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ABSTRACT 

Simulation models contain many parameters that must be adjusted (calibrated) in advance to reduce the 
error between simulations and experimental results. Bayesian optimization is often applied to minimize 
error after only a few simulations. However, Bayesian optimization uses only error information, ignoring 
information on other simulation results. In this paper, we improve Bayesian optimization by utilizing both 
and show that other simulation results effectively reduce the dimensionality of the parameter space. In an 
evaluation using actual semiconductor simulation results, the proposed method reduces the number of 

simulations by 50% compared with random search and conventional Bayesian optimization. 

1 INTRODUCTION 

Simulators are created and used in various fields to establish improvement guidelines (Xu et al. 2015). For 
example, simulations of hospital stay lengths (Zeng et al. 2012), container terminal processes (Bruzzone et 
al. 2012), factory operation scheduling (Hsieh et al. 2007), and semiconductor products (Kukita et al. 2018) 
have been proposed in studies examining improvement guidelines. 

Simulation models contain many parameters. To simulate an actual experiment well, we must adjust 
these parameters in advance so that simulation results are compatible with experimental results. In particular, 
calibration is required to reduce the error between simulations and experiments. 

Many parameters and long simulation calculation times make reducing error time-consuming. 
Reducing the time required for calibration would thus be effective for obtaining improvement guidelines. 
We regard this error minimization problem as a black-box optimization. Bayesian optimization is often 

applied when evaluating an objective (black-box) function takes time, as the case in Shahriari et al. (2016). 
Bayesian optimization assumes a Gaussian process as a prior for a black-box function. In this paper, we 
propose a method for improving calibration efficiency by modifying the conventional Bayesian 
optimization. 

Our problem is partially different from conventional Bayesian optimization, which uses only 
information on the error to be minimized. In contrast, we can also obtain information on simulation results. 

For example, when running the simulation of hospital stay lengths (Zeng et al. 2012), we can obtain 
simulation results such as patient stay lengths and wait times, along with the error between the experimental 
and simulation results. This additional information can be applied to improve efficiency. 

Furthermore, we must adjust many parameters to reduce the error in this setting. This requires scaling 
Bayesian optimization to high-dimensional parameter spaces. Bayesian optimization is generally most 
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successful when input dimensions are low and does not provide good results in higher dimensions (Shahriari 
et al. 2016). Various methods for improving conventional Bayesian optimization have been proposed (Chen 
et al. 2012; Kandasamy et al. 2015; Wang et al. 2016; Li et al. 2017), but these methods also use only 

information about the objective function. 
We propose a method for efficiently solving high-dimensional problems that predicts additional 

simulation results by a regression method and predicts the objective function value using prediction values 
for simulation results as explanatory variables. This method can utilize information on both the error and 
other simulation results. 

In conventional Bayesian optimization, error is estimated from parameters by Gaussian process 

regression. In the proposed method, we first predict simulation results from parameters by the regression 
model and then estimate error by Gaussian process regression from the predicted simulation results. If there 
are fewer dimensions of the predicted simulation results than there are parameters, the proposed method 
can reduce the input dimensions for Gaussian process regression compared with conventional Bayesian 
optimization. This dimensionality reduction may reduce error in only a few simulations. 

To our knowledge, two Bayesian optimization methods using additional information have been 

proposed (Astudillo et al. 2019; Uhrenholt et al. 2019), but these methods must predict all additional 
information to calculate error by Gaussian process regression. When the dimension of this additional 
information is large, the calculation of Gaussian process regression for all dimensions is impractically time-
consuming. Further, these methods do not scale to optimization problems with high-dimensional parameters. 
We propose a method that does not need to predict all additional information, and can predict additional 
information with a regression method having shorter calculation times than does Gaussian process 

regression, making it more practical. Even with high-dimensional parameters, dimensionality reduction by 
our method efficiently reduces error. 

To confirm the efficiency of the proposed method, we performed evaluation experiments using actual 
simulation results. As described below, the results confirmed that the proposed method reduces the number 
of simulations required for calibration compared with random search and conventional Bayesian 
optimization. 

2 PROBLEM SETTING 

In this section, we generalize the problem setting described in the previous section to present it as a 
mathematical problem. Here, we consider minimizing an objective function 𝑓(𝑥) on a set 𝒳 ⊂ ℝ𝐷 as 
 

𝑥∗ = argmin
𝑥∈𝒳

𝑓(𝑥), 

 

where 𝑓(𝑥) is the true objective function as obtained from simulations (or experiments) with parameters 
𝑥 ∈ 𝒳. We can observe a noise-added objective function for the parameters 𝑥 as 
 

𝑦 = 𝑓(𝑥) + 𝜖, 𝜖~𝒩(0, 𝜎2), 
 
where 𝒩(0, 𝜎2) is a normal distribution with mean 0 and variance 𝜎2. The goal of this problem is to find 
𝑥 such that the objective function 𝑓(𝑥) is minimized when observing 𝑦 for parameters 𝑥 only 𝑁 times. 
That is, assuming that 𝑥𝑁

∗  is the estimated optimal solution 𝑥∗ after 𝑁 times, we successively determine 
𝑥1, ⋯ , 𝑥𝑁 so that a simple regret 𝑟𝑁 = 𝑓(𝑥𝑁

∗ ) − 𝑓(𝑥∗) becomes smaller. 
The above is the conventional problem setting for Bayesian optimization. Our proposed method differs 

in that we assume we can obtain both the objective function value 𝑦 and other outputs 𝑧 ∈ ℝ𝑑  as the 
simulation results for the parameters 𝑥 as 
 

𝑧 = 𝑔(𝑥) + 𝛿, 𝛿~𝒩(0, Σ2), 
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where 𝑔 is ℝ𝐷 → ℝ𝑑. In calibration for the hospital simulation, for example, the objective function value 
𝑦 is the error to be minimized, and outputs 𝑧 are patient stay periods, waiting times, and the like. Our setting 
requires no additional cost to simulate outputs 𝑧, because 𝑧 must be simulated to compute the objective 

function. 
We also assume that the objective function 𝑓(𝑥) can be decomposed into or approximated by ℎ(𝑔(𝑥)), 

and that ℎ is ℝ𝑑 → ℝ. This reduces the dimensionality of the parameter space if 𝑑 (the dimension of 𝑔(𝑥)) 
is smaller than 𝐷 (the dimension of 𝑥). For example, we can consider ℎ(𝑧) as an element sum of vector 𝑧 
like the additive structure (Kandasamy et al. 2015), as 
 

ℎ(𝑧) = ∑ 𝑧𝑖

𝑑

𝑖=1

= ∑ 𝑔𝑖(𝑥)

𝑑

𝑖=1

, 

 
where 𝑧𝑖  is the 𝑖-th element value of vector 𝑧, and 𝑔𝑖  is the 𝑖-th output function from the multi-output 
function 𝑔. We can define any other function instead of this, such as an element product of 𝑧 and the norm 
of 𝑧. In the above problem setting, we propose a method that sequentially determines 𝑥1, ⋯ , 𝑥𝑁 so as to 
minimize the simple regret. 

3 RELATED WORK 

In this section, we briefly describe Bayesian optimization (Shahriari et al. 2016), which is the basis of the 
proposed method, and random embedding Bayesian optimization (REMBO) (Wang et al. 2016), which is 
a related method. 

Algorithm 1 shows the Bayesian optimization algorithm. Bayesian optimization assumes a Gaussian 
process as the prior for the objective function. The Bayesian optimization algorithm first calculates the 
posterior of the objective function from data. Next, it calculates an acquisition function 𝛼𝑛(𝑥) using the 

derived posterior. Although many acquisition functions have been proposed such as UCB (Shahriari et al. 
2016), we use expected improvement (EI) in this paper. We calculate the parameters 𝑥𝑛+1 maximizing the 
acquisition function. Finally, we observe the objective function value 𝑦𝑛+1  for the maximum input 
parameters 𝑥𝑛+1  and add these to the data. Bayesian optimization automatically repeats the above 
procedure. 
 

Algorithm 1: Bayesian optimization. 

1: for 𝑛 = 1, 2, ⋯ do: 

2: Calculate an acquisition function 𝛼𝑛(𝑥) for inputs 𝑥 based on data {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 . 

3: Calculate parameters 𝑥𝑛+1 maximizing the acquisition function 

 

𝑥𝑛+1 = argmax
𝑥∈𝒳

𝛼𝑛(𝑥). 

 

4: Calculate the objective function value 𝑦𝑛+1 for input parameters 𝑥𝑛+1. 

5: end for. 

 
As described above, we cannot obtain good results by conventional Bayesian optimization with high-

dimensional parameters, but various methods for improving Bayesian optimization have been proposed. 

REMBO (Wang et al. 2016) is the method most relevant to this paper. REMBO reduces dimensions of the 
explanatory variables by linear transformation, and is the same as Bayesian optimization after the linear 
transformation. Algorithm 2 shows the REMBO algorithm. Note that 𝑧 in Algorithm 2 is unrelated to the 𝑧 
in our setting. We randomly select matrix 𝐴 to linearly transform the input parameters. Wang et al. (2016) 
demonstrated that REMBO is effective with higher dimensional parameters. 
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Algorithm 2: REMBO. 

1: Generate a random matrix 𝐴 ∈ ℝ𝐷×𝑑. 

2: Determine a set 𝒵 ⊂ ℝ𝑑. 

3: for 𝑛 = 1, 2, ⋯ do: 

4: Calculate an acquisition function 𝛼𝑛(𝑧) for 𝑧 based on data {𝑧𝑖, 𝑦𝑖}𝑖=1
𝑛 . 

5: Calculate point 𝑧𝑛+1 maximizing the acquisition function 

 

𝑧𝑛+1 = argmax
𝑧∈𝒵

𝛼𝑛(𝑧). 

 

6: Calculate the objective function value 𝑦𝑛+1 for input parameters 𝑥𝑛+1 = 𝐴𝑧𝑛+1. 

7: end for. 

 

4 PROPOSED METHOD 

For the above-described problem setting, this section describes a method by which we can obtain outputs 

other than the objective function. In our problem setting, it is necessary to reduce the input dimension as 
REMBO does because the dimension 𝐷 of the parameters is large. In addition, we can obtain both the 
objective function value 𝑦 and other outputs 𝑧. Because Bayesian optimization and REMBO use only the 
objective function value 𝑦, we may reduce the necessary number of simulations by also using other outputs 
𝑧. 

We propose a modified Bayesian optimization method that uses output 𝑧  to reduce parameter 

dimensions. The proposed method predicts output 𝑧 from parameter 𝑥 by a regression method, then predicts 
the objective function value 𝑦 using the prediction result 𝑧̂ of the regression as explanatory variables. Next, 
it calculates an acquisition function 𝛼𝑛(𝑧̂) using the derived posterior of the objective function. We use 
expected improvement (EI) in this paper. (See Shahriari et al. (2016) for an explicit representation of EI.) 
Algorithm 3 shows the proposed method. 
 

Algorithm 3: Proposed method. 

1: for 𝑛 = 1, 2, ⋯ do: 

2: Based on data {𝑥𝑖, 𝑧𝑖}𝑖=1
𝑛 , calculate a regression model 𝜙𝑛(𝑥) of 𝑧 for input parameters 𝑥. 

3: Calculate the regression result 𝑧̂𝑖 = 𝜙𝑛(𝑥𝑖) for input data {𝑥𝑖}𝑖=1
𝑛 . 

4: Calculate an acquisition function 𝛼𝑛(𝑧̂) for 𝑧̂ based on data {𝑧̂𝑖, 𝑦𝑖}𝑖=1
𝑛 . 

5: Calculate parameters 𝑥𝑛+1 maximizing the acquisition function 

 

𝑥𝑛+1 = argmax
𝑥∈𝒳

𝛼𝑛(𝜙𝑛(𝑥)). 

 

6: Calculate output 𝑧𝑛+1 and objective function value 𝑦𝑛+1 for input parameters 𝑥𝑛+1. 

7: end for. 

 
When calibrating a queuing model, for example, 𝑥 is a control parameter, outputs 𝑧 are waiting times, 

and the objective function value 𝑦 is the error of the waiting times ‖𝑧 − 𝑧𝑜𝑏𝑠‖, where 𝑧𝑜𝑏𝑠 is the observed 
waiting times. The proposed method predicts 𝑧 from 𝑥, then calculates the posterior of the error 𝑦 from 
pairs of predicted waiting times 𝑧̂. Next, it calculates an acquisition function 𝛼𝑛(𝑧̂) using the derived 
posterior, then the control parameter 𝑥𝑛+1 maximizing the acquisition function. Finally, we observe the 

waiting times 𝑧𝑛+1 and the error 𝑦𝑛+1 for the maximum input parameters 𝑥𝑛+1 and add these to the data. 
Bayesian optimization directly predicts the objective function value 𝑦 from parameters 𝑥 by Gaussian 

process regression. However, the proposed method predicts output 𝑧 from parameters 𝑥, and predicts the 
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objective function value 𝑦 by Gaussian process regression from a predicted value 𝑧̂. The proposed method 
thus predicts 𝑦 in two stages from 𝑥, using information about 𝑧. If 𝑑 < 𝐷, we can regard the proposed 
method as a Bayesian optimization that reduces the parameter dimensions. 

We can use methods such as linear regression, lasso regression, or random forest regression to predict 
𝑧 from input 𝑥, and we can use cross-validation to determine hyperparameters for each regression method 
every iteration. The applied regression method depends on the problem. Here, we compare the proposed 
method with various regression methods in numerical experiments, described below. 

In Algorithm 3, the acquisition function 𝛼𝑛(𝑧̂), which is a function of 𝑧̂, is regarded as a function 
𝛼𝑛(𝜙𝑛(𝑥)) with input 𝑥 , and is maximized with respect to 𝑥 . We can also use a simple method that 

calculates the next input 𝑥𝑛+1 = 𝜙𝑛
−1(𝑧𝑛+1), where 𝑧𝑛+1 is the maximum value of the acquisition function 

𝛼𝑛(𝑧̂)  with respect to 𝑧̂  (i.e., 𝑧𝑛+1 = argmax𝑧̂ 𝛼𝑛(𝑧̂)). However, compared with this simple method, 
Algorithm 3 does not need to calculate the inverse transformation of the regression. Algorithm 3 can 
therefore use regression methods in which computation of the inverse transformation is difficult. In this 
sense, Algorithm 3 is better than the simple method. If we can calculate the derivative of the function 𝜙𝑛(𝑥) 
(like linear regression and lasso regression), we maximize 𝛼𝑛(𝜙𝑛(𝑥)) by multi-start L-BFGS. Otherwise, 

we apply an evolutionary strategy to calculate the maximum of 𝛼𝑛(𝜙𝑛(𝑥)). Such optimizers are common 
in Bayesian optimization (Shahriari et al. 2016). 

Consider the case where linear regression is used as the regression model for 𝑧 in the proposed method. 
If 𝐴𝑛 ∈ ℝ𝑑×𝐷 is a coefficient of the linear regression, then the explicit expression of the regression model 
is 𝜙𝑛(𝑥) = 𝐴𝑛𝑥. The proposed method predicts the objective function value using the predicted value 𝑧̂ =
𝐴𝑛𝑥 as an explanatory variable. This is very similar to the REMBO method, but the proposed method is 

considered better than REMBO in this problem setting in two ways. 
First, REMBO uses random linear transformation, but the proposed method determines the linear 

transformation using information about the output 𝑧. This transformation using information is better than 
REMBO at predicting the objective function value 𝑦, and the proposed method effectively reduces the 
number of simulations required to obtain good parameters. 

Second, while REMBO continues to use fixed transformations regardless of time, the proposed method 

continuously improves the transformation matrix each time data is added, thereby improving accuracy of 
the two-step prediction in the proposed method at each step. 

5 NUMERICAL EXPERIMENTS 

5.1 Numerical Experiments with an Actual Problem 

We performed numerical experiments using a simulation of a semiconductor fabrication problem. We used 
four methods for calibrating a simulation model (Ichikawa et al. 2010) actually used in semiconductor 

process development, comparing performance between the proposed and other methods. Using existing 
simulation results, we compared the average number of selections to find the sample with smallest error. 

We used a simulation that reproduces a shape after semiconductor processing. This simulation 
considers neutral diffusive transport, ion etching, and sputtered molecules on all surfaces. We used an in-
house SiO2 etching model (Ichikawa et al. 2010) for surface reactions. Figure 2 in Koike et al. (2019) shows 
an image of the shape obtained by this simulation. This calibration aims at making the shape in the 

simulation results as close as possible to an experimental shape after actual processing. 
The simulation model contains many parameters having physical meanings, 26 of which must be 

calibrated (𝐷 = 26). Calibrated parameters include ion flux, neutral flux, etching yield, and reflection 
probability. We define the objective function 𝑦 as the difference between the actual shape after processing 
and the shape obtained by simulation. We want to minimize this objective function. As the output 𝑧, we use 
eight shape lengths obtained by simulation (𝑑 = 8). These eight lengths characterize the shape. 

 

2825



Kiribuchi, Tomita, Nishikawa, Yokota, Narasaki, and Koike 
 

 

Table 1: Average number of selections for each method.  

Methods Random BO REMBO 2norm BO BO_Lasso 

Actual problem 56.5±4.7 45.6±4.1 44.1±4.5 - 23.0±3.2 

Actual problem 
(with smaller spaces) 

57.8±4.7 55.5±4.5 61.6±4.7 - 7.0±1.1 

Linear test problem 77.4±4.0 48.7±3.6 62.5±4.3 19.0±3.5 0.83±0.04 

Nonlinear test problem 77.4±4.0 80.9±3.9 76.4±4.0 83.0±3.8 63.1±3.9 

 
Calculation times for one simulation were about 2 h in this experiment. We evaluated the methods using 

600 samples of simulation results with 600 parameters uniformly selected from the search space. In this 
experiment, we can regard observations of the objective function as having no noise (𝜎2 = 0). 

To imitate a realistic problem setting, 200 of 600 samples are first randomly selected and used as initial 
data. Next, each method sequentially selects 100 samples from among the remaining samples. This trial is 
repeated 100 times by each method. 

We compared the number of samples selected until the optimal sample having the smallest objective 

function value among the 600 samples was selected. When calculating the average number of selections, 
the number of selections is set to 0 when the initial data include the optimal parameter, and to 100 when 
the sequentially selected 100 samples do not include the optimal sample. Note that the average index 
calculated by this procedure estimates a smaller number of selections when the method has poor 
performance, because 100 samples selected by a poorly performing method often do not include the 
optimum sample.  

We first compared average indexes between the proposed and conventional methods. Table 1 shows 
the average number of selections under the proposed method using lasso regression (BO_Lasso) and three 
conventional methods using random search (Random), Bayesian optimization (BO), and REMBO as 
benchmarks. We cannot use the methods of (Astudillo et al. 2019; Uhrenholt et al. 2019) in an actual setting, 
because these methods would need to predict all of the thousands of possible shape lengths, which would 
take too much time. 

Table 1 shows that the conventional methods, Bayesian optimization and REMBO, reduced the number 
of selections by only about 20% compared with random search, while the proposed method reduced the 
number of selections by about 60%. The proposed method is also more effective than the conventional 
methods, reducing the number of selections by about 50%. Under REMBO, the number of dimensions is 
set to 𝑑 =  8 with the proposed method. There is a big difference in performance between REMBO and 
the proposed method, even using linear transformation with the same number of dimensions, suggesting 

that using the transformation matrix obtained from regression is better than using a random matrix. 
Figure 1 shows the average minimum observed objective function value for each selection under each 

of the above methods. Comparing BO with REMBO in Figure 1, REMBO has smaller minimum values in 
the first half, while BO has higher performance in the second half. The proposed method always provides 
smallest minimum values and has extremely high performance. 

To confirm which regression method should be used with the proposed method, we applied multiple 

regression methods to compare results of the proposed method. We also compared the proposed method 
with BO_Lasso(fix), which first reduces dimension by lasso regression, then applies conventional Bayesian 
optimization to the new variable, which has fewer dimensions. Table 2 shows the average number of 
selections for the proposed method using linear regression (BO_LR), lasso regression (BO_Lasso), random 
forest regression (BO_RF), BO_Lasso(fix), and REMBO. 

Table 2 shows that the proposed method using lasso regression has the smallest average number of 

selections. The proposed method using lasso regression therefore has the highest performance in this 
problem setting. The proposed method using lasso regression is also more effective than the method that 
first reduces dimension, reducing the number of selections by 34%. 
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Figure 1: Average minimum observed values for each selection under each method. The horizontal axis 
shows the number of selections, and the vertical axis shows the average minimum values of the objective 
function observed up to the selection, with colored areas representing the standard deviation of the 
minimum observed objective function value for each method. 

Table 2: Average number of selections for the proposed method using each regression method. 

Methods REMBO BO_LR BO_Lasso BO_RF BO_Lasso(fix) 

Actual problem 44.1±4.5 28.1±3.5 23.0±3.2 36.1±4.0 34.6±4.2 

Linear test problem 62.5±4.3 0.83±0.04 0.83±0.04 26.74±2.8 0.83±0.04 

Nonlinear test problem 76.4±4.0 61.8±4.1 60.2±3.9 73.3±4.0 67.6±4.1 

 

 

Figure 2: Average minimum observed values for each selection under the proposed method using each 
regression method. 

Figure 2 shows the average minimum value of objective function observations for each selection with 

the proposed method using each of the above regression methods. Comparing the proposed method using 
random forest regression and REMBO, REMBO is better in the first half, but the proposed method has 
smaller minimum values in the second half. This suggests that predictions by random forest regression are 
inaccurate when the data is small. 

Comparing the proposed method using linear regression and lasso regression, lasso regression has 
smaller minimum values, especially in the first half. This suggests that prediction accuracy by lasso 

regression is higher because of the sparsity assumption with few data. 
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Figure 3: Average minimum observed values for each selection under each method when the search space 
is small. 

Finally, we confirmed how the search space size affects efficiency of the proposed method. The 

experimental conditions are as described above, except that the search space size is small. We compared 
average indexes between the proposed and conventional methods when the search space is small. Table 1 
shows the average number of selections under the proposed method (BO_Lasso) and three conventional 
methods (Random, BO, and REMBO). Figure 3 shows the average minimum observed objective function 
value for each selection under each of the above methods with the smaller search space. 

The conventional methods, BO and REMBO, did not reduce the number of selections as compared with 

Random, while the proposed method reduced the number of selections by about 90%. From the higher 
prediction accuracy of lasso regression, the smaller the search space, the more the proposed method reduced 
the average number of simulations.  

5.2 Numerical Experiments with Test Problems 

To confirm whether the proposed method is effective for problems in other fields, we also compared the 
methods in linear and nonlinear test problems. As in the actual problem, the dimension 𝐷 of parameters 𝑥 

is 26 and the dimension 𝑑 of outputs 𝑧 is 8. In the linear problem, we constructed a matrix 𝐴 ∈ ℝ𝑑×𝐷 at 
random and calculated outputs 𝑧  as 𝑧 = 𝐴𝑥 . In the nonlinear problem, we generated 𝑑  functions 𝑔  by 
sampling from a Gaussian process and calculated outputs 𝑧 as 𝑧 = 𝑔(𝑥). We created 1000 parameters at 
random and calculated 1000 outputs for each problem. We selected 𝑧∗ from 1000 outputs and calculated 
the objective function 𝑦 as 𝑦 = ‖𝑧 − 𝑧∗‖2

2. To imitate a realistic problem setting, we first randomly selected 
200 of 1000 samples as initial data. Next, each method sequentially selected 100 of the remaining samples. 

Repeating this trial 100 times in each method, we compared the average number of selections and found 
the sample with smallest error 𝑦. 

We first compared average indexes between the proposed and conventional methods. Table 1 shows 
the average number of selections under the proposed method using lasso regression (BO_Lasso) and four 
conventional methods using Random, BO, REMBO, and 2norm BO (Uhrenholt et al. 2019) as benchmarks. 
Note that we did not compare our method with that of (Astudillo et al. 2019), because that method is 

essentially the same as that by (Uhrenholt et al. 2019) when the composite function is the norm of the 
parameters. 

For the linear test problem, Table 1 shows that the conventional methods (BO, REMBO, and 2norm 
BO) reduced the number of selections by about 20–80% as compared with Random, while reduction by the 
proposed method was about 99%. The proposed method was also more effective than the conventional 
methods, reducing the number of selections by about 95%. In the nonlinear test problem, the conventional 
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Figure 4: Average minimum observed values for each selection under each method in the linear test problem. 

 

Figure 5: Average minimum observed values for each selection under each method in the nonlinear test 
problem. 

methods hardly reduced the number of selections as compared with Random, while reduction by the 
proposed method was about 20%. 

Figures 4 and 5 show the average minimum observed objective function value for each selection under 
each of the above methods in the linear and nonlinear test problems, respectively. For both the linear and 
nonlinear test problems, the proposed method always provided the smallest minimum values and 
demonstrated extremely high performance. 

We also compared results of the proposed method using multiple regression methods and 
BO_Lasso(fix), which first reduces dimension by lasso regression, then applies conventional Bayesian 
optimization to the new variable with fewer dimensions. 

Table 2 shows that again, the proposed method using lasso regression required the smallest average 
number of selections for both the linear and nonlinear test problems. In the nonlinear test problem, the 
proposed method using lasso regression is also more effective than the method that first reduces dimensions, 

reducing the number of selections by 34%. In both the actual and test problems, the proposed method using 
three forecasting methods is more effective than conventional Bayesian optimization, so the proposed 
method has robustness under different forecasting methods. 
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Numerical experiments showed that in our setting, it is always better to use the proposed method with 
dimension-reduced information, rather than the original information. However, it may be better to use the 
original information if the dimension of 𝑧 is very low or if simulating 𝑧 incurs additional costs. 

6 CONCLUSION 

We considered a new problem setting like the Bayesian optimization setting in which we can obtain both 
the objective function and other simulation outputs. Under this problem setting, we proposed a new method 
that predicts other outputs by the regression method, and predicts the objective function value using the 
prediction results of other outputs as explanatory variables. Numerical experiments confirmed that the 
proposed method is more effective than are the conventional methods. In particular, we confirmed that the 

proposed method using lasso regression can reduce the number of simulations by about 50% compared with 
the conventional methods. 
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