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ABSTRACT

We consider the problem of finding a system with the best primary performance measure among a finite
number of simulated systems in the presence of stochastic constraints on secondary performance measures.
When no feasible system exists, the decision maker may be willing to consider looser thresholds. Given
that there is no change in the underlying simulated systems, we adopt the concept of green simulation and
perform feasibility check across all potential thresholds simultaneously. We propose an indifference-zone
procedure that takes multiple threshold values for each constraint based on the user’s inputs and returns
the best system that is feasible to the most desirable thresholds. We prove that our procedure yields the
best system in the most desirable feasible region possible with at least a prespecified probability. Our
experimental results show that the proposed procedure performs well with respect to the number of required
observations as compared with an existing procedure.

1 INTRODUCTION

We consider the problem of selecting the best or near-best system with respect to a primary performance
measure among a finite number of simulated systems while also satisfying constraints on one or more
secondary performance measures. When no feasible system exists with respect to a given set of threshold
values, the decision maker may be willing to relax the threshold values of some constraints so that a
feasible system can be found. Thus, the constraint thresholds may change. We illustrate this problem with
an example.

Suppose a decision maker wants to control an inventory level such that the expected profit can be
maximized. She considers using an (s, S) inventory policy (namely ordering products to increase the
inventory level to S when the inventory level at a review period is below s and placing no order otherwise).
Two constraints exist, namely the probability that a shortage occurs between two successive review periods
should be less than or equal to q1 = 5% and the expected cost per review period should be less than or
equal to q2 = $115,000. The decision maker is flexible with the second constraint and would like to relax
the threshold to $120,000 or $130,000 if no feasible system can be found with q2 = $115,000. If there
is still no feasible systems with respect to q2 = $130,000, then the decision maker is willing to raise the
threshold q1 to 6%, still with three possible values for q2.

Ranking and selection (R&S) procedures aim to identify a system with the best performance among
finitely many systems whose performances are estimated by stochastic simulation. Kim and Nelson (2005)
and Hong et al. (2015) provide a literature review on R&S. When the problem requires not only selecting the
best system with respect to a primary performance measure but also determining the feasibility with respect
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to stochastic constraints on secondary performance measures, it becomes constrained R&S. There are three
major approaches to solving constrained R&S, namely the indifference-zone (IZ) approach, the optimal
computing budget allocation (OCBA) approach, and the Bayesian approach. Lee et al. (2012), Hunter and
Pasupathy (2013), and Pasupathy et al. (2015) propose sampling frameworks that can approximate the
optimal computing budget allocation considering stochastic constraints. Xie and Frazier (2013) propose
a sequential policy from the Bayesian approach for allocating simulation effort to determine a set of
simulated systems that have mean performance exceeding a threshold. For the IZ approach, Batur and Kim
(2010) propose a fully sequential procedure that finds a set of feasible systems given multiple constraints.
Andradóttir and Kim (2010) propose procedures that select the best system with respect to the primary
performance measure among a finite number of simulated systems in the presence of a single stochastic
constraint on a secondary performance measure. Healey et al. (2013) apply the concept of dormancy to
efficiently solve constrained R&S and Healey et al. (2014) propose procedures to select the best system
in the presence of multiple constraints.

For constrained R&S, if each constraint has one fixed threshold value, procedures due to Andradóttir
and Kim (2010) or Healey et al. (2014) can be used. When the decision maker is willing to consider
more than one threshold value, one may consider iteratively applying those procedures “from scratch” to
each threshold. However, this wastes all the information from a previous constrained R&S and becomes
computational inefficient. Given the fact that there is no change in the simulation model of each system,
a natural idea is to recycle the data for constrained R&S with different thresholds. The idea of recycling
simulation observations for computer experiments is proposed in Feng and Staum (2015). However, they
focus on estimation rather than comparison. Zhou et al. (2020a) propose a procedure that performs
feasibility determination when the decision maker wants to consider multiple threshold values on each
constraint. They use the idea of green simulation and perform feasibility determination simultaneously with
respect to all thresholds at the same time so that the overall required number of observations is reduced.
However, their focus is on feasibility determination rather than on finding the best feasible system.

In this paper, we adopt the concept of recycling simulation observations in the context of constrained
R&S when constraint thresholds can change. We provide a fully sequential procedure that returns the
best system that also satisfies stochastic constraints with the most desirable thresholds possible in which
there is at least one feasible system. We prove that our procedure achieves a desired overall probability of
correct selection and also performs well in reducing the required number of observations compared with an
existing approach, namely applying a procedure of Andradóttir and Kim (2010) iteratively to each possible
set of threshold values.

The rest of the paper is organized as follows: Section 2 provides the background for our problem.
Section 3 proposes a procedure and Section 4 discusses the statistical validity of the procedure. In Section
5, we present the numerical results for our procedure and compare its performance with that of an existing
procedure. Concluding remarks are provided in Section 6. A more detailed version of this paper is provided
by Zhou et al. (2020b).

2 FORMULATION AND NOTATION

In this section, we provide the problem formulation and notation.
We consider k systems whose primary performance measure, as well as s constraints on secondary

performance measures, can be estimated through stochastic simulation. Let Θ denote the index set of all
possible systems (i.e., Θ = {1, . . . , k}). LetXin be the observation associated with the primary performance
measure from replication n of system i, and Yi`n be the observation associated with the `th stochastic
constraint from replication n of system i, where ` = 1, . . . , s. We also define the expected values of
the primary and secondary performance measures for each system i ∈ Θ and constraint ` = 1, . . . , s as
xi = E[Xin] and yi` = E[Yi`n], respectively. Constrained R&S is to select

arg maxi∈Θ xi
s.t. yi` ≤ q` for all ` = 1, . . . , s,
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where q` denotes the constraint threshold for constraint `.
For a given threshold vector q = (q1, . . . , qs), procedures due to Andradóttir and Kim (2010) can be

used to find the best system if there is only one constraint and procedures due to Healey, Andradóttir,
and Kim (2014) are suitable if there are multiple constraints. In this paper, we assume that the decision
maker has a list of possible threshold values in consideration for each constraint and hopes to select the
best system with respect to the most desirable thresholds possible. We let d` denote the number of distinct
threshold values and qm` denote the mth distinct threshold value on constraint `, where m = 1, . . . , d` and
` = 1, . . . , s. We assume q1

` < . . . < qd`` , where ` = 1, . . . , s.
More specifically, instead of inputting a fixed threshold vector q = (q1, . . . , qs), a decision maker inputs

an ordered list of vectors of threshold values {q(1), q(2), . . . , q(d)}, where d denotes the total number of
threshold vectors that she is interested to test. We let q(m) denote the m-th preferable threshold vector and
let q(m)

` be the corresponding threshold value on constraint ` in q(m), where m = 1, . . . , d and ` = 1, . . . , s.
We assume that q(1) is the most preferable threshold vector and q(d) is the least preferable threshold vector.
Then we introduce the threshold index vector I(m) to include the indices of the threshold values that form
q(m). Similar to the definition of q(m)

` , I(m)
` represents the corresponding threshold index on constraint `.

Consider the example of selecting the best inventory control policy discussed in Section 1. Then
s = 2, d1 = 2 (i.e., two threshold values for the first constraint), d2 = 3 (i.e., three threshold values for the
second constraint), q1

1 = 5, q2
1 = 6, and q1

2 = 11500, q2
2 = 120000, q3

2 = 130000. Moreover, we consider
the following d = 6 threshold vectors

q(1) =

[
5

115000

]
, q(2) =

[
5

120000

]
, q(3) =

[
5

130000

]
,

q(4) =

[
6

115000

]
, q(5) =

[
6

120000

]
, and q(6) =

[
6

130000

]
.

Note that q(1)
1 = q

(2)
1 = q

(3)
1 = 5, q

(4)
1 = q

(5)
1 = q

(6)
` = 6, while q(1)

2 = q
(4)
2 = 115000, q

(2)
2 = q

(5)
2 =

120000 and q(3)
2 = q

(6)
2 = 130000. The threshold index vectors are

I(1) =

[
1
1

]
, I(2) =

[
1
2

]
, I(3) =

[
1
3

]
, I(4) =

[
2
1

]
, I(5) =

[
2
2

]
, and I(6) =

[
2
3

]
.

and hence I(1)
1 = I

(2)
1 = I

(3)
1 = 1, I

(4)
1 = I

(5)
1 = I

(6)
1 = 2, while I(1)

2 = I
(4)
2 = 1, I

(2)
2 = I

(5)
2 = 2, and

I
(3)
2 = I

(6)
2 = 3. A detailed discussion of several ways of setting the input threshold vectors based on the

decision maker’s desire is included in Zhou et al. (2020b).
To solve the constrained R&S with varying constraint thresholds, we consider two phases: Phase I to

identify feasible systems and Phase II to select a system with the largest xi based on a comparison among
feasible systems.

To check the feasibility of each system with respect to constraint `, Andradóttir and Kim (2010)
introduce a tolerance level, namely ε` > 0, for constraint `, which is a positive real value predefined by the
decision maker. This is often interpreted as the amount the decision maker is willing to be off from a given
threshold value. Consider a threshold value qm` for m = 1, 2, . . . , d`. Any system i with yi` ≤ qm` − ε`
is considered a desirable system with respect to constraint ` and threshold value qm` . We let D`(q

m
` )

denote the set of desirable systems for constraint ` and qm` . Systems with yi` ≥ qm` + ε` are considered
as unacceptable systems for constraint ` and threshold qm` , and are placed in set U`(qm` ). Systems that
fall within a tolerance level of qm` , which means qm` − ε` < yi` < qm` + ε`, are considered as acceptable
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systems, placing them in the set A`(qm` ). More specifically,

D`(q
m
` ) = {i ∈ Θ|yi` ≤ qm` − ε`};

U`(q
m
` ) = {i ∈ Θ|yi` ≥ qm` + ε`}; and

A`(q
m
` ) = {i ∈ Θ|qm` − ε` < yi` < qm` + ε`}.

When feasibility check is performed, we let CDi`(q
m
` ) denote the correct decision event of system i with

respect to constraint `, which is defined as declaring system i as feasible if i ∈ D`(q
m
` ) and as infeasible if

i ∈ U`(qm` ). Any feasibility decision is considered correct if i ∈ A`(qm` ). We let CDi` denote the correct
decision event across all thresholds on constraint ` for system i, i.e., CDi` = ∩d`m=1CDi`(q

m
` ). A correct

decision for Phase I is defined as CD = ∩i∈Θ ∩s`=1 CDi`.
To select the best system with respect to the primary performance measure in Phase II, the decision

maker needs to choose an indifference-zone parameter δ, which is the smallest absolute difference that the
decision maker considers significant. More specifically, any system whose primary performance measure
is at least δ smaller (larger) than system i is considered as inferior (superior) to system i. We use CSi to
denote the correct selection between system i and the best system. Let m∗ be the smallest m such that
D`(q

(m)
` ) 6= ∅ for all `. If there exists at least one constraint ` such that D`(q

(d)
` ) = ∅, i.e., m∗ does not

exist, we set m∗ = d+ 1 and define D`(q
(d+1)
` ) = A`(q

d+1
` ) = ∅. We also define D`(q

(0)
` ) = A`(q

(0)
` ) = ∅

if m∗ = 1. If m∗ ≤ d, then q(m∗) is the most preferable threshold vector possible where at least one
desirable system exists. Further, let B denote the set of desirable systems with respect to q(m∗) (i.e.,
B = ∩s`=1D`(q

(m∗)
` )) and let b be the index of the best system among the systems in B, so that xb ≥ xi

for i, b ∈ B. Then if m∗ ≤ d,

CS =

{
select i such that either i ∈ ∩s`=1

(
D`

(
q

(m∗)
`

)
∪A`

(
q

(m∗)
`

))
and xi > xb − δ

or i ∈ ∪m<m∗ ∩s`=1

(
D`

(
q

(m)
`

)
∪A`

(
q

(m)
`

))}
.

If m∗ = d+ 1, CS is to declare that no feasible systems exist.
Throughout the paper, we let I(·) be the indicator function and use the additional notation defined

below.

n0 ≡ initial sample size for each system (n0 ≥ 2);

ri ≡ number of observations so far for system i (ri ≥ n0);

S2
Xij (n0) ≡ sample variance of Xi1 −Xj1, . . . , Xin0 −Xjn0 between system i and j;

S2
Yi`

(n0) ≡ sample variance of Yi`1, . . . , Yi`n0 for system i and constraint `;

R(ri; v, w, z) ≡ max

{
0,

(n0 − 1)wz

v
− v

2c
ri

}
for v, w, z ∈ R+ and c ∈ {1, 2, . . . ,∞};

α ≡ overall nominal error for a procedure under consideration;

β1 ≡ nominal error of feasibility check for one constraint of one system;

β2 ≡ nominal error of comparison between two systems.

3 PROCEDURE

In this section, we provide a procedure that runs Phases I and II simultaneously.
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Similar to the findings in Zhou et al. (2020a), for constraint `, if a system is declared feasible with
respect to qm` , where m = 1 . . . , d`, this system is also declared feasible with respect to all thresholds
qm+1
` , . . . , qd`` with observation recycling. If a system is declared infeasible with respect to threshold qm` ,

then this system is also declared infeasible with respect to q1
` , . . . , q

m−1
` . This is the main idea in our

procedure.
Before starting our procedure, we need a few definitions. Given the decision maker’s input of threshold

vectors q(1), . . . , q(d) and threshold vectors, I(1), . . . , I(d), we use a variable θ to keep track of the threshold
vector for which we are trying to determine feasibility. Initially, θ is set to d, which is the index of the
least preferable threshold vector.

Then we define four sets as follows:

• P is a set of systems whose feasibility is partially determined. More specifically, systems in P
are declared feasible with respect to q(θ), but not determined yet with respect to q(θ′) for any
1 ≤ θ′ ≤ θ − 1.

• F is a set of systems whose feasibility is fully determined. More specifically, systems in F are
declared feasible with respect to q(θ) and infeasible with respect to q(1), . . . , q(θ−1).

• M is a set of systems whose feasibility with respect to q(θ) is not determined yet.
• SSi is a set of systems found to be superior to system i in terms of the primary performance

measure.

In addition, the following two notations are needed:

• Zmi` is a binary variable that indicates whether system i is feasible with respect to constraint ` for
threshold qm` . More specifically,

Zmi` =


1, if system i is declared feasible to constraint ` with threshold value qm` ,
0, if system i is declared infeasible to constraint ` with threshold value qm` ,
2, if the feasibility is not determined yet.

• vUB
i` and vLB

i` are two values that help to determine the feasibility of system i simultaneously with
respect to all the threholds on constraint `. A more detailed discussion can be found in Zhou et al.
(2020a).

A detailed description of the simultaneously running procedure is shown in Algorithm 1.

4 STATISTICAL VALIDITY

In this section, we discuss how to ensure the statistical validity of Algorithm 1.
To guarantee the statistical validity of ZAK+, we need the following assumptions. First, we assume

that for each system i, where i = 1, . . . , k, we have
Xin

Yi1n
...

Yisn

 iid∼ Ns+1



xi
yi1
...
yis

 ,Σi

 , n = 1, 2, . . . ,

where iid∼ denotes independent and identically distributed, Ns+1 denotes (s+ 1)-dimensional multivariate
normal, and Σi is the (s+ 1)× (s+ 1) covariance matrix of the vector (Xin, Yi1n, . . . , Yisn).

Normally distributed data is a common assumption used in many R&S procedures due to the fact that
it can be justified by the Central Limit Theorem when observations are either within-replication averages
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Algorithm 1 ZAK+
[Setup:] Choose confidence level 1−α, tolerance level ε`, indifference-zone parameter δ, threshold vectors
{q(1), q(2), . . . , q(d)}, and corresponding index vectors {I(1), I(2), . . . , I(d)}. Set M = {1, 2, . . . , k}
and set SSi = ∅ and Zmi` = 2 for all i ∈ M, ` = 1, . . . , s, and m = 1, . . . , d`. Set F = ∅ and P = ∅.
Set θ = d.
[Initialization:]

Obtain n0 observations from system i, and compute S2
Yi`

(n0) and S2
Xij

(n0) for all i, j ∈M , where
i 6= j, and ` = 1, . . . , s.
Set η1 = 1

2((2β1)−2/(n0−1) − 1) and η2 = 1
2((2β2)−2/(n0−1) − 1), where β1 and β2 are computed

based on the discussion in Section 4.
Set ri = n0 and ONi = {1, . . . , s} for all i ∈M . Set ONi` = {1, . . . , d`} for all ` = 1, . . . , s and
all i ∈M .
Set vUB

i` =∞ and vLB
i` = −∞ for i ∈M and ` = 1, . . . , s.

[Comparison:] For i, j ∈ (M ∪ P ∪ F ) s.t. i 6= j, i 6∈ SSj , j 6∈ SSi, and

ri∑
n=1

Xi`n ≤
rj∑
n=1

Xj`n −R(ri; δ, η2, S
2
Xij ),

If j ∈M , add j to SSi.
Else,

– If i ∈ (M ∪ P ), add j to SSi.
– Else, eliminate i from F , delete SSi.

[Feasibility Check:]
for i ∈ (M ∪ P ) do

for ` ∈ ONi do
vUB
i` = min(vUB

i` , Ȳi`(ri) +R(ri; ε`, η1, S
2
Yi`

(n0))/ri).
vLB
i` = max(vLB

i` , Ȳi`(ri)−R(ri; ε`, η1, S
2
Yi`

(n0))/ri).
for m ∈ ONi` do

If vUB
i` ≤ qm` , set Zmi` = 1 and ONi` = ONi`\{m};

If vLB
i` ≥ qm` , set Zmi` = 0 and ONi` = ONi`\{m}.

end for
If ONi` = ∅, set ONi = ONi\{`}.

end for

If
∏s
`=1 Z

I
(θ)
`
i` = 0, eliminate i from M , delete SSi.

If ∃ minimum κ ≤ θ s.t.
∏s
`=1 Z

I
(κ)
`
i` = 1,

– If κ < θ, set M = M ∪ P, F = ∅, P = ∅, and θ = κ.
– Move i from M to P .
– For all j ∈ F with i ∈ SSj , eliminate j from F , delete SSj .

– If κ = 1 or
∑s

`=1 Z
I
(κ−1)
`
i` = 0 for κ > 1, then move i from P to F . Futhermore, if there exists

j such that j ∈ P ∪ F and j ∈ SSi, then eliminate i from F and delete SSi.
end for
[Stopping Condition:]

If |M | = 0, |P | = 0 and |F | = 1, then stop and return the system in F as the best system. Else if
|M | = 0, |P | = 0 and |F | = 0, then stop and return no feasible systems exist.
Otherwise, for all i ∈ (M ∪ P ∪ F ), set ri = ri + 1, take one additional observation Yi`ri , go to
[Comparison].
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or batch means (Law and Kelton 2000). Moreover, the primary and secondary performance measures are
usually correlated. When common random numbers (CRN) are introduced in simulating observations from
each system, observations between systems are correlated. Our formulation allows correlations between
both performance measures and systems.

We then assume that for any 1 ≤ t ≤ k and any subset Θ′ ⊆ Θ with cardinality t, the feasibility check
phase guarantees{

Pr{∩i∈Θ′ ∩s`=1 CDi`} ≥ (1− sβ1)t, if systems are simulated independently;

Pr{∩i∈Θ′ ∩s`=1 CDi`} ≥ 1− tsβ1, if systems are simulated under CRN.

Similarly, we assume that for any 1 ≤ t ≤ k and any subset Θ′ ⊆ {i ∈ {1, . . . , k} : xi ≤ xb− δ} with
cardinality t, the comparison phase guarantees{

Pr{∩i∈Θ′CSi} ≥ (1− β2)t, if systems are simulated independently;

Pr{∩i∈Θ′CSi} ≥ 1− tβ2, if systems are simulated under CRN.

This means that we assume the feasibility check and the comparison procedures have lower bounds on the
probability of correct selection, depending on whether the systems are simulated independently or under
CRN. These two assumptions are critical to the proofs of statistical validity of the proposed procedure.

We finally assume that if m∗ ≤ d, then there do not exist any systems that fall in the indifference zone
of the primary performance measure. That is, for any system i ∈ ∩s`=1(D`(q

(m∗)
` ) ∪ A`(q

(m∗)
` )), where

i 6= b, we assume xi ≤ xb − δ.
Based on the assumptions above, one approach is to first decide the choice of e = sβ1/β2. This is the

ratio of (i) the error for a feasibility check with respect to all s constraints for one system to (ii) the error
of a comparison between two systems, which should be decided based on the decision maker’s idea on
whether she wants to allocate more error to feasibility check or comparison. We provide the case when the
decision maker chooses e = 1 and assume that systems are simulated independently. Let β = sβ1 = β2.
Then the value of β can be found by solving the following equation:

(1− β)jβ + (1− 2β)k−jβ−1 + (1− β)− 2 = 1− α,

where jβ is the integer in {0, 1, . . . , k − 1} that is closest to

logC + (k − 1) log(1− 2β)

log(1− 2β) + log(1− β)
, where C =

log(1− 2β)

log(1− β)
.

The proof can be found in Zhou et al. (2020b).

5 NUMERICAL EXPERIMENTS

In this section, we provide experimental results when there is one constraint (s = 1) and two thresholds
(d = 2) to demonstrate the performance of procedureZAK+ compared with repeatedly applying procedure
AK+ from Andradóttir and Kim (2010). Experiments with s > 1 and d > 2 are included in Zhou et al.
(2020b).

As we have only one constraint, we drop subscript ` from all notation, including yi`, qm` , q
(m)
` , and

I
(m)
` . We set the thresholds as q1 = 0 and q2 = 2ε, and assume that the decision maker prefers q1 = 0

to q2 = 2ε. That is q(1) = 0, q(2) = 2ε, I(1) = 1, and I(2) = 2. We apply AK+ to each threshold qm,
where m = 1, 2, in the order from the most preferable to the least preferable until a best feasible system
is found. We set yi = 0, where i = 1, . . . , k.
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The experiment is based on 10,000 macro replications with α = 0.05, n0 = 20, ε = 1/
√
n0, and

δ = 1/
√
n0. We report estimated probability of correct selection and average total number of observations.

We set all variances for both primary and secondary performance measures equal to 1 and consider
independent systems in terms of the primary performance measure with no correlation between the secondary
performance measure.

We consider two experimental settings: (i) there exist feasible systems with respect to q(1); (ii) there
do not exist feasible systems with respect to q(1), but there exist feasible systems with respect to q(2). We
consider the number of systems k ∈ {6, 15, 30, 99} The mean configurations are shown as follows.

• Case (i):

xi =


0, i = 1, . . . , k/3− 1,

δ, i = k/3,

(i+ 1− k/3)δ, i = k/3 + 1, . . . , k

and yi =


−ε, i = 1, . . . , k/3,

ε, i = k/3 + 1, . . . , 2k/3,

3ε, i = 2k/3 + 1, . . . , k.

• Case (ii):

xi =


0, i = 1, . . . , 2k/3− 1,

δ, i = 2k/3,

(i+ 1− 2k/3)δ, i = 2k/3 + 1, . . . , k,

and yi =

{
ε, i = 1, . . . , 2k/3,

3ε, i = 2k/3 + 1, . . . , k.

For both settings, the infeasible systems all have superior performance to the feasible systems, and all
feasible systems that are not the best system are exactly δ worse in the primary performance measure
compared with the best system. This becomes challenging for the purpose of selecting the best system.
The experimental results are shown in Table 1.

Table 1: Average number of observations and estimated PCS (reported in parentheses) for multiple systems
with a single constraint and two thresholds.

k Case (i) Case (ii)
ZAK+ AK+ ZAK+ AK+

6 658.702 659.92 882.698 1215.616
(0.976) (0.984) (0.962) (0.972)

15 1916.463 1850.600 2667.507 3538.856
(0.981) (0.983) (0.962) (0.963)

30 4275.535 4216.827 5972.886 8082.279
(0.982) (0.984) (0.964) (0.965)

99 16593.290 16488.280 23320.210 32173.26
(0.984) (0.984) (0.964) (0.963)

We see that both procedures are statistical valid. ZAK+ performs similar or slightly worse compared
to AK+ in case (i), but performs better in case (ii). As AK+ needs to be applied once in case (i) but
twice in case (ii), it is expected that AK+ would require much more observations in case (ii) compared
with case (i). As the number of times AK+ needs to be applied may increase when number of thresholds
increases, ZAK+ is expected to perform better than AK+ with larger number of thresholds.

6 CONCLUSION

We consider constrained R&S with varying threshold values and propose a statistical valid procedure that
selects the best system with respect to a primary performance measure while also satisfying constraints
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on secondary performance measures with respect to the most preferable threshold vector possible. Our
experimental results show that the proposed procedure performs well in reducing the number of required
observations.
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Healey, C., S. Andradóttir, and S.-H. Kim. 2014. “Selection Procedures for Simulations with Multiple Constraints under
Independent and Correlated Sampling”. ACM Transactions on Modeling and Computer Simulation 24 (3)(14).

Hong, L. J., B. L. Nelson, and J. Xu. 2015. “Discrete Optimization via Simulation”. In Handbook of Simulation Optimization.
International Series in Operations Research & Management Science, edited by M. Fu, Volume 216, 9–44. NY: Springer.

Hunter, S. R., and R. Pasupathy. 2013. “Optimal Sampling Laws for Stochastically Constrained Ranking and Selection under
Independent or Common Random Numbers”. INFORMS Journal on Computing 25(3):527–542.

Kim, S.-H., and B. Nelson. 2005. “Selecting the Best System”. In Handbooks in Operations Research and Management Science:
Simulation, edited by S. G. Henderson and B. L. Nelson, Chapter 17, 501–534. Oxford, UK: Elsevier.

Law, A., and D. Kelton. 2000. Simulation Modeling and Analysis. New York: Academic Press.
Lee, L. H., N. A. Pujowidianto, C.-H. C. L. W. Li, and C. M. Yap. 2012. “Approximation Simulation Budget Allocation for

Selecting the Best Design in the Presence of Stochastic Constraints”. IEEE Transactions on Automatic Control 57:2940–2945.
Pasupathy, R., S. R. Hunter, N. A. Pujowidianto, L. H. Lee, and C. H. Chen. 2015. “Stochastically Constrained Ranking and

Selection via SCORE”. ACM Transactions on Modeling and Computer Simulation 25(1).
Xie, J., and P. Frazier. 2013. “Sequential Bayes-optimal Policies for Multiple Comparisons with a Known Standard”. Operations

Research 61:1069–1257.
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