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ABSTRACT

Identifying all designs satisfying a set of constraints is an important part of the engineering design process.
With physics-based simulation codes, evaluating the constraints becomes considerable expensive. Active
learning can provide an elegant approach to efficiently characterize the feasible region, i.e., the set of
feasible designs. Although active learning strategies have been proposed for this task, most of them are
dealing with adding just one sample per iteration as opposed to selecting multiple samples per iteration,
also known as batch active learning. While this is efficient with respect to the amount of information gained
per iteration, it neglects available computation resources. We propose a batch Bayesian active learning
technique for feasible region identification by assuming that the constraint function is Lipschitz continuous.
In addition, we extend current state-of-the-art batch methods to also handle feasible region identification.
Experiments show better performance of the proposed method than the extended batch methods.

1 INTRODUCTION

In many real-world problems, we wish to identify all designs satisfying a set of constraints. These feasible
designs can be further analyzed, optimized, and refined in the design pipeline. This problem is common in
engineering applications such as structure reliability analysis (Dubourg et al. 2013), factory optimization
analysis (Bryan et al. 2006), environmental monitoring (Gotovos et al. 2013) and flight vehicle designs
(Larson and Mattson 2012). In those problem settings, often the feasibility can be determined directly through
(physics-based) simulations or measurements. However, such evaluations generally require considerable
time and budget.

Metamodeling (also known as surrogate modeling) is a popular approach to limit the number of
evaluations. A metamodel provides a compact approximation of the expensive simulator. Accordingly,
metamodels and sequentially sampling techniques, also known as active learning, are useful to efficiently
identify feasible designs.

Active Learning (AL) policies try to select the most informative observations for updating an existing
belief. For instance, Bayesian optimization (BO) (Shahriari et al. 2015) is typically used to find the global
optimum of an unknown function (Hernández-Lobato et al. 2014).

More formally, in feasible region identification problem, the aim is to accurately predict whether a
given unsimulated candidate xxx∗ is feasible, i.e., if its outcome f (xxx∗) is in a pre-specified range [α,β ].
The region where all candidates are feasible is denoted as level set (Gotovos et al. 2013), excursion set
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(Azzimonti et al. 2019), feasible domain (Chen and Fuge 2018) or feasible region (Knudde et al. 2019).
In this paper we follow the notion of (Knudde et al. 2019) by defining the feasible region A:

A := {xxx ∈X : α ≤ f (xxx)≤ β}
Since a candidate can only be either feasible or infeasible, its feasibility can alternatively be represented

by an indicator function: IA := X →{0,1}.

IA( f (xxx)) =

{
1 α ≤ f (xxx)≤ β

0 otherwise

Without loss of generality, f : X →R is an unknown function defined on a compact subset X ⊂Rd .
In particular, the focus is on the case where f is deterministic, although a stochastic example is also
considered in Section 4.

Given the training set Dn = {XXXn,yyyn}, two Bayesian machine learning frameworks can be utilized. If
the values in yyyn are discrete (e.g., Snoek 2013), the problem is a classification problem. In this work we are
concerned with a continuous f . It can still be treated as a classification problem by applying the indicator
function to f specifying if constraints have been satisfied (Chen and Fuge 2018). However, it makes more
sense to use f directly if possible as it entails more information about the problem. The key reasoning
behind this approach is that more information can be retrieved from the response of f , as continuous
observations also provide a clue about how close the constraint boundary is (Gelbart 2015), and, hence,
can also be exploited by AL strategies (Bryan et al. 2006, Picheny et al. 2010, Knudde et al. 2019).

An appropriate metamodel to approximate the continuous function f with limited observations is
Kriging (Forrester et al. 2008, Van Steenkiste et al. 2016, Rojas-Gonzalez et al. 2019). Kriging is also
known as a Gaussian Process (GP) (Rasmussen 2003): p( f ) = GP(µ,k), where µ : X →R (assumed zero
in this research) is the mean function, and k : X ×X → R is the kernel. Assuming Gaussian noise on
the observations: p(y| f ) ∼N (0,σ2

n ), the posterior distribution of the latent function at a test point xxx∗:
p( f∗|Dn,xxx∗) is also Gaussian,

N (KT
∗n(Knn +σ

2
n I)−1yyy,K∗∗−KT

n∗(Knn +σ
2
n I)−1Kn∗)

while σ2
n is the variance of Gaussian likelihood, Knn is the kernel matrix between training samples Dn and

Kn∗ denotes the kernel matrix between the training samples and the test point.
Various AL approaches have been proposed to identify the feasible region (Bryan et al. 2006, Picheny

et al. 2010 , Chen and Fuge 2018, Knudde et al. 2019). In modern engineering simulation applications,
the increasing complexity and high dimensionality of the problem necessitates the use of more data to
accurately identify the feasible region. Despite the readily available computation resources, no feasible
region identification algorithm has yet taken advantage of running simulations in parallel, that is, using batch
active learning. Though some approaches have been proposed to tackle this problem, most contributions
are restricted to the Bayesian optimization scope. Perhaps the most related approach is Gotovos et al.
(2013), but their AL strategy is built on choosing samples from an existing set. AL for feasible region
identification in a batch setting is still very much an open issue.

Contributions We contribute a new framework to identify the feasible region using AL in a paral-
lel setting. We notice that common active feasible region identification techniques try to sample near the
feasible boundary. With this intuition, we follow the approach of González et al. (2016) to leverage the
general assumption (Alvi et al. 2019, Kim and Choi 2019, González et al. 2016, Malherbe and Vayatis
2017) that f is a Lipschitz continuous function. As conveyed in Figure 1, by imposing an upper bound on
the function gradient we develop a local penalization function to take the effects of the already selected
batch samples into account. We extend several state-of-the-art batch AL methods (Zhan et al. 2017, Contal
et al. 2013) for feasible region identification. We conduct numerical experiments on these methods and
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show better performance of our method. The proposed batch AL method is developed for the entropy
acquisition function of Knudde et al. 2019, however, it can also be used with other acquisition functions
for feasible region identification.

Figure 1: A 1 dimensional demonstration of batch AL to characterize the feasible region A := {x ∈X : 1≤
f (x)≤ 1.5}. By assuming the unknown function f is Lipschitz continuous, we can leverage the Lipschitz
constant based exclusion cones to determine some exclusion regions (white area) centered at the three
data points (red dots). Within these regions there is no chance for the function to pass any of the feasible
boundaries without violating the Lipschitz continuity assumption. In a batch setting, these exclusion regions
are incorporated into the acquisition function to avoid further sampling close to already selected batch
samples.

The remainder of this paper is organized as follows: Section 2 provides a review on active learning
for feasible region identification, as well as discusses existing approaches for batch active learning for
regression problems. In Section 3, a novel batch active feasible region identification method is presented.
The performance of the proposed methodology is benchmarked with a state-of-the-art acquisition function
in Section 4. Section 5 concludes the paper.

2 RELATED WORK

2.1 Acquisition Functions For Feasible Region Identification

The core of model-based Bayesian active learning is the acquisition function, which quantifies how
informative a new candidate sample might be. Picheny et al. (2010) propose a weighted integration mean
square error strategy to measure the metamodel’s belief about the accuracy of the feasible region. Based
on this measure a new sampling technique is developed by leveraging the fact that model variance is not
affected by the function response at new data. In a classification setting, Houlsby et al. (2012) proposed
Bayesian Active Learning by Disagreement (BALD) method, and demonstrate how it can be employed
to actively learn a Gaussian Process classifier. A variant of the Probability of Feasibility (PoF) (Forrester
et al. 2008) has been proposed by Kaintura et al. (2018), where the variance has been heuristically added
to encourage exploring within the feasible region. To find the feasible region in an unbounded design
space, an active expansion sampling technique is introduced by Chen and Fuge (2018). Recently, an
information-based acquisition function (Knudde et al. 2019) has also been proposed and demonstrates
state-of-the-art performance compared with other existing approaches according to numerical experiments.

The acquisition function proposed by Knudde et al. (2019) represents the loss in entropy of the posterior
distribution of interest gi :

α(xxx) =
k

∑
i=1

[
H(p(gi|Dn))−Ep(y|Dn,xxx)(H(p(gi|Dn∪{xxx,y})))

]
(1)
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where k denotes the output space partitioned by the feasible boundaries. For instance, a feasible region
defined on a bounded interval [α,β ] will partition the output space into 3 different categories: g1 : y < α ,
g2 : α ≤ y < β and g3 : β ≤ y. One can employ the trick of conditional mutual information (Houlsby et al.
2011) to calculate Eq.(1), which then has a closed form:

α(xxx) =
k

∑
i=1

[
−lnZi−

1
2Zi

(αi−µ(xxx))N (µ(xxx)|αi,σ
2(xxx))− (βi−µ(xxx))N (µ(xxx)|βi,σ

2(xxx))
]

where Zi = Φ(βi−µ(xxx)
σ(xxx )−Φ(αi−µ(xxx)

σ(xxx ), and Φ(·) is the standard normal cumulative density function.
This acquisition function has shown state-of-the-art performance compared with other methods. Hence

without loss of generality, in this work we employ it for the numerical experiments. We refer to Knudde
et al. (2019) for experiment details and more in-depth discussions.

2.2 Batch Bayesian Active Learning

The goal of a batch acquisition function is to imitate the future decisions that would be made under the
equivalent (optimal) sequential policy (González et al. 2016). However, this needs to take already selected
batch samples and their possible outcomes into consideration, which results in the following marginalization:

xxxt,q = argmax
xxx∈X

∫
α(xxx; It,q−1)

q−1

∏
j=1

p(yt, j|xxxt, j, It, j−1)p(xxxt, j|It, j−1)dxxxt, jdyt, j (2)

α(xxx; It,q−1) is the acquisition function in batch iteration t, step q, where q− 1 samples are already
selected for this batch. It,q−1 represents the available information so far: training data Dn and the GP
posterior in current batch iteration t. The outcome distribution p(yt, j|xxxt, j, It, j−1) is Gaussian distributed:

p(yt, j|xxxt, j, It, j−1) = N (yt, j; µ(xxxt, j),σ
2(xxxt, j))

p(xxxt, j|It, j−1) = δ (xxxt, j−argmax
xxx∈X

α(xxx; It, j−1)) is the distribution of xxx in step j, batch t, which, in practice,

is obtained by maximization of the acquisition function α(xxx; It, j−1).
The first batch sample xxxt,1 can be trivially obtained by an off-the-shelf acquisition function optimization

process. Unfortunately, it requires unaffordable computation effort for discovering the remaining q− 1
samples of the batch, which is difficult to handle even for small batch sizes. To address this issue, different
approaches have been proposed.

In BO, one common strategy is to leverage the fact that generally acquisition functions try to sample at
global optima. With this purpose, Contal et al. (2013) defines a relevant region: Rt ⊂X in the input space
where the unknown function has a higher possibility to contain optima. The remaining q−1 samples are
then acquired by conducting pure exploration to reduce the uncertainty of model prediction within those
relevant regions. This technique proves to be equivalent to maximizing the determinant to select a fixed
cardinality subset via Determinantal Point Processes (DPP) (Kathuria et al. 2016), also known as k-DPP
(Kulesza and Taskar 2011). Alternatively a MCMC sampling method can also be employed to sample the
fixed-subset from DPP within the same defined relevant region Rt and shows preferable performance.

González et al. (2016) assume the function is Lipschitz continuous. This assumption allows placing
upper bounds on the function gradient, which leads to exclusion regions based on pre-visited batch samples,
where function has no chance to become global optimum. These regions can be safely skipped in the
acquisition function optimization. For high dimensional problems, Wang et al. (2018) propose to use a
Mondrian processes to randomly partition the design space and, subsequently, perform BO based on each
of these spaces. The batch samples are then selected according to a metric considering both diversity and
quality. To avoid sampling too close within a batch, a penalty function constructed by using the kernel
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estimated correlation is proposed by Zhan et al. (2017). Recently, the BALD method for classification has
also been extended by Kirsch et al. (2019) to a batch setting.

Besides mimicking the sequential policy by exploiting properties of the AL goals. Some approaches
have also been proposed that leverage the joint distribution of yt,1, ...,yt,q from GP prediction to form the
batch acquisition function (Chevalier and Ginsbourger 2013, Shah and Ghahramani 2015). For instance,
sampling a batch of points to get the maximum expected improvements (Chevalier and Ginsbourger 2013,
Wang et al. 2016). However, these non-greedy strategies tend to scale poorly with the dimension of the
problem and the size of the batches (González et al. 2016).

3 BATCH BAYESIAN ACTIVE FEASIBLE REGION IDENTIFICATION

The main idea of the proposed Batch active Feasible Region Identification by Local Penalization (BFRI-
LP) method is assuming the dominant effect of a function evaluation on the acquisition function is a
local exclusion around the new evaluation (González et al. 2016), see Figure 2. This behavior can be
frequently seen in empirical experiments and is especially common when the acquisition function is multi-
modal. Given this intuition, we can approximate Eq.(2) by formulating a factorized penalization function
φ(·, ·) : X ×X →R. The penalization function is monotonically increasing with respect to the Euclidean
distance of a test point xxx and an existing sample xxxt, j, thus imposing a local effect on the acquisition function
at pre-selected samples in a batch:

xxxt,q = argmax
xxx∈X

{
g(α(xxx; It,0))

q−1

∏
j=1

φ(xxx;xxxt, j)
}

where g(α) = ln(1+ eα) applies a soft-plus transformation to ensure the acquisition function α(·) is
non-negative.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 2: A typical active learning process for feasible region identification using the acquisition function
from Knudde et al. (2019). New samples are added sequentially through maximization of the acquisition
function. It can be seen that the main effect of adding a new sample is a decrease in the acquisition function
as model uncertainty decreases at that location.

In practice, the penalty function needs to be carefully chosen as it might otherwise exclude too large
areas of the original acquisition function with the risk of neglecting some interesting candidates. In BO,
these interesting candidates are optima of the unknown function. In our case, we argue its where the
outcome of the unknown function is exactly at the feasible boundary. This intuition comes naturally as
no more information can be retrieved than finding the decision boundary for a classification problem.
Moreover, this assumption can also be empirically observed (Knudde et al. 2019 Chen and Fuge 2018,
Bryan et al. 2006) in active learning for feasible region identification. Under this assumption, we develop a
probabilistic local penalization function φ in the following section. It will remain possible for the upcoming
samples to be added at those interesting candidates.
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3.1 A Local Penalization Function

In order to leverage the intuition that more information exists at the feasible boundary, one general approach
to formulate such a local penalty function is to utilize the Lipschitz continuity of the unknown function. With
the assumption that there is an upper bound to the function gradient, we can formulate a local penalization
function, see in Figure 1. Specifically, considering the following ball-shape region in the Euclidean design
space X :

Br j(xxx) =
{

xxx ∈X : ||xxx j− xxx|| ≤
∣∣∣∣c− f (xxx j)

L

∣∣∣∣}
where c is the feasible boundary pre-specified by the users, L is the Lipschitz constant, and f is the unknown
function. The ball-shaped region centered at xxx j provides an exclusion region in the design space where it
is less likely for the unknown function f passing through the feasible boundary c.

Of course, in batch AL the outcome f (xxx j) is unknown and modeled by the GP posterior. Thus the
ball-shaped region is also stochastic. Meanwhile, as shown in Figure 1 and Figure 2, the feasible region
is defined on a bounded interval [α,β ] in the output space. Hence more than one feasible boundary exist.
For this case, we are interested in the intersection of all ball-shaped regions Br j1

, Br j2
so that the function

will not pass through any of the boundaries.
The penalty function can thus be defined as the probability that for any xxx ∈X , it might become a

candidate sample that located at any feasible boundary.

φ(xxx;xxx j) =1− p(xxx ∈ Br j1
,xxx ∈ Br j2

)

=1− p
(
||xxx j− xxx|| ≤

∣∣∣∣α− f (xxx j)

L

∣∣∣∣ , ||xxx j− xxx|| ≤
∣∣∣∣β − f (xxx j)

L

∣∣∣∣)
=ϕ

(
L||xxx j− xxx||+β −µ(xxx j)

σ(xxx j)

)
−ϕ

(
α−L||xxx j− xxx||−µ(xxx j)

σ(xxx j)

)
+

max
(

ϕ

(
β −L||xxx j− xxx||−µ(xxx j)

σ(xxx j)

)
−ϕ

(
α +L||xxx j− xxx||−µ(xxx j)

σ(xxx j)

)
,0
)

where ϕ is the probability density function of the standard Gaussian distribution. The complete BFRI-LP
strategy is outlined in Algorithm 1.

3.2 Extending Batch AL methods For Feasible Region Identification

Besides the proposal of BFRI-LP, we also extend some current state-of-the-art batch methods (Contal et al.
2013, Zhan et al. 2017) for the feasible region identification problem. For the pure-exploration method of
Contal et al. 2013, the relevant region Rt is redefined to locate feasible boundaries.

Rt := R1∪R2

where

R1 :={xxx ∈X : µ(xxx)+1.96σ(xxx)≥ α

or µ(xxx)−1.96σ(xxx)≤ α}
R2 :={xxx ∈X : µ(xxx)+1.96σ(xxx)≥ β

or µ(xxx)−1.96σ(xxx)≤ β}

The influence function method (Zhan et al. 2017) is more directly applicable by adding a soft-plus
transformation to the acquisition function.
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Algorithm 1: Batch Bayesian active Feasibe Region Identification with Local Penalization (BFRI-
LP)

Input: dataset Dn = {XXXn,yyyn}, batch size Q, iteration budget N, acquisition transformation g,
feasible boundary [α,β ] ;

for t := 1 to N do
Evaluating the posterior of the GP: It,0←{p( f |Dn)};
Approximate the Lipschitz constant: L ←max

xxx∈X
||µ∇(xxx)|| ;

for q := 1 to Q do
if q == 1 then

xxxt,1 = argmax
xxx∈X

α(xxx, It,0) ;

else
xxxt,q = argmax

xxx∈X
g(α(xxx, It,0))∏

q−1
j=1 φ(xxx,x j);

end
end
Parallel query: yyyt,Q = f (XXX t,Q);
Expand dataset: Dn : Dn∪{XXX t,Q,yyyt,Q};

end
Returns Final GP Model for Prediction: p( f |Dn);

4 NUMERICAL ANALYSIS

We conduct numerical experiments for various batch AL methods to investigate the performance.

4.1 Experimental Setup

We compare BFRI-LP with different existing approaches for batch AL. The first sample of the batch
is chosen by the entropy method from Knudde et al. 2019, for feasible region identification, while the
remaining batch samples are chosen using a standard batch AL method. The random sampling method,
pure-exploration method (Contal et al. 2013), and the influence function method (Zhan et al. 2017)
are included in the comparison and are referred to as, respectively, Entropy-Random, Entropy-PE, and
Entropy-IF. To measure the effectiveness of batch AL, the one-by-one sequential sampling is also included
and referred to as Entropy-Single in the experiments.

The benchmark functions (Chen and Fuge 2018, Picheny et al. 2013, Molga and Smutnicki 2005,
Dette and Pepelyshev 2010, Adjiman et al. 1998, Sonja and Derek 2013) and relevant settings are provided
in Table 1. For most cases the benchmark functions provide deterministic outcomes. However, we also
include a stochastic benchmark based on Adjiman function with noisy observations, where we expect the
Gaussian likelihood of the GP to tackle the noise and provide an accurate noise-free approximation. The
initial data are provided by maximin Latin hypercube sampling. The benchmark functions start with 10
data points, except for Hartmann 6D and Dette 8D function where 30 data points are used.

For the batch AL methods, a batch size of 3 is used for all benchmark functions, except for Hartmann
6D and Dette 8D where the batch size is set to 5. In order to measure the final prediction accuracy, we use
100000 randomly distributed samples in the bounded design space as test data to calculate the F1 score.
The code is implemented using GPFlowOpt (Knudde et al. 2017). For the model training, the common
Radial Basis Function (RBF) kernel is used with the automatic relevance detection (ARD) enabled. The
GP model is re-trained 5 times during each batch iteration by an L-BFGS-B optimizer and the model with
the best likelihood will be chosen to make predictions. For the acquisition function optimization, Monte
Carlo sampling is first employed to provide a good initial candidate sample from 1000 random samples,
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Table 1: Benchmark Function Settings

Function Design Space Feasible Boundaries [α,β ] V (A)\V (X )(%)

Hosaki [0,10]2 [−∞,−1] 7.64
Branin-Hoo [0,1]2 [20,40] 24.68
Goldstein-Price [−2,2]2 [−∞,500] 15.21
Curved Function [0,1]3 [1,2] 4.74
Six-hump camel [−3,3]× [−2,2] [−∞,−0.1] 5.57
Adjiman+N (0,0.22) [−5,5]2 [−3,−2] 3.71
Rosenbrock 4D [−2,2]4 [500,∞] 74.92
Piston Simulation (Scaled) [0,1]7 [0.4,0.46] 17.70
Hartmann 3D [0,1]3 [−∞,−1.5] 8.95
Hartmann 6D [0,1]6 [−∞,−1.5] 2.13
Dette 8D [0,1]8 [55,∞] 13.11

then this candidate point is set as the starting point of an L-BFGS-B gradient based optimizer to provide
the final optimum of acquisition function. The gradient of the acquisition function and the posterior mean
(µ∇(xxx) of Algorithm.1) are obtained by automatic differentiation of Tensorflow (Abadi et al. 2016). Each
benchmark configuration is repeated 10 times for statistical consistency.

4.2 Results And Discussion

In Figure 3, we highlight 6 batch iterations of the AL process of the Branin-Hoo function in detail to show
how the penalty function influences the acquisition function. It can be seen that the GP prediction becomes
much more accurate within 5 batch iterations. As the acquisition function keeps focusing near feasible
boundaries, the penalization effect automatically shrinks to a very small region when the model becomes
very certain of the feasible region.

The results of different feasible region identification methods are summarized in Figure 4. The
performance metric for feasible region identification is the accuracy of the feasibility evaluation after
applying the indicator function (F1 score) with respect to the amount of batch iterations. It can be seen
that by exploiting parallel computation, all the batch methods can reach the same performance as the
one-by-one sequential AL method with much less time. Moreover, BFRI-LP method outperforms the rest
of the strategies. Interestingly, for the Branin-Hoo function the random sampling strategy can reach better
results for some cases. This could be explained as the true feasible region covers a large region within the
design space and is easier to sample. However, once the unknown function is more difficult to approximate
and the feasible region is smaller, the advantage of BFRI-LP is more apparent. Entropy-PE outperforms
BFRI-LP for a while in the noisy Adjiman case, though generally BFRI-LP shows more robust performance.

Finally, two experiments with varies batch sizes are conducted and the results are provided in Figure 5,
it can be seen that the feasibility prediction accuracy generally increase faster with an increment of batch
sizes.

5 CONCLUSION

We developed a data-efficient Bayesian technique for feasible region identification that is capable of utilizing
all computation nodes using batch AL. This is done by building a penalization function based on the Lipschitz
condition of the unknown function. Synthetic tests are carried out and it shows better performance over
other relevant approaches. Future work will focus on extending the proposed strategy to handle multiple
design constraints, and look at asynchronous batch AL where the computation time between samples varies.
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Figure 3: BFRI-LP on the Branin-Hoo function. For each batch iteration, the penalized acquisition function
is maximized to sequentially produce one batch of samples. For brevity we only show the penalized
acquisition function, as well as the penalization function itself, after selecting the complete batch. The red
colored areas in the acquisition function and penalization function plots are of interest. The initial training
samples are denoted as red crosses, the selected samples of previous batch iteration are denoted as orange
dots, while evaluated samples of previous iterations are represented by blue triangles.
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Figure 4: Results for the benchmark functions described in Table 1. It shows the evolution of the F1 score
versus the batch iterations. The initial number of samples is 10, and samples are selected with a batch size
of q = 3, except for Hartmann 6D and Dette 8D the initial number of samples are 30, and the batch size
is q = 5.
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Figure 5: Performance of BFRI-LP on varying batch size q.
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González, J., Z. Dai, P. Hennig, and N. Lawrence. 2016. “Batch Bayesian Optimization via Local Penalization”. In Artificial
intelligence and statistics. May 9th-11th, Cadiz, Spain, 648–657.

Gotovos, A., N. Casati, G. Hitz, and A. Krause. 2013. “Active Learning for Level Set Estimation”. In Twenty-Third International
Joint Conference on Artificial Intelligence. Aug 3rd-9th, Beijing, China, 1344-1350.

Hernández-Lobato, J. M., M. W. Hoffman, and Z. Ghahramani. 2014. “Predictive Entropy Search for Efficient Global Optimization
of Black-box Functions”. In Advances in neural information processing systems. Dec 8th-13th, Montreal, Canada, 918–926.

Houlsby, N., F. Huszar, Z. Ghahramani, and J. M. Hernández-Lobato. 2012. “Collaborative Gaussian processes for Preference
Learning”. In Advances in neural information processing systems. Dec 3rd-8th, Nevada, USA, 2096–2104.

Houlsby, N., F. Huszár, Z. Ghahramani, and M. Lengyel. 2011. “Bayesian Active Learning for Classification and Preference
Learning”. arXiv preprint arXiv:1112.5745. https://arxiv.org/abs/1112.5745, accessed 24th December 2011.

Kaintura, A., K. Foss, I. Couckuyt, T. Dhaene, O. Zografos, A. Vaysset, and B. Sorée. 2018. “Machine Learning for Fast
Characterization of Magnetic Logic Devices”. In 2018 IEEE Electrical Design of Advanced Packaging and Systems
Symposium (EDAPS). Dec 16th-18th, Chhattisgarh, India, 1-3.

Kathuria, T., A. Deshpande, and P. Kohli. 2016. “Batched Gaussian Process Bandit Optimization via Determinantal Point
Processes”. In Advances in Neural Information Processing Systems. Dec 5th-10th, Barcelona, Spain, 4206–4214.

Kim, J., and S. Choi. 2019. “On Local Optimizers of Acquisition Functions in Bayesian Optimization”. arXiv preprint
arXiv:1901.08350. https://arxiv.org/abs/1901.08350, accessed 16th June 2020.

Kirsch, A., J. van Amersfoort, and Y. Gal. 2019. “Batchbald: Efficient and Diverse Batch Acquisition for Deep Bayesian Active
Learning”. In Advances in Neural Information Processing Systems. Dec 8th-14th, Vancouver, Canada, 7024–7035.

Knudde, N., I. Couckuyt, K. Shintani, and T. Dhaene. 2019. “Active Learning for Feasible Region Discovery”. In 2019 18th
IEEE International Conference On Machine Learning And Applications (ICMLA). Dec 16th-19th, Florida, USA, 567–572.

Knudde, N., J. van der Herten, T. Dhaene, and I. Couckuyt. 2017. “GPflowOpt: A Bayesian optimization library using
tensorflow”. arXiv preprint arXiv:1711.03845. https://arxiv.org/abs/1711.03845, accessed 10th November 2017.

Kulesza, A., and B. Taskar. 2011. “k-DPPs: Fixed-Size Determinantal Point Processes”. In Proceedings of the 28th International
Conference on International Conference on Machine Learning. Omnipress. Jun 28th-July 2nd Washington, USA, 1193–1200.

Larson, B. J., and C. A. Mattson. 2012. “Design Space Exploration for Quantifying a System Model’s Feasible Domain”.
Journal of Mechanical Design 134(4).

Malherbe, C., and N. Vayatis. 2017. “Global Optimization of Lipschitz Functions”. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. Aug 6th-11th, Sydney, Australia, 2314–2323.

Molga, M., and C. Smutnicki. 2005. “Test Functions for Optimization Needs”.

2789

https://dash.harvard.edu/handle/1/17467236
https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/1901.08350
https://arxiv.org/abs/1711.03845


Qing, Knudde, Couckuyt, Dhaene and Shintani

Picheny, V., D. Ginsbourger, O. Roustant, R. T. Haftka, and N.-H. Kim. 2010. “Adaptive Designs of Experiments for Accurate
Approximation of a Target Region”. Journal of Mechanical Design 132(7).

Picheny, V., T. Wagner, and D. Ginsbourger. 2013. “A Benchmark of Kriging-based Infill Criteria for Noisy Optimization”.
Structural and Multidisciplinary Optimization 48(3):607–626.

Rasmussen, C. E. 2003. “Gaussian Processes in Machine Learning”. In Summer School on Machine Learning, 63–71. Springer.
Rojas-Gonzalez, S., J. Branke, and I. Van Nieuwehuyse. 2019. “Multiobjective Ranking and Selection with Correlation and

Heteroscedastic Noise”. In Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. Bae,
S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, 3392–3403. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Shah, A., and Z. Ghahramani. 2015. “Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective
Functions”. In Advances in Neural Information Processing Systems. Dec 7th-12th, Montreal, Canada, 3330–3338.

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. 2015. “Taking the Human Out of The Loop: A Review
of Bayesian Optimization”. Proceedings of the IEEE 104(1):148–175.

Snoek, J. R. 2013. Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology. Ph. D. thesis.
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.719.5070&rank=1 accessed 8th September.

Sonja, S., and B. Derek. 2013. “Virtual Library of Simulation Experiments: Test Functions and Datasets”. http://www.sfu.ca/
∼ssurjano, accessed 22nd June 2020.

Van Steenkiste, T., J. van der Herten, I. Couckuyt, and T. Dhaene. 2016. “Sensitivity Analysis of Expensive Black-Box Systems
Using Metamodeling”. In Proceedings of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier,
R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 578–589. Washington, USA: Institute of Electrical and Electronics
Engineers, Inc.

Wang, J., S. C. Clark, E. Liu, and P. I. Frazier. 2016. “Parallel Bayesian Global Optimization of Expensive Functions”. arXiv
preprint arXiv:1602.05149. https://arxiv.org/abs/1602.05149 accessed 5th May 2019.

Wang, Z., C. Gehring, P. Kohli, and S. Jegelka. 2018, 09–11 Apr. “Batched Large-scale Bayesian Optimization in High-
dimensional Spaces”. Volume 84 of Proceedings of Machine Learning Research, 745–754. Playa Blanca, Lanzarote, Canary
Islands: PMLR.

Zhan, D., J. Qian, and Y. Cheng. 2017. “Pseudo Expected Improvement Criterion for Parallel EGO algorithm”. Journal of
Global Optimization 68(3):641–662.

AUTHOR BIOGRAPHIES
Jixiang Qing received his M.E. degree in Aerospace Engineering from Northwestern Polytechnical University in 2019. Starting
from July 2019 he is active as a PhD student in the Internet Technology and Data Science Lab (IDLab) research group at Ghent
University, working on Bayesian active learning, optimization and generative design. His e-mail address is Jixiang.Qing@ugent.be.

Nicolas Knudde received his M.Sc. degree in Engineering Physics from Ghent University in 2016. Starting from September
2016 he is active as a PhD student in the research group Internet Technology and Data Science Lab (IDLab) at Ghent University,
working on Bayesian optimization and active learning. His e-mail address is Nicolas.Knudde@ugent.be.

Ivo Couckuyt obtained his PhD degree from Ghent University in 2013. He is currently working as a postdoctoral research
fellow at Ghent University - IDLab. His research is mainly focused on global and local surrogate modeling (metamodeling)
and its application to solve real world problems, optimization of expensive functions, evolutionary computing and machine
learning methods. His e-mail address is ivo.couckuyt@ugent.be.

Tom dhaene is a full professor at the Department of Information Technology (INTEC) of Ghent University. He received the
PhD degree in electrical engineering from Ghent University, Belgium, in 1993. In September 2000, he joined the Department
of Mathematics and Computer Science of the University of Antwerp as a Professor. Since October 2007, he has been a Full
Professor with the Department of Information Technology, Ghent University. He is also affiliated with imec. As author or
co-author, he has contributed to more than 350 peer-reviewed papers and abstracts in international conference proceedings,
journals and books about computational science and numerical analysis and engineering. He is the holder of five U.S. patents.
His e-mail address is tom.dhaene@ugent.be.

Kohei Shintani received his PhD from Nagoya University. He works as an assistant manager in Toyota motor corporation.
He is responsible for development of vehicle performance and optimization technology. His academic experience includes
working as a visiting scholar in Northwestern University in 2016 and Nagoya University in 2019. His e-mail address is
kohei shintani@mail.toyota.co.jp.

2790

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.719.5070&rank=1
http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano
https://arxiv.org/abs/1602.05149
mailto://Jixiang.Qing@ugent.be
mailto://Nicolas.Knudde@ugent.be
mailto://ivo.couckuyt@ugent.be
mailto://tom.dhaene@ugent.be
mailto://kohei_shintani@mail.toyota.co.jp

	INTRODUCTION
	RELATED WORK
	Acquisition Functions For Feasible Region Identification
	Batch Bayesian Active Learning

	BATCH BAYESIAN ACTIVE FEASIBLE REGION IDENTIFICATION
	A Local Penalization Function
	Extending Batch AL methods For Feasible Region Identification

	NUMERICAL ANALYSIS
	Experimental Setup
	Results And Discussion

	CONCLUSION

