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ABSTRACT

This paper considers the use of Bayesian optimization to identify robust solutions, where robust means
having a high expected performance given disturbances over the decision variables and independent noise
in the output. We propose a variant of the well-known Knowledge Gradient acquisition function that has
been proposed for the case of optimizing integrals. We empirically evaluate our method on one and two
dimensional functions and demonstrate that it significantly outperforms the uniform allocation of sampling
points and an alternative approach that estimates each function value by averaging over a random sample.

1 INTRODUCTION

Global optimization is the search for maxima or minima of a function over a set of inputs. Often when
optimizing complex systems, it is not possible to guarantee that the implemented solution exactly follows
the design specification, or there is uncertainty about the environment in which the solution operates. For
example in engineering, manufacturing tolerances may mean that the actually produced solution deviates
from the designed solution. Or a schedule should tolerate small deviations in estimated processing times.
In such cases, one is often looking for solutions that are not only good but also robust. Robustness in this
context means some degree of insensitivity to small disturbances of the environment or the design variables
(Paenke et al. 2006). In this paper we focus on solutions which should have a good expected performance
despite disturbances of the decision variables or noise in the output. In other words, the solution should
not only be good, but its neighborhood should also have high average quality (Branke 1998).

To quantify a solution’s robustness performance, one way is to sample from the uncertain distribution,
and estimate its expected performance directly by averaging. This is obviously computationally very
expensive, especially in higher dimensional search spaces and if the output is noisy, as many samples would
be needed for an accurate estimate.

If evaluating a solution is expensive and the number of function evaluations is very limited, Bayesian
optimization has been shown to be a powerful black-box optimization technique. Bayesian optimization is a
machine learning approach to optimization, where an iteratively built response surface is used to determine
the solution that, if added to the current dataset, would provide the largest additional value in information.
In our paper, we adapt a method which has been proposed for unknown input parameter distributions of a
simulation model, known as ”input uncertainty”, in Pearce and Branke (2017), to find the robust solution
of black-box functions.

The paper is organized as follows. We begin with an overview of related literature on robust optimization
in Section 2. We formally define the problem in Section 3 and explain our method for simulation optimization
for robust solutions in Section 4, followed by empirical tests and comparison with some benchmarks in
Section 5. Finally Section 6 consists of conclusions and suggestions for future work.

2844978-1-7281-9499-8/20/$31.00 ©2020 IEEE



Le and Branke

2 LITERATURE REVIEW

Bayesian optimization has recently become popular for various types of problems involving expensive-
to-evaluate functions. In each iteration, a surrogate model, usually a Gaussian process (GP), is fitted,
and the next sampling point is selected based on the information provided by the surrogate model, by
maximizing a so-called acquisition function or infill criterion. The most popular acquisition function is
Expected Improvement (EI) from Efficient Global Optimization (EGO) (Jones et al. 1998), other examples
are Knowledge Gradient (Scott et al. 2011) or Entropy Search (Hennig and Schuler 2012).

There is a large number of publications regarding robust global optimization, but mostly based on
evolutionary algorithms (Beyer and Sendhoff 2007). The use of Bayesian optimization to solve that problem
has not been explored very much so far. The few existing papers can be divided into papers searching for
solutions robust with respect to the worst case given a compact set of disturbances of the decision variable,
and those that search for good expected performance given a probability distribution of disturbances, as
we do in our paper.

Among the papers looking for worst-case robustness, Marzat et al. (2013) suggest to combine Bayesian
optimization with an iterative relaxation procedure. The basic idea is to maintain a set of disturbances, and
then alternate between finding the robust optimal solution given the set of disturbances, and finding a new
worst case and adding the corresponding disturbance to the set of disturbances. Expected improvement-
based algorithms are used in each of the two alternating optimization steps. One advantage of this method
is that the disturbances do not need to be of the decision variables, but could also be uncertainty over input
parameters of the simulation model.

ur Rehman et al. (2014) and ur Rehman and Langelaar (2017) adapt the EI acquisition function to
the case of searching for a worst-case robust solution. First, the reference solution is not the best found
solution, but the solution with the best worst-case prediction according to the constructed metamodel. As
acquisition function, for any potential sampling point x, the worst case xw in the disturbance region is
first determined according to the metamodel, and then the predicted performance distribution at that worst
case location xw is used to compute the modified EI at location x. The solution sampled is then solution
xw. In an empirical comparison on some benchmark problems, the proposed approach was much more
sample-efficient than the method from Marzat et al. (2013). The difference between ur Rehman et al.
(2014) and ur Rehman and Langelaar (2017) is that the former considers unconstrained problems, whereas
the latter considers constrained problems.

Sanders et al. (2019) also use the estimated posterior mean of the GP to identify the current best robust
solution (the solution that has the best worst case within the disturbance region). To identify the next
disturbance region to sample in, a number of realizations (functions) are drawn from the Gaussian process,
and for each realization, the actual improvement over the current best solution is computed. The overall
expected improvement of a solution is then the average of the improvements over all function realizations. An
evolutionary algorithm is used to search for the solution with the largest expected improvement. The actual
sample is then taken within the disturbance region of this solution, at the location with the largest variance
as predicted by the Gaussian process. An empirical evaluation on a number of benchmark problems shows
significantly better performance compared to the algorithm proposed by ur Rehman et al. (2014). While
the authors focus on worst-case performance in their paper, they mention that with a minor modification,
their algorithm could also be used to optimize expected performance over a disturbance region.

A very recent paper that optimizes expected performance over the input disturbances has been published
by Fröhlich et al. (2020). This paper is quite similar to ours but adapts the Entropy Search acquisition
function (Hennig and Schuler 2012) and tests with normally distributed disturbances, whereas our algorithm
is based on the Knowledge Gradient idea and tested with uniformly distributed disturbances. Our method is
similar to the case of simulation optimization with input uncertainty (Pearce and Branke 2017) or optimising
expensive integrands (Toscano-Palmerin and Frazier 2018) but applied to the case of searching for robust
solutions.
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3 PROBLEM DEFINITION

Given a black-box function f , defined over a box-constrained input domain X ⊂RD subject to independent
white noise ε ∼N (0,σ2

ε )with constant variance across the input domain. Additionally defined a probability
distribution P[δ ] of the disturbance δ ∈ [x−∆,x+∆] around each solution x∈ X . While we test our approach
with uniformly distributed disturbance in this paper, the algorithm applies also to other distributions of the
disturbance, although one may have to revert to Monte Carlo estimation rather than analytical derivation
of the acquisition function.

Our objective is to search for the robust solution that maximizes the expected performance across its
∆-neighborhood. More specifically, we aim to maximize the following robustness function.

max
x∈X

F(x) =
∫

∆

−∆

∫
∞

−∞

( f (x+δ )+ ε)P[δ ]dεdδ .

The quality of the method is measured by the opportunity cost, which is the difference in robustness
function value between the true optimal robust solution and the solution recommended by the algorithm.
Denote the final solution that the algorithm returns by xr, the opportunity cost is then

OpportunityCost = max
x′

F(x′)−F(xr).

We assume f can be approximated reasonably well by a Gaussian Process. We have a limited budget of
N samples (N evaluations of the latent function f ), and in each iteration n, the algorithm can choose the
solution xn to be sampled, dependent on the information collected so far. The goal is to sample solutions
in a way that minimizes the opportunity cost at the end of the optimization.

The algorithm needs to answer two questions: Where to sample next (i.e., what acquisition function
to use), and what solution to return at the end.

4 METHODOLOGY

We propose a Bayesian optimization algorithm to efficiently search for robust solutions. The method uses a
Gaussian process as surrogate model, and a new acquisition function to iteratively decide where to sample
next. The surrogate model and the acquisition function are described in the following subsections.

4.1 Gaussian Process

There are some options for building a surrogate model, such as Gaussian process (GP) or Tree Parzen
estimators. We chose a Gaussian process.

A Gaussian process is a collection of random variables, any finite number of which have a joint
Gaussian distribution (Rasmussen and Williams 2006). Gaussian processes are characterized by a prior
mean function µ0(x) and the covariance function or kernel Σ0(x,x′).

Formulas of several types of mean functions and kernels are introduced by Rasmussen and Williams
(2006), the choices are also discussed by Frazier (2018). We use the standard constant prior mean and
squared exponential kernel.

We model the black-box function f by a Gaussian process, i.e.,

f (x)∼ G P(µ0(x),Σ0(x′,x)).

The conditional distribution of f (x) given the observations of f at n points x1, . . . ,xn is computed as

f (x)| f (x1), . . . , f (xn)∼N (µn(x),σn(x)2),

where µn and σn are respectively the posterior mean and variance of the Gaussian process built on the
observations at x1, . . . ,xn (Frazier 2018).

With the notation as follows
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• x1:n = (x1, . . . ,xn)T ,
• f (x1:n) = ( f (x1), . . . , f (xn))T ,
• Σ0(x,x1:n) = (Σ0(x,x1), . . . ,Σ0(x,xn)),
• Σ0(x1:n,x) = (Σ0(x1,x), . . . ,Σ0(xn,x))T ,
• Σ0(x1:n,x1:n) = [Σ0(x1,x1:n), . . . ,Σ0(xn,x1:n)],

for the case of noisy latent function where the noise is independent white noise with constant variance σε ,
the posterior mean µn and posterior covariance Σn can be computed by

µ
n(x) = Σ0(x,x1:n)(Σ0(x1:n,x1:n)+σ

2
ε In)

−1( f (x1:n)−µ0(x1:n))+µ0(x), (1)

Σ
n(x′,x) = Σ0(x′,x)−Σ0(x′,x1:n)(Σ0(x1:n,x1:n)+σ

2
ε In)

−1
Σ0(x1:n,x), (2)

where In denotes the identity matrix of size n.

4.2 Standard Knowledge Gradient

In Bayesian optimization, at each iteration, the next sampling point is chosen as the point that maximizes
a so-called acquisition function.

Knowledge Gradient (KG) for optimizing over a discrete and finite set was introduced by Frazier et al.
(2009), and maximizes the expected improvement of the maximal value of posterior means conditioned
on sampling once more at a specific point. With the assumption that the next sample xn+1 will be at x and
µn(x) denoting the posterior mean after n samples have been taken, KG can be written as

KGn(x) := E[max
x′

µ
n+1(x′)−max

x′′
µ

n(x′′)|xn+1 = x].

Scott et al. (2011) present the KG for continuous parameters, an extension of KG for correlated belief,
which can be approximated by the maximization over a finite subset of the input space, for instance KGn
is approximated by discretizing X over a subset XnX = {x1, . . . ,xnX} ⊂ X as follows

KGn(x) := E[max{µ1 +Zσ1, . . . ,µnX+1 +ZσnX+1}|xn+1 = x] (3)

where Z ∼N (0,1) and

µi = µ
n(xi)− max

x′∈XnX∪{x}
µ

n(x′), i = 1,nX , µnX+1 = µ
n(x)− max

x′∈XnX∪{x}
µ

n(x′)

σi = σ̃
n(xi,x) =

Σn(xi,x)
σn(x)

, i = 1,nX , σnX+1 = σ̃
nX+1 =

Σn(x,x)
σn(x)

.

4.3 Robust Knowledge Gradient

For the problem of identifying robust solutions we suggest the robust Knowledge Gradient rKG. With
µn(x) estimating the underlying function f (x), we approximate the robustness function F by

Mn(x) =
∫

∆

−∆

µ
n(x+δ )P[δ ]dδ , x ∈ X

The robust Knowledge Gradient is then simply the expected value of the increase in maximal value of
the posterior robustness means conditioned on sampling once more at a specific location, i.e., the main
difference between the standard and robust Knowledge Gradients is that we look at the change of robustness
mean instead of the posterior mean, if we sample one more point.

Hence rKG after n samples for continuous parameters can be written as follows:

rKGn(x) := E
[

max
x′

Mn+1(x′)−max
x′′

Mn(x′′)|xn+1 = x
]
. (4)
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Similarly to the standard Knowledge Gradient, we can rewrite the conditional mean as µn+1(x′) = µn(x′)+
σ̃n(x′,x)Z |xn+1 = x with Z ∼N (0,1). Thus

Mn+1(x′) =
∫

∆

−∆

(µn(x′+δ )+ σ̃
n(x′+δ ,x)Z)P[δ ]dδ

=
∫

∆

−∆

µ
n(x′+δ )P[δ ]dδ +

∫
∆

−∆

σ̃
n(x′+δ ,x)ZP[δ ]dδ

= Mn(x′)+ Σ̃
n(x′,x)Z,

where

Σ̃
n(x′,x) =

∫
∆

−∆

σ̃
n(x′+δ ,x)P[δ ]dδ , x′ ∈ X . (5)

The robust Knowledge Gradient rKG(x) still has a formula similar to (3)

rKGn(x) := E[max{M1 +ZΣ̃1, . . . ,MnX+1 +ZΣ̃nX+1}]

but with the adjusted components Mi =Mn(xi)−maxx′∈XnX∪{x}Mn(x′), MnX+1 =Mn(x)−maxx′∈XnX∪{x}Mn(x′)
and Σ̃i = Σ̃n(xi,x), Σ̃nX+1 = Σ̃n(x,x), i = 1,nX .

We now derive the analytical formulas of each element Mi and Σ̃i for the choice of squared-exponential
kernel, i.e., Σ0(x′,x) = α0exp

(
−‖x

′−x‖2

2l2
x

)
and constant prior mean µ0.

For uniformly distributed disturbance δ , we have P[δ ] = 1
2∆

.
For each i = 1,nX , from (4) and (1) we have

Mn(xi) =

(∫
∆

−∆

Σ0(xi +δ ,x1)P[δ ]dδ , . . . ,
∫

∆

−∆

Σ0(xi +δ ,xn)P[δ ]dδ

)
.

(
Σ0(x1:n,x1:n)+σ

2
ε In
)−1 (

f (x1:n)−µ0(x1:n)
)
+
∫

∆

−∆

µ0(xi +δ )P[δ ]dδ

(6)

It is easy to see that in (6) the last integral is just µ0 and the kth element of first the vector will be∫
∆

−∆

Σ0(xi +δ ,xk)P[δ ]dδ =
α0

2∆

∫
∆

−∆

exp
(
−‖xi− xk +δ‖2

2l2
x

)
dδ .

As can be seen easily with the change of variables, it is nothing but the truncated Gaussian integral. Thus∫
∆

−∆

Σ0(xi +δ ,xk)P[δ ]dδ =
α0
√

2πlx
2∆

(
Φ

(
xi− xk +∆

lx

)
−Φ

(
xi− xk−∆

lx

))
. (7)

Similarly, from (2) and (5) we can compute Σ̃i for i = 1,nX .

Σ̃
n(xi,x) =

∫
∆

−∆

Σn(xi +δ ,x)
σn(x)

P[δ ]dδ

=
∫

∆

−∆

Σ0(xi +δ ,x)−Σ0(xi +δ ,x1:n)(Σ0(x1:n,x1:n)+σ2
ε In)

−1Σ0(x1:n,x)
2∆σn(x)

dδ

=
1

2∆σn(x)

∫
∆

−∆

Σ0(xi +δ ,x)dδ

− 1
2∆σn(x)

(∫
∆

−∆

Σ0(xi +δ ,x1:n)dδ

)(
Σ0(x1:n,x1:n)+σ

2
ε In
)−1

Σ0(x1:n,x).
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The vector as the integral in brackets in the last equality is calculated just like in computation of Mn(xi).
The first term can be computed similarly to the kth element of that vector, replacing xk with x so∫

∆

−∆

Σ0(xi +δ ,x)dδ =
√

2πα0lx

(
Φ(

xi− x+∆

lx
)−Φ(

xi− x−∆

lx
)

)
.

MnX+1 and Σ̃nX+1 can be computed similarly, replacing xi with x.
For the higher dimensional case, P[δ ] = 1

(2∆)D and the only difference in the formula of the kernel is

Σ0(x′,x) = α0exp
(
−(x′− x)T diag(1/l2

1 , . . . ,1/l2
D)(x

′− x)/2
)
,

where D is number of dimensions. For the purpose of numerical experiments, we only compute rKG for
the two-dimensional case. Thus the kth element of the first vector in (6) will be∫

∆

−∆

Σ0(xi +δ ,xk)dδ =
∫

∆

−∆

∫
∆

−∆

α0

(2∆)2 exp
(
−
(xi1− xk

1 +δ1)
2

2l2
1

+
(xi2− xk

2 +δ2)
2

2l2
2

)
dδ1dδ2

=
α0

(2∆)2

∫
∆

−∆

exp
(
−
(xi1− xk

1 +δ1)
2

2l2
1

+

)
dδ1

∫
∆

−∆

exp
(
(xi2− xk

2 +δ2)
2

2l2
2

)
dδ2,

and so for 2 dimensional input, the kth element is∫
∆

−∆

Σ0(xi +δ ,xk)dδ = α0

2

∏
d=1

√
2πld
2∆

(
Φ(

xid − xk
d +∆

ld
)−Φ(

xid − xk
d−∆

ld
)

)
. (8)

From (7) and (8) we can generalize the formula for the kth element of the vector in (6) to D dimensional
input as follows∫

∆

−∆

Σ0(xi +δ ,xk)dδ = α0

D

∏
d=1

√
2πld
2∆

(
Φ(

xid − xk
d +∆

ld
)−Φ(

xid − xk
d−∆

ld
)

)
.

For normally distributed disturbances, analytical formulas for Mi and Σ̃i can be derived similarly.
The expectation in (3) can be computed using Algorithm 1 in Scott et al. (2011).
To decide what solution to return at the end of optimization, we fit a GP model over all sampled points

and find the point that maximizes the robustness performance of that model, i.e.,

xN
r = argmax

x
MN(x).

The details of our method of determining sampling points are summarized in Algorithm 1.

Algorithm 1: Pseudo-code for robustness optimization
Place a Gaussian process prior on f
Update distribution on f at n0 initially sampled points.
Set the number of sampled points n to n0.
while n ≤ N do

Fit a GP on n samples.
Calculate rKG, replacing mean and kernel of standard KG with their robustness counterparts.
Return the point with the largest value of rKG.
Add it to the set of sampled points and increase n by 1.

end
Result: xN

r = argmaxx MN(x)
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5 EXPERIMENTS

5.1 Benchmark Problems

We test our rKG method on several one- and two- dimensional benchmark problems.

1. A simple function with two peaks, with the right one having a higher undisturbed function value,
but the left one having a higher robustness value.

max f1(x) =−0.5(x+1)sin(πx2)

with X = [0.1,2.1] and ∆ = 0.15. See Figure 1(a) for an illustration. This function is also considered
in a two-dimensional version by simply adding up over the two dimensions:

max f3(x1,x2) =−0.5(x1 +1)sin(πx2
1)−0.5(x2 +1)sin(πx2

2)

with search space [0.1,2.1]x[0.1,2.1] and ∆ = (0.15,0.15). For an illustration see Figure 5(a).
2. A function from Paenke et al. (2006)

min f2(x) = 2sin(10e−0.2xx)e−0.25x

for robust minimum over the interval [0,10] and ∆ = 0.5. Figure 4(a) shows an illustration.

The disturbance distribution is uniform, capped at the boundary of the search space, i.e.,

P[δ ] =

{ 1
min{ub,x+∆}−max{lb,x−∆} δ ∈ [max{lb,x−∆},min{ub,x+∆}]
0 otherwise

,

where lb and ub are the lower and upper bound of the search space, respectively.
Unless stated otherwise, we set the output noise to have standard deviation 0.1, i.e., ε ∼N (0,0.12),

although we also run some experiments without output noise.

5.2 Benchmark Methods

We compare our rKG algorithm with two alternative approaches.

• Direct Robustness Approximation (DRA) at each sample location. The idea here is to use the GP
to directly approximate the robustness function, so every observation is taken as a sample of F(x)
with random disturbance and output noise. In order to reduce the observation error, we examine
the use of averaging each observation over k independent replications. The method is then denoted
DRA(k). Standard KG is used as acquisition function. The GP model always allows for observation
noise even if the underlying function f is deterministic, as observations are still stochastic due to the
random disturbance. The method returns the solution with best posterior mean of the approximated
robustness function.

• Uniform Allocation which allocates the samples by Latin Hypercube Sampling (McKay et al.
1979) rather than by our acquisition function. Apart from the acquisition function, the algorithm
is identical to the algorithm used with rKG, and the method returns the solution with best robust
posterior mean xN

r = argmaxx MN(x).

5.3 Experimental Setup

The number of initial observations was chosen as 5 for the simple one-dimensional test problem, 10 for
the more complicated function f2, and 25 for the two-dimensional test problem. Initial observations are
chosen using stratified sampling. At each step, the hyperparameters of the GP are tuned by maximizing
the log marginal likelihood, using the functions from TensorFlow library (Abadi et al. 2016). All results
are averaged over 100 independent runs.
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5.4 Results

5.4.1 Simple One-Dimensional Test Function

In this section we consider the simple one-dimensional test function f1(x) displayed in Figure 1(a). Standard
Knowledge Gradient optimising function f would return the solution near the point x= 1.873, which however
has lower robustness performance. The robust optimum is approximately at the point x = 1.22. We start
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Figure 1: (a) GP built on 25 samples defined by rKG, (b) Opportunity cost over 75 evaluations.
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Figure 2: (a) Opportunity cost in deterministic case, (b) Opportunity cost when using DRA.

our experiments with an investigation of DRA method’s parameter k, the number of replications to average
over for a single observation. Increasing k reduces observation noise, but requires significantly more
computational time. The result can be seen in Figure 2(b), which compares the opportunity cost over the
total number of evaluations used so far. Obviously, with k = 1, DRA starts improving after the initial 5
solutions were evaluated, whereas for example the run with k = 7 replications requires 5×7= 35 evaluations
just to initialize. Eventually, all runs converge to a similarly good solution with low opportunity cost,
but when k is smaller, convergence in terms of the total number of evaluations used is faster. Thus we
conclude that at least for this test problem, it is better to use the noise handling capability of the GP rather
than multiple replications to evaluate a single solution. While this would have been expected for problems
with just output noise, this was not so clear for problems with disturbance of decision variables, as the
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Figure 3: The GPs built on 105 sampled points as the results of using DRA(k).

disturbance leads to heteroscedastic observation noise. Some examples for the GP built based on different
k can be found in Figure 3. Figure 1(b) compares the results of rKG, Uniform Allocation, DRA(1) and
DRA(5) on the simple one-dimensional test function. Clearly, our Robust KG method outperforms all
other methods. On this simple function, Uniform Allocation is not far behind. DRA is significantly worse
throughout the run. It is interesting to note that DRA(1) has a worse opportunity cost already after the
initial 5 samples, i.e., using the same information as rKG. It seems that making the relationship between f
and F explicit by learning f and deriving F through integration leads to a better model than approximating
F directly, although this observation is not repeated on other benchmark problems.

Figure 1a shows an example for the resulting GP and the robustness performance, which are built on
the set of samples suggested by the rKG method. The initial samples are coloured red, subsequent samples
are coloured blue, and the red cross is the last sampled point. As can be seen, the estimated posterior
robust mean M(x) very closely matches the true robustness function F(x) in the most promising areas.

Finally, we tested the algorithms on a deterministic version of f1, see Figure 2a. The results on this
simple function are very similar to what we have already observed on the noisy function, so the implicit
averaging of the Kernel function seems to make all approaches very robust to additional output noise.

5.4.2 More Complicated One-dimensional Test Function

This test function taken from Paenke et al. (2006) is a minimization problem, it has several local minima,
and they are concentrated on the left side of the search space.
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Figure 4: (a) GP built on 70 samples defined by rKG, (b) Opportunity cost over number of evaluations.
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Uniform Allocation may struggle here, as allocating many samples to the right side of the search space
is intuitively inefficient.

This is confirmed in Figure 4 that shows the opportunity cost over the number of evaluations. On
this function, allocating samples uniformly is occasionally even worse than DRA(1). Our rKG acquisition
function again converges significantly faster than all the other approaches. The approach that uses 5
replications for each observation is particularly slow, and rKG has identified the optimum even before this
method has properly started.

5.4.3 Two-Dimensional Test Function

For the two dimensional benchmark problem, we need more initial sampling points (we use 25), which
means DRA(5) would need 125 evaluations to start with and renders this method not applicable. Therefore
we only compare rKG, Uniform allocation and DRA(1).

Figure 6(a) illustrates the learned robustness performance prediction after 100 samples using the rKG
acquisition function. In the most relevant area around the robust peak (middle one), it approximates the
true robustness performance (Figure 5(b)) very well. The opportunity cost over the number of evaluations
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Figure 5: Two-dimensional benchmark problem.

is shown in Figure 6b with error bars. While the rKG acquisition function once more quickly converges
to the correct robust optimum (opportunity cost of zero), Uniform Allocation and DRA(1) are significantly
slower.

6 CONCLUSION

In many real-world optimization problems, the solutions are affected by disturbances to the decision
variables, e.g. because of manufacturing tolerances. Finding a robust optimum solution becomes critical
to lessen the sensitivity to the disturbances and obtaining a high expected performance.

This paper has introduced an algorithm based on the Knowledge Gradient idea for finding the robust
optimum of costly-to-evaluate functions, adapting the technique used for Bayesian optimization with input
uncertainty in Pearce and Branke (2017) and Toscano-Palmerin and Frazier (2018). The key point of the
algorithm is the use of a novel acquisition function, the robust Knowledge Gradient, to iteratively identify
the next sampling point. We have demonstrated that robust Knowledge Gradient is efficient in achieving the
same solution quality as alternative approaches at a much lower number of required function evaluations.

There are several avenues for future work. The algorithm should be tested with more problems (in
particular real-world problems) and for higher dimensional cases. Also other measures of robustness should
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Figure 6: (a) Robustness performance of GP built on 100 samples defined by rKG, (b) Opportunity cost
over evaluations.

be tested such as with a normally distributed disturbance or where one is interested not in the expected
performance, but in a quantile or the worst case.
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