for each violated constraints l and add all the generated

cuts to the RAP–PC–MIP.
9: x̄← solution of the RAP–PC–MIP.

10: Simulate the system of x̄.
11: end while
12: Update upper bound CU ←min{cT x̄, CU}. If cT x̄ <CU , then x∗← x̄
13: if There exist approximate cuts in RAP–PC–MIP then
14: For all the currently used approximate cuts CA(x̄r, l), find dominating infeasible solution x̄d(x̄r)

and replace approximate cuts CA(x̄r, l) by exact cuts CE(x̄d(x̄r), l) of the DIS.
15: x̄← solution of the RAP–PC–MIP.
16: Simulate the system of x̄.
17: Update lower bound CL←max{cT x̄, CL}.
18: end if
19: end while

combination. The threshold α , used for identifying the DIS from the gradient, has been set to 0.3 in all
the cases. Number of replicates is set to be 1.

Since the proposed method involves the solution of the MIP model, the optimization time, i.e., the
total time spent solving the MIP in all the iterations, can be the most of the computation time in high
dimensional cases. For instance, for Exp experiment with J equal to 8, 63.0% of the computation time is
spent for optimization on average. Thus, analyzing the computation time, i.e., the sum of simulation time
and optimization time, is very relevant. The maximum number of stages that can be solved to optimality
within 2 hour is 8 and 9 for Exp and Norm, respectively. Figure 3 shows the relationship between the
computation time and the dimension J of the instances for both Exp and Norm experiment. According to
the fitted regression model, the total computation time is quadratic exponential on J.

A good feasible solution can be found in early time. Figure 4 shows the convergence of the upper and
lower bound of the optimum for a single experiment of the 8–stage Exp experiment and the 9–stage Norm
experiment. In the 8–stage Exp experiment, the algorithm terminates in 2358.8 seconds with an optimal
solution equal to 62, but a feasible solution equal to 62 has been visited at time 377.0 second, and the first
feasible solution equal to 65 is found at time 0.668 second, after having visited only 6 solutions. Similarly
for the 9–stage Norm experiment, the algorithm terminates in 5025.5 seconds with an optimal solution
equal to 63, but a feasible solution equal to 63 has been visited at time 1.0 second, after having visited
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Norm Exp
Inter-arrival time distribution N(2,2) truncated Exp(2)
Service time distribution N(10,10) truncated Exp(10)
Target system time 11.2J 11.2J
Inter–stage buffer capacity 5 5
Server number lower bound 6 6
Server number upper bound 15 15
Server cost 1 1
Simulation length (number of jobs) 100,000 100,000
min J 3 3
max J 9 8

Table 1: Experiment settings

Figure 3: Computation time of Exp and Norm experiment. (Time limit equal to 7200 seconds)

only 9 solutions. The early good performance can be achieved since the proposed gradient estimation
approach needs to evaluate only one design point through simulation. Moreover, since the global optimum
is guaranteed by the exact cuts, the risk of getting a bad result by using approximate gradients is wiped
out after the exact logic–based cuts replace the gradient–based cuts.

The performance of the proposed approach is also compared to the adaptive hyperbox algorithm (AHA)
(Xu et al. 2013) combined with penalty–type framework proposed in Park and Kim (2015). AHA is
designed for non–constrained high–dimensional discrete optimization problems where the evaluation is
obtained via black–box simulation. Park and Kim (2015) proposed certain sequences of penalty, so that
non-constrained simulation-optimization algorithms can be adapted to solve constrained problems. As for
the benchmark algorithm, the penalty sequence 1 (PS1) proposed in Park and Kim (2015) has been used,
and the parameters are set as recommended. As for AHA, the number of sampled solutions in each iteration
is varied among 2, 5, 10. The benchmark algorithm is denoted by AHA+PS1, and the proposed approach is
denoted by DEO. Since the sample path is fixed, repeatedly evaluating the same solution is not necessary,
and the performance is stored and read in the memory for all the already visited solutions. A 20–stage
Norm case has been solved on five independent sample paths. Considering the noise of sampling in AHA,
AHA+PS1 is launched five times for each sample path. Figure 5 shows the empirical convergence of the
incumbent over computation time for the proposed approach and AHA+PS1. The computation time for
the proposed approach takes into account the time for simulation and time for solving MILP. Figure 5
shows that the AHA+PS1 can find a feasible solution in a short time, because, under the experimental
settings, the feasible region is large and, hence, it is easy to visit a feasible solution with random sampling.
However, ever since the first feasible solution is visited by the proposed approach, which is equal to 395.9
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Figure 4: Upper bound and lower bound convergence. (8–stage Exp and 9–stage Norm experiment)

seconds on average, the proposed approach is superior in terms of the quality of the incumbent solution.
It can also be seen that the performance of AHA-PS1 is not sensitive to the number of sampled solutions
in each iteration. The comparison is also made for 5–stage, 10–stage, 15–stage Norm cases, each with 5
sample paths, using 10 as the number of sampled solutions in each iteration, AHA+PS1 is launched for five
times for each sample path, and time limit is equal to 1800 seconds. The results, including the incumbent
and time for visiting the incumbents, are shown in Table 2. Due to the noise, for different sample paths,
and different launches of AHA+PS1, the incumbent could differ. The second and forth columns report
all the incumbents. For example, in the 10–stages, the proposed algorithm always finds 71 as incumbent
solution, while AHA-PS1 finds 71 in some cases and 72 in some others. In all the cases, the quality of
incumbent of the proposed approach is not worse than AHA-PS1. As measure of efficiency, the time for
visiting the final incumbent within the time limit is considered. Those times are reported in columns 3
and 5, where confidence interval with confidence level 95% is reported when the frequency of obtaining
the incumbent is more than three in all the cases generated by the five sample paths, and the single values
are shown directly when the frequency is only one or two. Comparing the contents in those columns, the
proposed approach can provide the solution with same or better quality one order of magnitude faster than
AHA-PS1. Moreover, the solutions provided by the proposed approach and time of visiting the incumbent
with different sample paths are close to each other, which can also be seen in the 20–stage cases from
Figure 5. This shows the stability of the output and efficiency.

Figure 5: Comparison - incumbent convergence. (20–stage Norm experiment)
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DEO AHA-PS1 Ite10
J Incumbent Time for visiting incumbent Incumbent Time for visiting incumbent

(second) (second)
5 32 2.2±0.2 32 61±10
10 71 20±2 71 990±246

72 349±139
15 115 62, 87 116 1233

116 82±17 117 996±264
118 1071±268
119 555
121 1528
122 1440

Table 2: Comparison of 5-stage, 10-stage, 15-stage Norm cases (5 instances for each case).

5 DISCUSSION AND CONCLUSION

This work proposes a sample–path average algorithm for solving the resource allocation problem with
performance constraints in queueing systems. The algorithm is based on a MIP whose feasible region is
defined by feasibility cuts, which are iteratively generated and added to the MIP. The main focus of this
paper is how to generate and manage the feasibility cuts aiming at finding good solution at early time of the
solution process and guaranteeing the global optimality at its termination. Gradient–based approximate cuts
are first proposed, where the gradient can be estimated through simulating only one solution, which saves
the simulation effort in finding good feasible solutions. Then, logic–based exact cuts are applied for finding
the global optimum. Moreover, even though the gradient is approximate, it hints the potential bottleneck
of the system, which enables to find tighter exact cuts. Numerical analysis has shown that the proposed
approach can solve up to 9–stage problems within two hour time limit. A feasible solution with good
quality, which is proved to be the global optimum at the end, can be found at very early time. Comparing
with state-of-the-art approach, the proposed approach can provided better solution within shorter time. The
superiority is significant especially in higher dimension problems. Furthermore, empirical study also shows
that the solution quality and the efficiency of the proposed approach is not sensitive to the sampling noise.

Since the optimization is guided by mathematical models, simulation budget can be greatly saved. The
main limitation of the proposed approach, from an efficiency point of view, is the fact that MIP has to be
exactly solved at each iteration. However, the vast literature on mathematical programming can be used to
improve such algorithm aspect.

Moreover, based on the feasible solutions found during the early phase of the solution process, local
optimal solutions can be found by simple neighborhood enumeration. Thus, this algorithm can be also
used as an efficient locally convergent SAA algorithm, even though it shares the same drawback of any
SAA algorithm in the situation of stochastic constraints, i.e., the convergence is achieved only if the sample
size is infinite. This drawback can be dealt with by retrospective approximation, consisting of a sequence
of SAA for relaxed problems, where the sample size is smartly chosen (Pasupathy 2010; Nagaraj and
Pasupathy 2014).

Even though it seems that the proposed approach can be used in various systems, since its derivation and
the algorithm do not rely on strict assumptions, the boundary of its application is still vague. Specifically,
which types of systems/networks and what performance indicators can be handled? Future effort will be
dedicated to finding the prerequisite that a system and performance indicators must have to be dealt with
as proposed in this work. Moreover, more numerical studies on different cases, such as call center staffing,
and sensitivity analysis on the parameter α are needed to improve the study on the proposed approach.
All this will be the subject of future research.
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